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ATmega8(L)
Crystal Oscillator XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can
be configured for use as an On-chip Oscillator, as shown in Figure 11. Either a quartz
crystal or a ceramic resonator may be used. The CKOPT Fuse selects between two dif-
ferent Oscillator amplifier modes. When CKOPT is programmed, the Oscillator output
will oscillate a full rail-to-rail swing on the output. This mode is suitable when operating
in a very noisy environment or when the output from XTAL2 drives a second clock
buffer. This mode has a wide frequency range. When CKOPT is unprogrammed, the
Oscillator has a smaller output swing. This reduces power consumption considerably.
This mode has a limited frequency range and it cannot be used to drive other clock
buffers. 

For resonators, the maximum frequency is 8 MHz with CKOPT unprogrammed and
16 MHz with CKOPT programmed. C1 and C2 should always be equal for both crystals
and resonators. The optimal value of the capacitors depends on the crystal or resonator
in use, the amount of stray capacitance, and the electromagnetic noise of the environ-
ment. Some initial guidelines for choosing capacitors for use with crystals are given in
Table 4. For ceramic resonators, the capacitor values given by the manufacturer should
be used.

Figure 11.  Crystal Oscillator Connections

The Oscillator can operate in three different modes, each optimized for a specific fre-
quency range. The operating mode is selected by the fuses CKSEL3..1 as shown in
Table 4.

Note: 1. This option should not be used with crystals, only with ceramic resonators.

The CKSEL0 Fuse together with the SUT1..0 Fuses select the start-up times as shown
in Table 5.

Table 4.  Crystal Oscillator Operating Modes

CKOPT CKSEL3..1
 Frequency 
Range(MHz)

Recommended Range for Capacitors 
C1 and C2 for Use with Crystals (pF)

1 101(1) 0.4 - 0.9 –

1 110 0.9 - 3.0 12 - 22

1 111 3.0 - 8.0 12 - 22

0 101, 110, 111 1.0 ≤ 12 - 22

XTAL2

XTAL1

GND

C2

C1
25
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ATmega8(L)
Oscillator Calibration Register 
– OSCCAL

• Bits 7..0 – CAL7..0: Oscillator Calibration Value

Writing the calibration byte to this address will trim the Internal Oscillator to remove pro-
cess variations from the Oscillator frequency. During Reset, the 1 MHz calibration value
which is located in the signature row High byte (address 0x00) is automatically loaded
into the OSCCAL Register. If the internal RC is used at other frequencies, the calibration
values must be loaded manually. This can be done by first reading the signature row by
a programmer, and then store the calibration values in the Flash or EEPROM. Then the
value can be read by software and loaded into the OSCCAL Register. When OSCCAL is
zero, the lowest available frequency is chosen. Writing non-zero values to this register
will increase the frequency of the Internal Oscillator. Writing 0xFF to the register gives
the highest available frequency. The calibrated Oscillator is used to time EEPROM and
Flash access. If EEPROM or Flash is written, do not calibrate to more than 10% above
the nominal frequency. Otherwise, the EEPROM or Flash write may fail. Note that the
Oscillator is intended for calibration to 1.0, 2.0, 4.0, or 8.0 MHz. Tuning to other values is
not guaranteed, as indicated in Table 11.

Bit 7 6 5 4 3 2 1 0

CAL7 CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CAL0 OSCCAL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value Device Specific Calibration Value

Table 11.  Internal RC Oscillator Frequency Range

OSCCAL Value
Min Frequency in Percentage of 

Nominal Frequency (%)
Max Frequency in Percentage of 

Nominal Frequency (%)

0x00 50 100

0x7F 75 150

0xFF 100 200
29
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Interrupts This section describes the specifics of the interrupt handling performed by the
ATmega8. For a general explanation of the AVR interrupt handling, refer to “Reset and
Interrupt Handling” on page 12.

Interrupt Vectors in 
ATmega8

Notes: 1. When the BOOTRST Fuse is programmed, the device will jump to the Boot Loader
address at reset, see “Boot Loader Support – Read-While-Write Self-Programming”
on page 206.

2. When the IVSEL bit in GICR is set, Interrupt Vectors will be moved to the start of the
boot Flash section. The address of each Interrupt Vector will then be the address in
this table added to the start address of the boot Flash section.

Table 19 shows reset and Interrupt Vectors placement for the various combinations of
BOOTRST and IVSEL settings. If the program never enables an interrupt source, the
Interrupt Vectors are not used, and regular program code can be placed at these loca-
tions. This is also the case if the Reset Vector is in the Application section while the
Interrupt Vectors are in the boot section or vice versa. 

Table 18.  Reset and Interrupt Vectors

Vector No.
Program

Address(2) Source Interrupt Definition

1 0x000(1) RESET External Pin, Power-on Reset, Brown-out 
Reset, and Watchdog Reset

2 0x001 INT0 External Interrupt Request 0

3 0x002 INT1 External Interrupt Request 1

4 0x003 TIMER2 COMP Timer/Counter2 Compare Match

5 0x004 TIMER2 OVF Timer/Counter2 Overflow

6 0x005 TIMER1 CAPT Timer/Counter1 Capture Event

7 0x006 TIMER1 COMPA Timer/Counter1 Compare Match A

8 0x007 TIMER1 COMPB Timer/Counter1 Compare Match B

9 0x008 TIMER1 OVF Timer/Counter1 Overflow

10 0x009 TIMER0 OVF Timer/Counter0 Overflow

11 0x00A SPI, STC Serial Transfer Complete

12 0x00B USART, RXC USART, Rx Complete

13 0x00C USART, UDRE USART Data Register Empty

14 0x00D USART, TXC USART, Tx Complete

15 0x00E ADC ADC Conversion Complete

16 0x00F EE_RDY EEPROM Ready

17 0x010 ANA_COMP Analog Comparator

18 0x011 TWI Two-wire Serial Interface

19 0x012 SPM_RDY Store Program Memory Ready
44 ATmega8(L) 
2486M–AVR–12/03



ATmega8(L)
The following code example shows how to set port B pins 0 and 1 high, 2 and 3 low, and
define the port pins from 4 to 7 as input with pull-ups assigned to port pins 6 and 7. The
resulting pin values are read back again, but as previously discussed, a nop instruction
is included to be able to read back the value recently assigned to some of the pins.

Note: 1. For the assembly program, two temporary registers are used to minimize the time
from pull-ups are set on pins 0, 1, 6, and 7, until the direction bits are correctly set,
defining bit 2 and 3 as low and redefining bits 0 and 1 as strong high drivers.

Digital Input Enable and Sleep 
Modes

As shown in Figure 22, the digital input signal can be clamped to ground at the input of
the Schmitt-trigger. The signal denoted SLEEP in the figure, is set by the MCU Sleep
Controller in Power-down mode, Power-save mode, and Standby mode to avoid high
power consumption if some input signals are left floating, or have an analog signal level
close to VCC/2.

SLEEP is overridden for port pins enabled as External Interrupt pins. If the External
Interrupt Request is not enabled, SLEEP is active also for these pins. SLEEP is also
overridden by various other alternate functions as described in “Alternate Port Func-
tions” on page 54.

If a logic high level (“one”) is present on an Asynchronous External Interrupt pin config-
ured as “Interrupt on Rising Edge, Falling Edge, or Any Logic Change on Pin” while the
external interrupt is not enabled, the corresponding External Interrupt Flag will be set
when resuming from the above mentioned sleep modes, as the clamping in these sleep
modes produces the requested logic change.

Assembly Code Example(1)

...

; Define pull-ups and set outputs high

; Define directions for port pins

ldi r16,(1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0)

ldi r17,(1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0)

out PORTB,r16

out DDRB,r17

; Insert nop for synchronization

nop

; Read port pins

in r16,PINB

...

C Code Example(1)

unsigned char i;

...

/* Define pull-ups and set outputs high */

/* Define directions for port pins */

PORTB = (1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0);

DDRB = (1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0);

/* Insert nop for synchronization*/

_NOP();

/* Read port pins */

i = PINB;

...
53
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Timer/Counter Clock 
Sources

The Timer/Counter can be clocked by an internal or an external clock source. The clock
source is selected by the clock select logic which is controlled by the clock select
(CS02:0) bits located in the Timer/Counter Control Register (TCCR0). For details on
clock sources and prescaler, see “Timer/Counter0 and Timer/Counter1 Prescalers” on
page 72.

Counter Unit The main part of the 8-bit Timer/Counter is the programmable counter unit. Figure 27
shows a block diagram of the counter and its surroundings.

Figure 27.  Counter Unit Block Diagram

Signal description (internal signals):

count Increment TCNT0 by 1.

clkTn Timer/Counter clock, referred to as clkT0 in the following.

max Signalize that TCNT0 has reached maximum value.

The counter is incremented at each timer clock (clkT0). clkT0 can be generated from an
external or internal clock source, selected by the clock select bits (CS02:0). When no
clock source is selected (CS02:0 = 0) the timer is stopped. However, the TCNT0 value
can be accessed by the CPU, regardless of whether clkT0 is present or not. A CPU write
overrides (has priority over) all counter clear or count operations.

Operation The counting direction is always up (incrementing), and no counter clear is performed.
The counter simply overruns when it passes its maximum 8-bit value (MAX = 0xFF) and
then restarts from the bottom (0x00). In normal operation the Timer/Counter Overflow
Flag (TOV0) will be set in the same timer clock cycle as the TCNT0 becomes zero. The
TOV0 Flag in this case behaves like a ninth bit, except that it is only set, not cleared.
However, combined with the timer overflow interrupt that automatically clears the TOV0
Flag, the timer resolution can be increased by software. A new counter value can be
written anytime.

DATA BUS

TCNTn Control Logic
count

TOVn
(Int. Req.)

Clock Select

max

Tn
Edge

Detector

( From Prescaler )

clkTn
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ATmega8(L)
(ICF1) must be cleared by software (writing a logical one to the I/O bit location). For
measuring frequency only, the clearing of the ICF1 Flag is not required (if an interrupt
handler is used).

Output Compare Units The 16-bit comparator continuously compares TCNT1 with the Output Compare Regis-
ter (OCR1x). If TCNT equals OCR1x the comparator signals a match. A match will set
the Output Compare Flag (OCF1x) at the next timer clock cycle. If enabled (OCIE1x =
1), the Output Compare Flag generates an Output Compare interrupt. The OCF1x Flag
is automatically cleared when the interrupt is executed. Alternatively the OCF1x Flag
can be cleared by software by writing a logical one to its I/O bit location. The waveform
generator uses the match signal to generate an output according to operating mode set
by the Waveform Generation mode (WGM13:0) bits and Compare Output mode
(COM1x1:0) bits. The TOP and BOTTOM signals are used by the waveform generator
for handling the special cases of the extreme values in some modes of operation (See
“Modes of Operation” on page 86.)

A special feature of Output Compare unit A allows it to define the Timer/Counter TOP
value (i.e. counter resolution). In addition to the counter resolution, the TOP value
defines the period time for waveforms generated by the waveform generator.

Figure 35 shows a block diagram of the Output Compare unit. The small “n” in the regis-
ter and bit names indicates the device number (n = 1 for Timer/Counter 1), and the “x”
indicates Output Compare unit (A/B). The elements of the block diagram that are not
directly a part of the Output Compare unit are gray shaded.

Figure 35.  Output Compare Unit, Block Diagram

The OCR1x Register is double buffered when using any of the twelve Pulse Width Mod-
ulation (PWM) modes. For the normal and Clear Timer on Compare (CTC) modes of
operation, the double buffering is disabled. The double buffering synchronizes the

OCFnx (Int.Req.)

= (16-bit Comparator )

OCRnx  Buffer (16-bit Register)

OCRnxH Buf. (8-bit)

OCnx

TEMP (8-bit)

DATA BUS (8-bit)

OCRnxL Buf. (8-bit)

TCNTn (16-bit Counter)

TCNTnH (8-bit) TCNTnL (8-bit)

COMnx1:0WGMn3:0

OCRnx (16-bit Register)

OCRnxH (8-bit) OCRnxL (8-bit)

Waveform Generator
TOP

BOTTOM
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OCR1A set to 0x0003), and the maximum resolution is 16-bit (ICR1 or OCR1A set to
MAX). The PWM resolution in bits can be calculated by using the following equation:

In phase correct PWM mode the counter is incremented until the counter value matches
either one of the fixed values 0x00FF, 0x01FF, or 0x03FF (WGM13:0 = 1, 2, or 3), the
value in ICR1 (WGM13:0 = 10), or the value in OCR1A (WGM13:0 = 11). The counter
has then reached the TOP and changes the count direction. The TCNT1 value will be
equal to TOP for one timer clock cycle. The timing diagram for the phase correct PWM
mode is shown on Figure 39. The figure shows phase correct PWM mode when OCR1A
or ICR1 is used to define TOP. The TCNT1 value is in the timing diagram shown as a
histogram for illustrating the dual-slope operation. The diagram includes non-inverted
and inverted PWM outputs. The small horizontal line marks on the TCNT1 slopes repre-
sent compare matches between OCR1x and TCNT1. The OC1x Interrupt Flag will be
set when a Compare Match occurs.

Figure 39.  Phase Correct PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV1) is set each time the counter reaches BOT-
TOM. When either OCR1A or ICR1 is used for defining the TOP value, the OC1A or
ICF1 Flag is set accordingly at the same timer clock cycle as the OCR1x Registers are
updated with the double buffer value (at TOP). The Interrupt Flags can be used to gen-
erate an interrupt each time the counter reaches the TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is
higher or equal to the value of all of the Compare Registers. If the TOP value is lower
than any of the Compare Registers, a Compare Match will never occur between the
TCNT1 and the OCR1x. Note that when using fixed TOP values, the unused bits are
masked to zero when any of the OCR1x Registers are written. As the third period shown
in Figure 39 illustrates, changing the TOP actively while the Timer/Counter is running in
the Phase Correct mode can result in an unsymmetrical output. The reason for this can
be found in the time of update of the OCR1x Register. Since the OCR1x update occurs
at TOP, the PWM period starts and ends at TOP. This implies that the length of the fall-
ing slope is determined by the previous TOP value, while the length of the rising slope is
determined by the new TOP value. When these two values differ the two slopes of the

RPCPWM
TOP 1+( )log

2( )log
-----------------------------------=

OCRnx / TOP Update and
OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

1 2 3 4

TOVn Interrupt Flag Set
(Interrupt on Bottom)

TCNTn

Period

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)
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The following code examples show how to initialize the SPI as a Slave and how to per-
form a simple reception.

Note: 1. The example code assumes that the part specific header file is included.

Assembly Code Example(1)

SPI_SlaveInit:

; Set MISO output, all others input

ldi r17,(1<<DD_MISO)

out DDR_SPI,r17

; Enable SPI

ldi r17,(1<<SPE)

out SPCR,r17

ret

SPI_SlaveReceive:

; Wait for reception complete

sbis SPSR,SPIF

rjmp SPI_SlaveReceive

; Read received data and return

in r16,SPDR

ret

C Code Example(1)

void SPI_SlaveInit(void)

{

/* Set MISO output, all others input */

DDR_SPI = (1<<DD_MISO);

/* Enable SPI */

SPCR = (1<<SPE);

}

char SPI_SlaveReceive(void)

{

/* Wait for reception complete */

while(!(SPSR & (1<<SPIF)))

;

/* Return data register */

return SPDR;

}

125
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USART The Universal Synchronous and Asynchronous serial Receiver and Transmitter
(USART) is a highly-flexible serial communication device. The main features are:
• Full Duplex Operation (Independent Serial Receive and Transmit Registers)
• Asynchronous or Synchronous Operation
• Master or Slave Clocked Synchronous Operation
• High Resolution Baud Rate Generator
• Supports Serial Frames with 5, 6, 7, 8, or 9 Databits and 1 or 2 Stop Bits
• Odd or Even Parity Generation and Parity Check Supported by Hardware
• Data OverRun Detection
• Framing Error Detection
• Noise Filtering Includes False Start Bit Detection and Digital Low Pass Filter
• Three Separate Interrupts on TX Complete, TX Data Register Empty and RX Complete
• Multi-processor Communication Mode
• Double Speed Asynchronous Communication Mode

Overview A simplified block diagram of the USART Transmitter is shown in Figure 61. CPU acces-
sible I/O Registers and I/O pins are shown in bold.

Figure 61.  USART Block Diagram(1)

Note: 1. Refer to “Pin Configurations” on page 2, Table 30 on page 62, and Table 29 on page
62 for USART pin placement. 
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The TWEA bit controls the generation of the acknowledge pulse. If the TWEA bit is writ-
ten to one, the ACK pulse is generated on the TWI bus if the following conditions are
met:

1. The device’s own slave address has been received.

2. A general call has been received, while the TWGCE bit in the TWAR is set.

3. A data byte has been received in Master Receiver or Slave Receiver mode. 

By writing the TWEA bit to zero, the device can be virtually disconnected from the Two-
wire Serial Bus temporarily. Address recognition can then be resumed by writing the
TWEA bit to one again.

• Bit 5 – TWSTA: TWI START Condition Bit

The application writes the TWSTA bit to one when it desires to become a Master on the
Two-wire Serial Bus. The TWI hardware checks if the bus is available, and generates a
START condition on the bus if it is free. However, if the bus is not free, the TWI waits
until a STOP condition is detected, and then generates a new START condition to claim
the bus Master status. TWSTA must be cleared by software when the START condition
has been transmitted.

• Bit 4 – TWSTO: TWI STOP Condition Bit

Writing the TWSTO bit to one in Master mode will generate a STOP condition on the
Two-wire Serial Bus. When the STOP condition is executed on the bus, the TWSTO bit
is cleared automatically. In Slave mode, setting the TWSTO bit can be used to recover
from an error condition. This will not generate a STOP condition, but the TWI returns to
a well-defined unaddressed Slave mode and releases the SCL and SDA lines to a high
impedance state.

• Bit 3 – TWWC: TWI Write Collision Flag

The TWWC bit is set when attempting to write to the TWI Data Register – TWDR when
TWINT is low. This flag is cleared by writing the TWDR Register when TWINT is high.

• Bit 2 – TWEN: TWI Enable Bit

The TWEN bit enables TWI operation and activates the TWI interface. When TWEN is
written to one, the TWI takes control over the I/O pins connected to the SCL and SDA
pins, enabling the slew-rate limiters and spike filters. If this bit is written to zero, the TWI
is switched off and all TWI transmissions are terminated, regardless of any ongoing
operation.

• Bit 1 – Res: Reserved Bit

This bit is a reserved bit and will always read as zero.

• Bit 0 – TWIE: TWI Interrupt Enable

When this bit is written to one, and the I-bit in SREG is set, the TWI interrupt request will
be activated for as long as the TWINT Flag is high.
169
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Figure 94.  ADC Timing Diagram, Free Running Conversion

Changing Channel or 
Reference Selection

The MUXn and REFS1:0 bits in the ADMUX Register are single buffered through a tem-
porary register to which the CPU has random access. This ensures that the channels
and reference selection only takes place at a safe point during the conversion. The
channel and reference selection is continuously updated until a conversion is started.
Once the conversion starts, the channel and reference selection is locked to ensure a
sufficient sampling time for the ADC. Continuous updating resumes in the last ADC
clock cycle before the conversion completes (ADIF in ADCSRA is set). Note that the
conversion starts on the following rising ADC clock edge after ADSC is written. The user
is thus advised not to write new channel or reference selection values to ADMUX until
one ADC clock cycle after ADSC is written.

If both ADFR and ADEN is written to one, an interrupt event can occur at any time. If the
ADMUX Register is changed in this period, the user cannot tell if the next conversion is
based on the old or the new settings. ADMUX can be safely updated in the following
ways:

1. When ADFR or ADEN is cleared.

2. During conversion, minimum one ADC clock cycle after the trigger event.

3. After a conversion, before the Interrupt Flag used as trigger source is cleared.

When updating ADMUX in one of these conditions, the new settings will affect the next
ADC conversion.

Table 73.  ADC Conversion Time

Condition
Sample & Hold (Cycles 

from Start of Conversion)
Conversion Time 

(Cycles)

Extended conversion 13.5 25

Normal conversions, single ended 1.5 13

11 12 13

MSB of Result

LSB of Result

ADC Clock

ADSC

ADIF

ADCH

ADCL

Cycle Number
1 2

One Conversion Next Conversion

3 4

Conversion
Complete

Sample &Hold

MUX and REFS
Update
197
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Notes: 1.  tWLRH is valid for the Write Flash, Write EEPROM, Write Fuse Bits and Write Lock
Bits commands.

2.  tWLRH_CE is valid for the Chip Erase command.

Serial Downloading Both the Flash and EEPROM memory arrays can be programmed using the serial SPI
bus while RESET is pulled to GND. The serial interface consists of pins SCK, MOSI
(input) and MISO (output). After RESET is set low, the Programming Enable instruction
needs to be executed first before program/erase operations can be executed. NOTE, in
Table 96 on page 232, the pin mapping for SPI programming is listed. Not all parts use
the SPI pins dedicated for the internal SPI interface.

Serial Programming Pin 
Mapping

Figure 112.  Serial Programming and Verify(1)

Notes: 1. If the device is clocked by the Internal Oscillator, it is no need to connect a clock
source to the XTAL1 pin.

2. VCC - 0.3 < AVCC < VCC + 0.3, however, AVCC should always be within 2.7 - 5.5V.

When programming the EEPROM, an auto-erase cycle is built into the self-timed pro-
gramming operation (in the Serial mode ONLY) and there is no need to first execute the
Chip Erase instruction. The Chip Erase operation turns the content of every memory
location in both the Program and EEPROM arrays into 0xFF.

Depending on CKSEL Fuses, a valid clock must be present. The minimum low and high
periods for the Serial Clock (SCK) input are defined as follows:

tBVDV BS1 Valid to DATA valid 0 250 ns

tOLDV OE Low to DATA Valid 250 ns

tOHDZ OE High to DATA Tri-stated 250 ns

Table 95.  Parallel Programming Characteristics, VCC = 5V ± 10%  (Continued)

Symbol Parameter Min Typ Max Units

Table 96.  Pin Mapping Serial Programming

Symbol Pins I/O Description

MOSI PB3 I Serial data in

MISO PB4 O Serial data out

SCK PB5 I Serial clock

VCC

GND

XTAL1

SCK

MISO

MOSI

RESET

PB3

PB4

PB5

+2.7 - 5.5V

AVCC

+2.7 - 5.5V (2)
232 ATmega8(L) 
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Two-wire Serial Interface Characteristics

Table 101 describes the requirements for devices connected to the Two-wire Serial Bus. The ATmega8 Two-wire Serial
Interface meets or exceeds these requirements under the noted conditions.

Timing symbols refer to Figure 115.

Notes: 1. In ATmega8, this parameter is characterized and not 100% tested.
2. Required only for fSCL > 100 kHz.
3. Cb = capacitance of one bus line in pF.
4. fCK = CPU clock frequency

Table 101.  Two-wire Serial Bus Requirements 

Symbol Parameter Condition Min Max Units

VIL Input Low-voltage -0.5 0.3 VCC V

VIH Input High-voltage 0.7 VCC VCC + 0.5 V

Vhys
(1) Hysteresis of Schmitt Trigger Inputs 0.05 VCC

(2) – V

VOL
(1) Output Low-voltage 3 mA sink current 0 0.4 V

tr
(1) Rise Time for both SDA and SCL 20 + 0.1Cb

(3)(2) 300 ns

tof
(1) Output Fall Time from VIHmin to VILmax 10 pF < Cb < 400 pF(3) 20 + 0.1Cb

(3)(2) 250 ns

tSP
(1) Spikes Suppressed by Input Filter 0 50(2) ns

Ii Input Current each I/O Pin 0.1VCC < Vi < 0.9VCC -10 10 µA

Ci
(1) Capacitance for each I/O Pin – 10 pF

fSCL SCL Clock Frequency fCK
(4) > max(16fSCL, 250kHz)(5) 0 400 kHz

Rp Value of Pull-up resistor

fSCL ≤ 100 kHz

fSCL > 100 kHz

tHD;STA Hold Time (repeated) START Condition
fSCL ≤ 100 kHz 4.0 – µs

fSCL > 100 kHz 0.6 – µs

tLOW Low Period of the SCL Clock
fSCL ≤ 100 kHz(6) 4.7 – µs

fSCL > 100 kHz(7) 1.3 – µs

tHIGH High period of the SCL clock
fSCL ≤ 100 kHz 4.0 – µs

fSCL > 100 kHz 0.6 – µs

tSU;STA Set-up time for a repeated START condition
fSCL ≤ 100 kHz 4.7 – µs

fSCL > 100 kHz 0.6 – µs

tHD;DAT Data hold time
fSCL ≤ 100 kHz 0 3.45 µs

fSCL > 100 kHz 0 0.9 µs

tSU;DAT Data setup time
fSCL ≤ 100 kHz 250 – ns

fSCL > 100 kHz 100 – ns

tSU;STO Setup time for STOP condition
fSCL ≤ 100 kHz 4.0 – µs

fSCL > 100 kHz 0.6 – µs

tBUF
Bus free time between a STOP and START 
condition

fSCL ≤ 100 kHz 4.7 – µs

fSCL > 100 kHz 1.3 – µs

VCC 0,4V–

3mA
----------------------------

1000ns
Cb

------------------- Ω

VCC 0,4V–

3mA
----------------------------

300ns
Cb

---------------- Ω
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ATmega8(L)
Figure 119.  Active Supply Current vs. Frequency (1 - 20 MHz)

Figure 120.  Active Supply Current vs. VCC (Internal RC Oscillator, 8 MHz)
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ATmega8(L)
Pin Driver Strength Figure 147.  I/O Pin Source Current vs. Output Voltage (VCC = 5V)

Figure 148.  I/O Pin Source Current vs. Output Voltage (VCC = 2.7V)
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ATmega8(L)
Pin Thresholds and 
Hysteresis

Figure 155.  I/O Pin Input Threshold Voltage vs. VCC (VIH, I/O Pin Read as “1”)

Figure 156.  I/O Pin Input Threshold Voltage vs. VCC (VIL, I/O Pin Read as “0”)

I/O PIN INPUT THRESHOLD VOLTAGE vs. VCC

VIH, IO PIN READ AS '1'

0

0.5

1

1.5

2

2.5

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

T
hr

es
ho

ld
 (

V
)

85°C
25°C

-40°C

I/O PIN INPUT THRESHOLD VOLTAGE vs. VCC

VIL, IO PIN READ AS '0'

0

0.5

1

1.5

2

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

T
hr

es
ho

ld
 (

V
)

85°C
25°C

-40°C
263
2486M–AVR–12/03



ATmega8(L)
Figure 163.  Reset Input Pin Hysteresis vs. VCC

Bod Thresholds and Analog 
Comparator Offset

Figure 164.  BOD Thresholds vs. Temperature (BOD Level is 4.0V)
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Current Consumption in 
Reset and Reset Pulsewidth

Figure 189.  Reset Supply Current vs. VCC (0.1 - 1.0 MHz, Excluding Current Through
The Reset Pull-up)

Figure 190.  Reset Supply Current vs. VCC (1 - 20 MHz, Excluding Current Through The
Reset Pull-up)
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