
Atmel - ATMEGA8-16AI Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor AVR

Core Size 8-Bit

Speed 16MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 23

Program Memory Size 8KB (4K x 16)

Program Memory Type FLASH

EEPROM Size 512 x 8

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 4.5V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 32-TQFP

Supplier Device Package 32-TQFP (7x7)

Purchase URL https://www.e-xfl.com/product-detail/atmel/atmega8-16ai

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega8-16ai-4396518
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

The AVR core combines a rich instruction set with 32 general purpose working registers.
All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing
two independent registers to be accessed in one single instruction executed in one clock
cycle. The resulting architecture is more code efficient while achieving throughputs up to
ten times faster than conventional CISC microcontrollers.

The ATmega8 provides the following features: 8K bytes of In-System Programmable
Flash with Read-While-Write capabilities, 512 bytes of EEPROM, 1K byte of SRAM, 23
general purpose I/O lines, 32 general purpose working registers, three flexible
Timer/Counters with compare modes, internal and external interrupts, a serial program-
mable USART, a byte oriented Two-wire Serial Interface, a 6-channel ADC (eight
channels in TQFP and MLF packages) where four (six) channels have 10-bit accuracy
and two channels have 8-bit accuracy, a programmable Watchdog Timer with Internal
Oscillator, an SPI serial port, and five software selectable power saving modes. The Idle
mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt
system to continue functioning. The Power-down mode saves the register contents but
freezes the Oscillator, disabling all other chip functions until the next Interrupt or Hard-
ware Reset. In Power-save mode, the asynchronous timer continues to run, allowing the
user to maintain a timer base while the rest of the device is sleeping. The ADC Noise
Reduction mode stops the CPU and all I/O modules except asynchronous timer and
ADC, to minimize switching noise during ADC conversions. In Standby mode, the crys-
tal/resonator Oscillator is running while the rest of the device is sleeping. This allows
very fast start-up combined with low-power consumption.

The device is manufactured using Atmel’s high density non-volatile memory technology.
The Flash Program memory can be reprogrammed In-System through an SPI serial
interface, by a conventional non-volatile memory programmer, or by an On-chip boot
program running on the AVR core. The boot program can use any interface to download
the application program in the Application Flash memory. Software in the Boot Flash
Section will continue to run while the Application Flash Section is updated, providing
true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-
Programmable Flash on a monolithic chip, the Atmel ATmega8 is a powerful microcon-
troller that provides a highly-flexible and cost-effective solution to many embedded
control applications.

The ATmega8 AVR is supported with a full suite of program and system development
tools, including C compilers, macro assemblers, program debugger/simulators, In-Cir-
cuit Emulators, and evaluation kits.

Disclaimer Typical values contained in this datasheet are based on simulations and characteriza-
tion of other AVR microcontrollers manufactured on the same process technology. Min
and Max values will be available after the device is characterized.
4 ATmega8(L)
2486M–AVR–12/03

Ports as General Digital
I/O

The ports are bi-directional I/O ports with optional internal pull-ups. Figure 22 shows a
functional description of one I/O port pin, here generically called Pxn.

Figure 22. General Digital I/O(1)

Note: 1. WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clkI/O,
SLEEP, and PUD are common to all ports.

Configuring the Pin Each port pin consists of 3 Register bits: DDxn, PORTxn, and PINxn. As shown in “Reg-
ister Description for I/O Ports” on page 63, the DDxn bits are accessed at the DDRx I/O
address, the PORTxn bits at the PORTx I/O address, and the PINxn bits at the PINx I/O
address.

The DDxn bit in the DDRx Register selects the direction of this pin. If DDxn is written
logic one, Pxn is configured as an output pin. If DDxn is written logic zero, Pxn is config-
ured as an input pin.

If PORTxn is written logic one when the pin is configured as an input pin, the pull-up
resistor is activated. To switch the pull-up resistor off, PORTxn has to be written logic
zero or the pin has to be configured as an output pin. The port pins are tri-stated when a
reset condition becomes active, even if no clocks are running.

If PORTxn is written logic one when the pin is configured as an output pin, the port pin is
driven high (one). If PORTxn is written logic zero when the pin is configured as an out-
put pin, the port pin is driven low (zero).

clk

RPx

RRx

WPx

RDx

WDx

PUD

SYNCHRONIZER

WDx: WRITE DDRx

WPx: WRITE PORTx
RRx: READ PORTx REGISTER
RPx: READ PORTx PIN

PUD: PULLUP DISABLE

clkI/O: I/O CLOCK

RDx: READ DDRx

D

L

Q

Q

RESET

RESET

Q

QD

Q

Q D

CLR

PORTxn

Q

Q D

CLR

DDxn

PINxn

D
AT

A
 B

U
S

SLEEP

SLEEP: SLEEP CONTROL

Pxn

I/O
50 ATmega8(L)
2486M–AVR–12/03

ATmega8(L)
When switching between tri-state ({DDxn, PORTxn} = 0b00) and output high ({DDxn,
PORTxn} = 0b11), an intermediate state with either pull-up enabled ({DDxn, PORTxn} =
0b01) or output low ({DDxn, PORTxn} = 0b10) must occur. Normally, the pull-up
enabled state is fully acceptable, as a high-impedant environment will not notice the dif-
ference between a strong high driver and a pull-up. If this is not the case, the PUD bit in
the SFIOR Register can be set to disable all pull-ups in all ports.

Switching between input with pull-up and output low generates the same problem. The
user must use either the tri-state ({DDxn, PORTxn} = 0b00) or the output high state
({DDxn, PORTxn} = 0b11) as an intermediate step.

Table 20 summarizes the control signals for the pin value.

Reading the Pin Value Independent of the setting of Data Direction bit DDxn, the port pin can be read through
the PINxn Register Bit. As shown in Figure 22, the PINxn Register bit and the preceding
latch constitute a synchronizer. This is needed to avoid metastability if the physical pin
changes value near the edge of the internal clock, but it also introduces a delay. Figure
23 shows a timing diagram of the synchronization when reading an externally applied
pin value. The maximum and minimum propagation delays are denoted tpd,max and
tpd,min, respectively.

Figure 23. Synchronization when Reading an Externally Applied Pin Value

Table 20. Port Pin Configurations

DDxn PORTxn
PUD

(in SFIOR) I/O Pull-up Comment

0 0 X Input No Tri-state (Hi-Z)

0 1 0 Input Yes
Pxn will source current if external
pulled low.

0 1 1 Input No Tri-state (Hi-Z)

1 0 X Output No Output Low (Sink)

1 1 X Output No Output High (Source)

XXX in r17, PINx

0x00 0xFF

INSTRUCTIONS

SYNC LATCH

PINxn

r17

XXX

SYSTEM CLK

tpd, max

tpd, min
51
2486M–AVR–12/03

ATmega8(L)
Alternate Functions of Port D The Port D pins with alternate functions are shown in Table 28.

The alternate pin configuration is as follows:

• AIN1 – Port D, Bit 7

AIN1, Analog Comparator Negative Input. Configure the port pin as input with the inter-
nal pull-up switched off to avoid the digital port function from interfering with the function
of the Analog Comparator.

• AIN0 – Port D, Bit 6

AIN0, Analog Comparator Positive Input. Configure the port pin as input with the internal
pull-up switched off to avoid the digital port function from interfering with the function of
the Analog Comparator.

• T1 – Port D, Bit 5

T1, Timer/Counter1 counter source.

• XCK/T0 – Port D, Bit 4

XCK, USART external clock.

T0, Timer/Counter0 counter source.

• INT1 – Port D, Bit 3

INT1, External Interrupt source 1: The PD3 pin can serve as an external interrupt
source.

• INT0 – Port D, Bit 2

INT0, External Interrupt source 0: The PD2 pin can serve as an external interrupt
source.

• TXD – Port D, Bit 1

TXD, Transmit Data (Data output pin for the USART). When the USART Transmitter is
enabled, this pin is configured as an output regardless of the value of DDD1.

• RXD – Port D, Bit 0

RXD, Receive Data (Data input pin for the USART). When the USART Receiver is
enabled this pin is configured as an input regardless of the value of DDD0. When the
USART forces this pin to be an input, the pull-up can still be controlled by the
PORTD0 bit.

Table 28. Port D Pins Alternate Functions

Port Pin Alternate Function

PD7 AIN1 (Analog Comparator Negative Input)

PD6 AIN0 (Analog Comparator Positive Input)

PD5 T1 (Timer/Counter 1 External Counter Input)

PD4
XCK (USART External Clock Input/Output)
T0 (Timer/Counter 0 External Counter Input)

PD3 INT1 (External Interrupt 1 Input)

PD2 INT0 (External Interrupt 0 Input)

PD1 TXD (USART Output Pin)

PD0 RXD (USART Input Pin)
61
2486M–AVR–12/03

ATmega8(L)
Output Compare Unit The 8-bit comparator continuously compares TCNT2 with the Output Compare Register
(OCR2). Whenever TCNT2 equals OCR2, the comparator signals a match. A match will
set the Output Compare Flag (OCF2) at the next timer clock cycle. If enabled (OCIE2 =
1), the Output Compare Flag generates an Output Compare interrupt. The OCF2 Flag is
automatically cleared when the interrupt is executed. Alternatively, the OCF2 Flag can
be cleared by software by writing a logical one to its I/O bit location. The waveform gen-
erator uses the match signal to generate an output according to operating mode set by
the WGM21:0 bits and Compare Output mode (COM21:0) bits. The max and bottom sig-
nals are used by the waveform generator for handling the special cases of the extreme
values in some modes of operation (see “Modes of Operation” on page 108).

Figure 47 shows a block diagram of the Output Compare unit.

Figure 47. Output Compare Unit, Block Diagram

The OCR2 Register is double buffered when using any of the Pulse Width Modulation
(PWM) modes. For the normal and Clear Timer on Compare (CTC) modes of operation,
the double buffering is disabled. The double buffering synchronizes the update of the
OCR2 Compare Register to either top or bottom of the counting sequence. The synchro-
nization prevents the occurrence of odd-length, non-symmetrical PWM pulses, thereby
making the output glitch-free.

The OCR2 Register access may seem complex, but this is not case. When the double
buffering is enabled, the CPU has access to the OCR2 Buffer Register, and if double
buffering is disabled the CPU will access the OCR2 directly.

OCFn (Int. Req.)

= (8-bit Comparator)

OCRn

OCxy

DATA BUS

TCNTn

WGMn1:0

Waveform Generator

TOP

FOCn

COMn1:0

BOTTOM
105
2486M–AVR–12/03

ATmega8(L)
The dashed boxes in the block diagram separate the three main parts of the USART
(listed from the top): Clock generator, Transmitter and Receiver. Control Registers are
shared by all units. The clock generation logic consists of synchronization logic for exter-
nal clock input used by synchronous slave operation, and the baud rate generator. The
XCK (transfer clock) pin is only used by synchronous transfer mode. The Transmitter
consists of a single write buffer, a serial Shift Register, Parity Generator and control
logic for handling different serial frame formats. The write buffer allows a continuous
transfer of data without any delay between frames. The Receiver is the most complex
part of the USART module due to its clock and data recovery units. The recovery units
are used for asynchronous data reception. In addition to the recovery units, the Receiver
includes a parity checker, control logic, a Shift Register and a two level receive buffer
(UDR). The Receiver supports the same frame formats as the Transmitter, and can
detect Frame Error, Data OverRun and Parity Errors.

AVR USART vs. AVR UART –
Compatibility

The USART is fully compatible with the AVR UART regarding:

• Bit locations inside all USART Registers.

• Baud Rate Generation.

• Transmitter Operation.

• Transmit Buffer Functionality.

• Receiver Operation.

However, the receive buffering has two improvements that will affect the compatibility in
some special cases:

• A second Buffer Register has been added. The two Buffer Registers operate as a
circular FIFO buffer. Therefore the UDR must only be read once for each incoming
data! More important is the fact that the Error Flags (FE and DOR) and the ninth
data bit (RXB8) are buffered with the data in the receive buffer. Therefore the status
bits must always be read before the UDR Register is read. Otherwise the error
status will be lost since the buffer state is lost.

• The Receiver Shift Register can now act as a third buffer level. This is done by
allowing the received data to remain in the serial Shift Register (see Figure 61) if the
Buffer Registers are full, until a new start bit is detected. The USART is therefore
more resistant to Data OverRun (DOR) error conditions.

The following control bits have changed name, but have same functionality and register
location:

• CHR9 is changed to UCSZ2.

• OR is changed to DOR.

Clock Generation The clock generation logic generates the base clock for the Transmitter and Receiver.
The USART supports four modes of clock operation: normal asynchronous, double
speed asynchronous, Master synchronous and Slave Synchronous mode. The UMSEL
bit in USART Control and Status Register C (UCSRC) selects between asynchronous
and synchronous operation. Double speed (Asynchronous mode only) is controlled by
the U2X found in the UCSRA Register. When using Synchronous mode (UMSEL = 1),
the Data Direction Register for the XCK pin (DDR_XCK) controls whether the clock
source is internal (Master mode) or external (Slave mode). The XCK pin is only active
when using Synchronous mode.

Figure 62 shows a block diagram of the clock generation logic.
131
2486M–AVR–12/03

ATmega8(L)
Accessing
UBRRH/UCSRC
Registers

The UBRRH Register shares the same I/O location as the UCSRC Register. Therefore
some special consideration must be taken when accessing this I/O location.

Write Access When doing a write access of this I/O location, the high bit of the value written, the
USART Register Select (URSEL) bit, controls which one of the two registers that will be
written. If URSEL is zero during a write operation, the UBRRH value will be updated. If
URSEL is one, the UCSRC setting will be updated.

The following code examples show how to access the two registers.

Note: 1. The example code assumes that the part specific header file is included.

As the code examples illustrate, write accesses of the two registers are relatively unaf-
fected of the sharing of I/O location.

Assembly Code Examples(1)

...

; Set UBRRH to 2

ldi r16,0x02

out UBRRH,r16

...

; Set the USBS and the UCSZ1 bit to one, and

; the remaining bits to zero.

ldi r16,(1<<URSEL)|(1<<USBS)|(1<<UCSZ1)

out UCSRC,r16

...

C Code Examples(1)

...

/* Set UBRRH to 2 */

UBRRH = 0x02;

...

/* Set the USBS and the UCSZ1 bit to one, and */

/* the remaining bits to zero. */

UCSRC = (1<<URSEL)|(1<<USBS)|(1<<UCSZ1);

...
149
2486M–AVR–12/03

• Bit 5:4 – UPM1:0: Parity Mode

These bits enable and set type of Parity Generation and Check. If enabled, the Trans-
mitter will automatically generate and send the parity of the transmitted data bits within
each frame. The Receiver will generate a parity value for the incoming data and com-
pare it to the UPM0 setting. If a mismatch is detected, the PE Flag in UCSRA will be set.

• Bit 3 – USBS: Stop Bit Select

This bit selects the number of stop bits to be inserted by the trAnsmitter. The Receiver
ignores this setting.

• Bit 2:1 – UCSZ1:0: Character Size

The UCSZ1:0 bits combined with the UCSZ2 bit in UCSRB sets the number of data bits
(Character Size) in a frame the Receiver and Transmitter use.

• Bit 0 – UCPOL: Clock Polarity

Table 56. UPM Bits Settings

UPM1 UPM0 Parity Mode

0 0 Disabled

0 1 Reserved

1 0 Enabled, Even Parity

1 1 Enabled, Odd Parity

Table 57. USBS Bit Settings

USBS Stop Bit(s)

0 1-bit

1 2-bit

Table 58. UCSZ Bits Settings

UCSZ2 UCSZ1 UCSZ0 Character Size

0 0 0 5-bit

0 0 1 6-bit

0 1 0 7-bit

0 1 1 8-bit

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Reserved

1 1 1 9-bit
154 ATmega8(L)
2486M–AVR–12/03

ATmega8(L)
The TWEA bit controls the generation of the acknowledge pulse. If the TWEA bit is writ-
ten to one, the ACK pulse is generated on the TWI bus if the following conditions are
met:

1. The device’s own slave address has been received.

2. A general call has been received, while the TWGCE bit in the TWAR is set.

3. A data byte has been received in Master Receiver or Slave Receiver mode.

By writing the TWEA bit to zero, the device can be virtually disconnected from the Two-
wire Serial Bus temporarily. Address recognition can then be resumed by writing the
TWEA bit to one again.

• Bit 5 – TWSTA: TWI START Condition Bit

The application writes the TWSTA bit to one when it desires to become a Master on the
Two-wire Serial Bus. The TWI hardware checks if the bus is available, and generates a
START condition on the bus if it is free. However, if the bus is not free, the TWI waits
until a STOP condition is detected, and then generates a new START condition to claim
the bus Master status. TWSTA must be cleared by software when the START condition
has been transmitted.

• Bit 4 – TWSTO: TWI STOP Condition Bit

Writing the TWSTO bit to one in Master mode will generate a STOP condition on the
Two-wire Serial Bus. When the STOP condition is executed on the bus, the TWSTO bit
is cleared automatically. In Slave mode, setting the TWSTO bit can be used to recover
from an error condition. This will not generate a STOP condition, but the TWI returns to
a well-defined unaddressed Slave mode and releases the SCL and SDA lines to a high
impedance state.

• Bit 3 – TWWC: TWI Write Collision Flag

The TWWC bit is set when attempting to write to the TWI Data Register – TWDR when
TWINT is low. This flag is cleared by writing the TWDR Register when TWINT is high.

• Bit 2 – TWEN: TWI Enable Bit

The TWEN bit enables TWI operation and activates the TWI interface. When TWEN is
written to one, the TWI takes control over the I/O pins connected to the SCL and SDA
pins, enabling the slew-rate limiters and spike filters. If this bit is written to zero, the TWI
is switched off and all TWI transmissions are terminated, regardless of any ongoing
operation.

• Bit 1 – Res: Reserved Bit

This bit is a reserved bit and will always read as zero.

• Bit 0 – TWIE: TWI Interrupt Enable

When this bit is written to one, and the I-bit in SREG is set, the TWI interrupt request will
be activated for as long as the TWINT Flag is high.
169
2486M–AVR–12/03

ATmega8(L)
Master Receiver Mode In the Master Receiver mode, a number of data bytes are received from a Slave Trans-
mitter (see Figure 80). In order to enter a Master mode, a START condition must be
transmitted. The format of the following address packet determines whether Master
Transmitter or Master Receiver mode is to be entered. If SLA+W is transmitted, MT
mode is entered, if SLA+R is transmitted, MR mode is entered. All the status codes
mentioned in this section assume that the prescaler bits are zero or are masked to zero.

Figure 80. Data Transfer in Master Receiver Mode

A START condition is sent by writing the following value to TWCR:

TWEN must be written to one to enable the Two-wire Serial Interface, TWSTA must be
written to one to transmit a START condition and TWINT must be set to clear the TWINT
Flag. The TWI will then test the Two-wire Serial Bus and generate a START condition as
soon as the bus becomes free. After a START condition has been transmitted, the
TWINT Flag is set by hardware, and the status code in TWSR will be 0x08 (See Table
66). In order to enter MR mode, SLA+R must be transmitted. This is done by writing
SLA+R to TWDR. Thereafter the TWINT bit should be cleared (by writing it to one) to
continue the transfer. This is accomplished by writing the following value to TWCR:

When SLA+R have been transmitted and an acknowledgement bit has been received,
TWINT is set again and a number of status codes in TWSR are possible. Possible sta-
tus codes in Master mode are 0x38, 0x40, or 0x48. The appropriate action to be taken
for each of these status codes is detailed in Table 67. Received data can be read from
the TWDR Register when the TWINT Flag is set high by hardware. This scheme is
repeated until the last byte has been received. After the last byte has been received, the
MR should inform the ST by sending a NACK after the last received data byte. The
transfer is ended by generating a STOP condition or a repeated START condition. A
STOP condition is generated by writing the following value to TWCR:

A REPEATED START condition is generated by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 1 X 1 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 1 X 0 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 1 X 0 1 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 1 X 1 0 X 1 0 X

Device 1
MASTER

RECEIVER

Device 2
SLAVE

TRANSMITTER
Device 3 Device n

SDA

SCL

........ R1 R2

VCC
179
2486M–AVR–12/03

Analog Comparator The Analog Comparator compares the input values on the positive pin AIN0 and nega-
tive pin AIN1. When the voltage on the positive pin AIN0 is higher than the voltage on
the negative pin AIN1, the Analog Comparator Output, ACO, is set. The comparator’s
output can be set to trigger the Timer/Counter1 Input Capture function. In addition, the
comparator can trigger a separate interrupt, exclusive to the Analog Comparator. The
user can select Interrupt triggering on comparator output rise, fall or toggle. A block dia-
gram of the comparator and its surrounding logic is shown in Figure 89.

Figure 89. Analog Comparator Block Diagram(2)

Notes: 1. See Table 72 on page 192.
2. Refer to “Pin Configurations” on page 2 and Table 28 on page 61 for Analog Compar-

ator pin placement.

Special Function IO Register –
SFIOR

• Bit 3 – ACME: Analog Comparator Multiplexer Enable

When this bit is written logic one and the ADC is switched off (ADEN in ADCSRA is
zero), the ADC multiplexer selects the negative input to the Analog Comparator. When
this bit is written logic zero, AIN1 is applied to the negative input of the Analog Compar-
ator. For a detailed description of this bit, see “Analog Comparator Multiplexed Input” on
page 192.

ACBG

BANDGAP
REFERENCE

ADC MULTIPLEXER
OUTPUT

ACME
ADEN

(1)

Bit 7 6 5 4 3 2 1 0

– – – – ACME PUD PSR2 PSR10 SFIOR

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
190 ATmega8(L)
2486M–AVR–12/03

ATmega8(L)
• Bits 2:0 – ADPS2:0: ADC Prescaler Select Bits

These bits determine the division factor between the XTAL frequency and the input
clock to the ADC.

The ADC Data Register – ADCL and ADCH

ADLAR = 0

ADLAR = 1

When an ADC conversion is complete, the result is found in these two registers.

When ADCL is read, the ADC Data Register is not updated until ADCH is read. Conse-
quently, if the result is left adjusted and no more than 8-bit precision is required, it is
sufficient to read ADCH. Otherwise, ADCL must be read first, then ADCH.

The ADLAR bit in ADMUX, and the MUXn bits in ADMUX affect the way the result is
read from the registers. If ADLAR is set, the result is left adjusted. If ADLAR is cleared
(default), the result is right adjusted.

• ADC9:0: ADC Conversion result

These bits represent the result from the conversion, as detailed in “ADC Conversion
Result” on page 202.

Table 76. ADC Prescaler Selections

ADPS2 ADPS1 ADPS0 Division Factor

0 0 0 2

0 0 1 2

0 1 0 4

0 1 1 8

1 0 0 16

1 0 1 32

1 1 0 64

1 1 1 128

Bit 15 14 13 12 11 10 9 8

– – – – – – ADC9 ADC8 ADCH

ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0 ADCL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8

ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADCH

ADC1 ADC0 – – – – – – ADCL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
205
2486M–AVR–12/03

Note: 1. “1” means unprogrammed, “0” means programmed

Store Program Memory
Control Register – SPMCR

The Store Program memory Control Register contains the control bits needed to control
the Boot Loader operations.

• Bit 7 – SPMIE: SPM Interrupt Enable

When the SPMIE bit is written to one, and the I-bit in the Status Register is set (one), the
SPM ready interrupt will be enabled. The SPM ready Interrupt will be executed as long
as the SPMEN bit in the SPMCR Register is cleared.

• Bit 6 – RWWSB: Read-While-Write Section Busy

When a Self-Programming (page erase or page write) operation to the RWW section is
initiated, the RWWSB will be set (one) by hardware. When the RWWSB bit is set, the
RWW section cannot be accessed. The RWWSB bit will be cleared if the RWWSRE bit
is written to one after a Self-Programming operation is completed. Alternatively the
RWWSB bit will automatically be cleared if a page load operation is initiated.

• Bit 5 – Res: Reserved Bit

This bit is a reserved bit in the ATmega8 and always read as zero.

• Bit 4 – RWWSRE: Read-While-Write Section Read Enable

When programming (page erase or page write) to the RWW section, the RWW section
is blocked for reading (the RWWSB will be set by hardware). To re-enable the RWW
section, the user software must wait until the programming is completed (SPMEN will be
cleared). Then, if the RWWSRE bit is written to one at the same time as SPMEN, the
next SPM instruction within four clock cycles re-enables the RWW section. The RWW
section cannot be re-enabled while the Flash is busy with a page erase or a page write
(SPMEN is set). If the RWWSRE bit is written while the Flash is being loaded, the Flash
load operation will abort and the data loaded will be lost.

• Bit 3 – BLBSET: Boot Lock Bit Set

If this bit is written to one at the same time as SPMEN, the next SPM instruction within
four clock cycles sets Boot Lock Bits, according to the data in R0. The data in R1 and
the address in the Z-pointer are ignored. The BLBSET bit will automatically be cleared
upon completion of the lock bit set, or if no SPM instruction is executed within four clock
cycles.

An LPM instruction within three cycles after BLBSET and SPMEN are set in the SPMCR
Register, will read either the Lock Bits or the Fuse Bits (depending on Z0 in the Z-
pointer) into the destination register. See “Reading the Fuse and Lock Bits from Soft-
ware” on page 214 for details.

• Bit 2 – PGWRT: Page Write

If this bit is written to one at the same time as SPMEN, the next SPM instruction within
four clock cycles executes page write, with the data stored in the temporary buffer. The

Table 80. Boot Reset Fuse(1)

BOOTRST Reset Address

1 Reset Vector = Application Reset (address 0x0000)

0 Reset Vector = Boot Loader Reset (see Table 82 on page 217)

Bit 7 6 5 4 3 2 1 0

SPMIE RWWSB – RWWSRE BLBSET PGWRT PGERS SPMEN SPMCR

Read/Write R/W R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
210 ATmega8(L)
2486M–AVR–12/03

Setting the Boot Loader Lock
Bits by SPM

To set the Boot Loader Lock Bits, write the desired data to R0, write “X0001001” to
SPMCR and execute SPM within four clock cycles after writing SPMCR. The only
accessible Lock Bits are the Boot Lock Bits that may prevent the Application and Boot
Loader section from any software update by the MCU.

See Table 78 and Table 79 for how the different settings of the Boot Loader Bits affect
the Flash access.

If bits 5..2 in R0 are cleared (zero), the corresponding Boot Lock bit will be programmed
if an SPM instruction is executed within four cycles after BLBSET and SPMEN are set in
SPMCR. The Z-pointer is don’t care during this operation, but for future compatibility it is
recommended to load the Z-pointer with 0x0001 (same as used for reading the Lock
Bits). For future compatibility It is also recommended to set bits 7, 6, 1, and 0 in R0 to “1”
when writing the Lock Bits. When programming the Lock Bits the entire Flash can be
read during the operation.

EEPROM Write Prevents
Writing to SPMCR

Note that an EEPROM write operation will block all software programming to Flash.
Reading the Fuses and Lock Bits from software will also be prevented during the
EEPROM write operation. It is recommended that the user checks the status bit (EEWE)
in the EECR Register and verifies that the bit is cleared before writing to the SPMCR
Register.

Reading the Fuse and Lock
Bits from Software

It is possible to read both the Fuse and Lock Bits from software. To read the Lock Bits,
load the Z-pointer with 0x0001 and set the BLBSET and SPMEN bits in SPMCR. When
an LPM instruction is executed within three CPU cycles after the BLBSET and SPMEN
bits are set in SPMCR, the value of the Lock Bits will be loaded in the destination regis-
ter. The BLBSET and SPMEN bits will auto-clear upon completion of reading the Lock
Bits or if no LPM instruction is executed within three CPU cycles or no SPM instruction
is executed within four CPU cycles. When BLBSET and SPMEN are cleared, LPM will
work as described in the Instruction set Manual.

The algorithm for reading the Fuse Low bits is similar to the one described above for
reading the Lock Bits. To read the Fuse Low bits, load the Z-pointer with 0x0000 and set
the BLBSET and SPMEN bits in SPMCR. When an LPM instruction is executed within
three cycles after the BLBSET and SPMEN bits are set in the SPMCR, the value of the
Fuse Low bits (FLB) will be loaded in the destination register as shown below. Refer to
Table 88 on page 221 for a detailed description and mapping of the fuse low bits.

Similarly, when reading the Fuse High bits, load 0x0003 in the Z-pointer. When an LPM
instruction is executed within three cycles after the BLBSET and SPMEN bits are set in
the SPMCR, the value of the Fuse High bits (FHB) will be loaded in the destination reg-
ister as shown below. Refer to Table 87 on page 220 for detailed description and
mapping of the fuse high bits.

Fuse and Lock Bits that are programmed, will be read as zero. Fuse and Lock Bits that
are unprogrammed, will be read as one.

Bit 7 6 5 4 3 2 1 0

R0 1 1 BLB12 BLB11 BLB02 BLB01 1 1

Bit 7 6 5 4 3 2 1 0

Rd – – BLB12 BLB11 BLB02 BLB01 LB2 LB1

Bit 7 6 5 4 3 2 1 0

Rd FLB7 FLB6 FLB5 FLB4 FLB3 FLB2 FLB1 FLB0

Bit 7 6 5 4 3 2 1 0

Rd FHB7 FHB6 FHB5 FHB4 FHB3 FHB2 FHB1 FHB0
214 ATmega8(L)
2486M–AVR–12/03

Parallel Programming

Enter Programming Mode The following algorithm puts the device in Parallel Programming mode:

1. Apply 4.5 - 5.5V between VCC and GND, and wait at least 100 µs.

2. Set RESET to “0” and toggle XTAL1 at least 6 times

3. Set the Prog_enable pins listed in Table 90 on page 223 to “0000” and wait at
least 100 ns.

4. Apply 11.5 - 12.5V to RESET. Any activity on Prog_enable pins within 100 ns
after +12V has been applied to RESET, will cause the device to fail entering Pro-
gramming mode.

Note, if the RESET pin is disabled by programming the RSTDISBL Fuse, it may not be
possible to follow the proposed algorithm above. The same may apply when External
Crystal or External RC configuration is selected because it is not possible to apply qual-
ified XTAL1 pulses. In such cases, the following algorithm should be followed:

1. Set Prog_enable pins listed in Table 90 on page 223 to “0000”.

2. Apply 4.5 - 5.5V between VCC and GND simultaneously as 11.5 - 12.5V is
applied to RESET.

3. Wait 100 ns.

4. Re-program the fuses to ensure that External Clock is selected as clock source
(CKSEL3:0 = 0’b0000) and RESET pin is activated (RSTDISBL) unpro-
grammed). If Lock Bits are programmed, a chip erase command must be
executed before changing the fuses.

5. Exit Programming mode by power the device down or by bringing RESET pin to
0’b0.

6. Entering Programming mode with the original algorithm, as described above.

Considerations for Efficient
Programming

The loaded command and address are retained in the device during programming. For
efficient programming, the following should be considered.

• The command needs only be loaded once when writing or reading multiple memory
locations.

• Skip writing the data value 0xFF, that is the contents of the entire EEPROM (unless
the EESAVE Fuse is programmed) and Flash after a Chip Erase.

• Address High byte needs only be loaded before programming or reading a new 256
word window in Flash or 256 byte EEPROM. This consideration also applies to
Signature bytes reading.

Table 93. No. of Words in a Page and no. of Pages in the Flash

Flash Size Page Size PCWORD No. of Pages PCPAGE PCMSB

4K words (8K bytes) 32 words PC[4:0] 128 PC[11:5] 11

Table 94. No. of Words in a Page and no. of Pages in the EEPROM

EEPROM Size Page Size PCWORD No. of Pages PCPAGE EEAMSB

512 bytes 4 bytes EEA[1:0] 128 EEA[8:2] 8
224 ATmega8(L)
2486M–AVR–12/03

ATmega8(L)
Figure 119. Active Supply Current vs. Frequency (1 - 20 MHz)

Figure 120. Active Supply Current vs. VCC (Internal RC Oscillator, 8 MHz)

ACTIVE SUPPLY CURRENT vs. FREQUENCY
1 - 20 MHz

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16 18 20

Frequency (MHz)

I C
C
 (

m
A

)

5.5V

5.0V

4.5V

3.3V

2.7V
3.0V

ACTIVE SUPPLY CURRENT vs. VCC

INTERNAL RC OSCILLATOR, 8 MHz

0

2

4

6

8

10

12

14

16

18

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

85°C
25°C

-40°C
245
2486M–AVR–12/03

CLT Clear T in SREG T ← 0 T 1

SEH Set Half Carry Flag in SREG H ← 1 H 1

CLH Clear Half Carry Flag in SREG H ← 0 H 1

MCU CONTROL INSTRUCTIONS
NOP No Operation None 1
SLEEP Sleep (see specific descr. for Sleep function) None 1
WDR Watchdog Reset (see specific descr. for WDR/timer) None 1

Instruction Set Summary (Continued)
286 ATmega8(L)
2486M–AVR–12/03

ATmega8(L)
Erratas The revision letter in this section refers to the revision of the ATmega8 device.

ATmega8
Rev. D, E, F, and G

• CKOPT Does not Enable Internal Capacitors on XTALn/TOSCn Pins when 32 KHz
Oscillator is Used to Clock the Asynchronous Timer/Counter2

1. CKOPT Does not Enable Internal Capacitors on XTALn/TOSCn Pins when
32 KHz Oscillator is Used to Clock the Asynchronous Timer/Counter2

When the internal RC Oscillator is used as the main clock source, it is possible to
run the Timer/Counter2 asynchronously by connecting a 32 KHz Oscillator between
XTAL1/TOSC1 and XTAL2/TOSC2. But when the internal RC Oscillator is selected
as the main clock source, the CKOPT Fuse does not control the internal capacitors
on XTAL1/TOSC1 and XTAL2/TOSC2. As long as there are no capacitors con-
nected to XTAL1/TOSC1 and XTAL2/TOSC2, safe operation of the Oscillator is not
guaranteed.

Problem fix/Workaround

Use external capacitors in the range of 20 - 36 pF on XTAL1/TOSC1 and
XTAL2/TOSC2. This will be fixed in ATmega8 Rev. G where the CKOPT Fuse will
control internal capacitors also when internal RC Oscillator is selected as main clock
source. For ATmega8 Rev. G, CKOPT = 0 (programmed) will enable the internal
capacitors on XTAL1 and XTAL2. Customers who want compatibility between Rev.
G and older revisions, must ensure that CKOPT is unprogrammed (CKOPT = 1).
291
2486M–AVR–12/03

ATmega8(L)
Table of Contents Features.. 1

Pin Configurations... 2

Overview... 3
Block Diagram .. 3
Disclaimer ... 4
Pin Descriptions.. 5

About Code Examples... 6

AVR CPU Core ... 7
Introduction ... 7
Architectural Overview.. 7
Arithmetic Logic Unit – ALU.. 9
Status Register ... 9
General Purpose Register File ... 10
Stack Pointer .. 11
Instruction Execution Timing... 12
Reset and Interrupt Handling.. 12

AVR ATmega8 Memories .. 15
In-System Reprogrammable Flash Program Memory .. 15
SRAM Data Memory... 16
Data Memory Access Times... 17
EEPROM Data Memory.. 17
I/O Memory ... 22

System Clock and Clock Options .. 23
Clock Systems and their Distribution .. 23
Clock Sources... 24
Crystal Oscillator... 25
Low-frequency Crystal Oscillator .. 26
External RC Oscillator .. 27
Calibrated Internal RC Oscillator .. 28
External Clock... 30
Timer/Counter Oscillator... 30

Power Management and Sleep Modes... 31
Idle Mode.. 32
ADC Noise Reduction Mode... 32
Power-down Mode.. 32
Power-save Mode... 32
Standby Mode... 33
Minimizing Power Consumption ... 33
1
2486M–AVR–12/03

6 ATmega8(L)
2486M–AVR–12/03

