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Asynchronous Timer Clock – 
clkASY

The Asynchronous Timer clock allows the Asynchronous Timer/Counter to be clocked
directly from an external 32 kHz clock crystal. The dedicated clock domain allows using
this Timer/Counter as a real-time counter even when the device is in sleep mode. The
Asynchronous Timer/Counter uses the same XTAL pins as the CPU main clock but
requires a CPU main clock frequency of more than four times the Oscillator frequency.
Thus, asynchronous operation is only available while the chip is clocked on the Internal
Oscillator.

ADC Clock – clkADC The ADC is provided with a dedicated clock domain. This allows halting the CPU and
I/O clocks in order to reduce noise generated by digital circuitry. This gives more accu-
rate ADC conversion results.

Clock Sources The device has the following clock source options, selectable by Flash Fuse Bits as
shown below. The clock from the selected source is input to the AVR clock generator,
and routed to the appropriate modules.

Note: 1. For all fuses “1” means unprogrammed while “0” means programmed.

The various choices for each clocking option is given in the following sections. When the
CPU wakes up from Power-down or Power-save, the selected clock source is used to
time the start-up, ensuring stable Oscillator operation before instruction execution starts.
When the CPU starts from reset, there is as an additional delay allowing the power to
reach a stable level before commencing normal operation. The Watchdog Oscillator is
used for timing this real-time part of the start-up time. The number of WDT Oscillator
cycles used for each time-out is shown in Table 3. The frequency of the Watchdog
Oscillator is voltage dependent as shown in “ATmega8 Typical Characteristics”. The
device is shipped with CKSEL = “0001” and SUT = “10” (1 MHz Internal RC Oscillator,
slowly rising power).

Table 2.  Device Clocking Options Select(1)

Device Clocking Option  CKSEL3..0

External Crystal/Ceramic Resonator 1111 - 1010

External Low-frequency Crystal 1001

External RC Oscillator 1000 - 0101

Calibrated Internal RC Oscillator 0100 - 0001

External Clock 0000

Table 3.  Number of Watchdog Oscillator Cycles

Typical Time-out (VCC = 5.0V) Typical Time-out (VCC = 3.0V) Number of Cycles

4.1 ms 4.3 ms 4K (4,096)

65 ms 69 ms 64K (65,536)
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Internal Voltage 
Reference

ATmega8 features an internal bandgap reference. This reference is used for Brown-out
Detection, and it can be used as an input to the Analog Comparator or the ADC. The
2.56V reference to the ADC is generated from the internal bandgap reference.

Voltage Reference Enable 
Signals and Start-up Time

The voltage reference has a start-up time that may influence the way it should be used.
The start-up time is given in Table 16. To save power, the reference is not always turned
on. The reference is on during the following situations:

1. When the BOD is enabled (by programming the BODEN Fuse).

2. When the bandgap reference is connected to the Analog Comparator (by setting
the ACBG bit in ACSR).

3. When the ADC is enabled.

Thus, when the BOD is not enabled, after setting the ACBG bit or enabling the ADC, the
user must always allow the reference to start up before the output from the Analog Com-
parator or ADC is used. To reduce power consumption in Power-down mode, the user
can avoid the three conditions above to ensure that the reference is turned off before
entering Power-down mode.

Table 16.  Internal Voltage Reference Characteristics

Symbol Parameter Min Typ Max Units

VBG Bandgap reference voltage 1.15 1.23 1.35 V

tBG Bandgap reference start-up time 40 70 µs

IBG Bandgap reference current consumption 10 µA
40 ATmega8(L) 
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When the BOOTRST Fuse is unprogrammed, the boot section size set to 2K bytes and
the IVSEL bit in the GICR Register is set before any interrupts are enabled, the most
typical and general program setup for the Reset and Interrupt Vector Addresses is:

AddressLabels Code Comments

$000 rjmp RESET ; Reset handler
;

$001 RESET:ldi r16,high(RAMEND); Main program start

$002 out SPH,r16 ; Set Stack Pointer to top of RAM

$003 ldi r16,low(RAMEND)

$004 out SPL,r16

$005 sei ; Enable interrupts

$006 <instr>  xxx

;

.org $c01

$c01 rjmp EXT_INT0 ; IRQ0 Handler

$c02 rjmp EXT_INT1 ; IRQ1 Handler

... ... ... ; 

$c12 rjmp SPM_RDY ; Store Program Memory Ready 
Handler

When the BOOTRST Fuse is programmed and the boot section size set to 2K bytes, the
most typical and general program setup for the Reset and Interrupt Vector Addresses is:

AddressLabels Code Comments

.org $001

$001 rjmp EXT_INT0 ; IRQ0 Handler

$002 rjmp EXT_INT1 ; IRQ1 Handler

... ... ... ; 

$012 rjmp SPM_RDY ; Store Program Memory Ready 
Handler

;

.org $c00
$c00 rjmp RESET ; Reset handler
;

$c01 RESET:ldi r16,high(RAMEND); Main program start

$c02 out SPH,r16 ; Set Stack Pointer to top of RAM

$c03 ldi r16,low(RAMEND)

$c04 out SPL,r16

$c05 sei ; Enable interrupts

$c06 <instr>  xxx
46 ATmega8(L) 
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Consider the clock period starting shortly after the first falling edge of the system clock.
The latch is closed when the clock is low, and goes transparent when the clock is high,
as indicated by the shaded region of the “SYNC LATCH” signal. The signal value is
latched when the system clock goes low. It is clocked into the PINxn Register at the suc-
ceeding positive clock edge. As indicated by the two arrows tpd,max and tpd,min, a single
signal transition on the pin will be delayed between ½ and 1-½ system clock period
depending upon the time of assertion.

When reading back a software assigned pin value, a nop instruction must be inserted as
indicated in Figure 24. The out instruction sets the “SYNC LATCH” signal at the positive
edge of the clock. In this case, the delay tpd through the synchronizer is 1 system clock
period.

Figure 24.  Synchronization when Reading a Software Assigned Pin Value

out PORTx, r16 nop in r17, PINx

0xFF

0x00 0xFF

SYSTEM CLK

r16

INSTRUCTIONS

SYNC LATCH

PINxn

r17

tpd
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update of the OCR1x Compare Register to either TOP or BOTTOM of the counting
sequence. The synchronization prevents the occurrence of odd-length, non-symmetrical
PWM pulses, thereby making the output glitch-free.

The OCR1x Register access may seem complex, but this is not case. When the double
buffering is enabled, the CPU has access to the OCR1x Buffer Register, and if double
buffering is disabled the CPU will access the OCR1x directly. The content of the OCR1x
(Buffer or Compare) Register is only changed by a write operation (the Timer/Counter
does not update this register automatically as the TCNT1 and ICR1 Register). Therefore
OCR1x is not read via the High byte temporary register (TEMP). However, it is a good
practice to read the Low byte first as when accessing other 16-bit registers. Writing the
OCR1x Registers must be done via the TEMP Register since the compare of all 16-bit is
done continuously. The High byte (OCR1xH) has to be written first. When the High byte
I/O location is written by the CPU, the TEMP Register will be updated by the value writ-
ten. Then when the Low byte (OCR1xL) is written to the lower eight bits, the High byte
will be copied into the upper 8-bits of either the OCR1x buffer or OCR1x Compare Reg-
ister in the same system clock cycle.

For more information of how to access the 16-bit registers refer to “Accessing 16-bit
Registers” on page 77.

Force Output Compare In non-PWM Waveform Generation modes, the match output of the comparator can be
forced by writing a one to the Force Output Compare (FOC1x) bit. Forcing Compare
Match will not set the OCF1x Flag or reload/clear the timer, but the OC1x pin will be
updated as if a real Compare Match had occurred (the COM1x1:0 bits settings define
whether the OC1x pin is set, cleared or toggled). 

Compare Match Blocking by 
TCNT1 Write

All CPU writes to the TCNT1 Register will block any Compare Match that occurs in the
next timer clock cycle, even when the timer is stopped. This feature allows OCR1x to be
initialized to the same value as TCNT1 without triggering an interrupt when the
Timer/Counter clock is enabled.

Using the Output Compare 
Unit

Since writing TCNT1 in any mode of operation will block all compare matches for one
timer clock cycle, there are risks involved when changing TCNT1 when using any of the
Output Compare channels, independent of whether the Timer/Counter is running or not.
If the value written to TCNT1 equals the OCR1x value, the Compare Match will be
missed, resulting in incorrect waveform generation. Do not write the TCNT1 equal to
TOP in PWM modes with variable TOP values. The Compare Match for the TOP will be
ignored and the counter will continue to 0xFFFF. Similarly, do not write the TCNT1 value
equal to BOTTOM when the counter is downcounting.

The setup of the OC1x should be performed before setting the Data Direction Register
for the port pin to output. The easiest way of setting the OC1x value is to use the Force
Output Compare (FOC1x) strobe bits in Normal mode. The OC1x Register keeps its
value even when changing between Waveform Generation modes.

Be aware that the COM1x1:0 bits are not double buffered together with the compare
value. Changing the COM1x1:0 bits will take effect immediately.
84 ATmega8(L) 
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ATmega8(L)
ing at 0x0000 before the Compare Match can occur. The OCR1A Register, however, is
double buffered. This feature allows the OCR1A I/O location to be written anytime.
When the OCR1A I/O location is written the value written will be put into the OCR1A
Buffer Register. The OCR1A Compare Register will then be updated with the value in
the Buffer Register at the next timer clock cycle the TCNT1 matches TOP. The update is
done at the same timer clock cycle as the TCNT1 is cleared and the TOV1 Flag is set.

Using the ICR1 Register for defining TOP works well when using fixed TOP values. By
using ICR1, the OCR1A Register is free to be used for generating a PWM output on
OC1A. However, if the base PWM frequency is actively changed (by changing the TOP
value), using the OCR1A as TOP is clearly a better choice due to its double buffer
feature.

In fast PWM mode, the compare units allow generation of PWM waveforms on the
OC1x pins. Setting the COM1x1:0 bits to 2 will produce a non-inverted PWM and an
inverted PWM output can be generated by setting the COM1x1:0 to 3. See Table 37 on
page 96. The actual OC1x value will only be visible on the port pin if the data direction
for the port pin is set as output (DDR_OC1x). The PWM waveform is generated by set-
ting (or clearing) the OC1x Register at the Compare Match between OCR1x and
TCNT1, and clearing (or setting) the OC1x Register at the timer clock cycle the counter
is cleared (changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x Register represents special cases when generating
a PWM waveform output in the fast PWM mode. If the OCR1x is set equal to BOTTOM
(0x0000) the output will be a narrow spike for each TOP+1 timer clock cycle. Setting the
OCR1x equal to TOP will result in a constant high or low output (depending on the polar-
ity of the output set by the COM1x1:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved
by setting OC1A to toggle its logical level on each Compare Match (COM1A1:0 = 1).
This applies only if OCR1A is used to define the TOP value (WGM13:0 = 15). The wave-
form generated will have a maximum frequency of fOC1A = fclk_I/O/2 when OCR1A is set to
zero (0x0000). This feature is similar to the OC1A toggle in CTC mode, except the dou-
ble buffer feature of the Output Compare unit is enabled in the fast PWM mode.

Phase Correct PWM Mode The phase correct Pulse Width Modulation or phase correct PWM mode (WGM13:0 = 1,
2, 3, 10, or 11) provides a high resolution phase correct PWM waveform generation
option. The phase correct PWM mode is, like the phase and frequency correct PWM
mode, based on a dual-slope operation. The counter counts repeatedly from BOTTOM
(0x0000) to TOP and then from TOP to BOTTOM. In non-inverting Compare Output
mode, the Output Compare (OC1x) is cleared on the Compare Match between TCNT1
and OCR1x while upcounting, and set on the Compare Match while downcounting. In
inverting Output Compare mode, the operation is inverted. The dual-slope operation has
lower maximum operation frequency than single slope operation. However, due to the
symmetric feature of the dual-slope PWM modes, these modes are preferred for motor
control applications.

The PWM resolution for the phase correct PWM mode can be fixed to 8-, 9-, or 10-bit, or
defined by either ICR1 or OCR1A. The minimum resolution allowed is 2-bit (ICR1 or

fOCnxPWM

fclk_I/O

N 1 TOP+( )⋅-----------------------------------=
89
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Receive Compete Flag and 
Interrupt

The USART Receiver has one flag that indicates the Receiver state.

The Receive Complete (RXC) Flag indicates if there are unread data present in the
receive buffer. This flag is one when unread data exist in the receive buffer, and zero
when the receive buffer is empty (i.e., does not contain any unread data). If the Receiver
is disabled (RXEN = 0), the receive buffer will be flushed and consequently the RXC bit
will become zero.

When the Receive Complete Interrupt Enable (RXCIE) in UCSRB is set, the USART
Receive Complete Interrupt will be executed as long as the RXC Flag is set (provided
that global interrupts are enabled). When interrupt-driven data reception is used, the
receive complete routine must read the received data from UDR in order to clear the
RXC Flag, otherwise a new interrupt will occur once the interrupt routine terminates.

Receiver Error Flags The USART Receiver has three error flags: Frame Error (FE), Data OverRun (DOR) and
Parity Error (PE). All can be accessed by reading UCSRA. Common for the error flags is
that they are located in the receive buffer together with the frame for which they indicate
the error status. Due to the buffering of the error flags, the UCSRA must be read before
the receive buffer (UDR), since reading the UDR I/O location changes the buffer read
location. Another equality for the error flags is that they can not be altered by software
doing a write to the flag location. However, all flags must be set to zero when the
UCSRA is written for upward compatibility of future USART implementations. None of
the error flags can generate interrupts.

The Frame Error (FE) Flag indicates the state of the first stop bit of the next readable
frame stored in the receive buffer. The FE Flag is zero when the stop bit was correctly
read (as one), and the FE Flag will be one when the stop bit was incorrect (zero). This
flag can be used for detecting out-of-sync conditions, detecting break conditions and
protocol handling. The FE Flag is not affected by the setting of the USBS bit in UCSRC
since the Receiver ignores all, except for the first, stop bits. For compatibility with future
devices, always set this bit to zero when writing to UCSRA.

The Data OverRun (DOR) Flag indicates data loss due to a Receiver buffer full condi-
tion. A Data OverRun occurs when the receive buffer is full (two characters), it is a new
character waiting in the Receive Shift Register, and a new start bit is detected. If the
DOR Flag is set there was one or more serial frame lost between the frame last read
from UDR, and the next frame read from UDR. For compatibility with future devices,
always write this bit to zero when writing to UCSRA. The DOR Flag is cleared when the
frame received was successfully moved from the Shift Register to the receive buffer.

The Parity Error (PE) Flag indicates that the next frame in the receive buffer had a parity
error when received. If parity check is not enabled the PE bit will always be read zero.
For compatibility with future devices, always set this bit to zero when writing to UCSRA.
For more details see “Parity Bit Calculation” on page 135 and “Parity Checker” on page
144.
143
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ATmega8(L)
This bit is used for Synchronous mode only. Write this bit to zero when Asynchronous
mode is used. The UCPOL bit sets the relationship between data output change and
data input sample, and the synchronous clock (XCK).

USART Baud Rate Registers – 
UBRRL and UBRRHs

The UBRRH Register shares the same I/O location as the UCSRC Register. See the
“Accessing UBRRH/UCSRC Registers” on page 149 section which describes how to
access this register.

• Bit 15 – URSEL: Register Select

This bit selects between accessing the UBRRH or the UCSRC Register. It is read as
zero when reading UBRRH. The URSEL must be zero when writing the UBRRH.

• Bit 14:12 – Reserved Bits

These bits are reserved for future use. For compatibility with future devices, these bit
must be written to zero when UBRRH is written.

• Bit 11:0 – UBRR11:0: USART Baud Rate Register

This is a 12-bit register which contains the USART baud rate. The UBRRH contains the
four most significant bits, and the UBRRL contains the eight least significant bits of the
USART baud rate. Ongoing transmissions by the Transmitter and Receiver will be cor-
rupted if the baud rate is changed. Writing UBRRL will trigger an immediate update of
the baud rate prescaler.

Table 59.  UCPOL Bit Settings

UCPOL
Transmitted Data Changed (Output of 
TxD Pin)

Received Data Sampled (Input on 
RxD Pin)

0 Rising XCK Edge Falling XCK Edge

1 Falling XCK Edge Rising XCK Edge

Bit 15 14 13 12 11 10 9 8

URSEL – – – UBRR[11:8] UBRRH

UBRR[7:0] UBRRL

7 6 5 4 3 2 1 0

Read/Write R/W R R R R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
155
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Figure 75.  Arbitration Between Two Masters

Note that arbitration is not allowed between:

• A REPEATED START condition and a data bit.

• A STOP condition and a data bit.

• A REPEATED START and a STOP condition.

It is the user software’s responsibility to ensure that these illegal arbitration conditions
never occur. This implies that in multi-master systems, all data transfers must use the
same composition of SLA+R/W and data packets. In other words: All transmissions
must contain the same number of data packets, otherwise the result of the arbitration is
undefined.

SDA from
Master A

SDA from
Master B

SDA Line

Synchronized
SCL Line

START Master A Loses
Arbitration, SDAA   SDA
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Figure 83.  Formats and States in the Slave Receiver Mode
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takes 13 ADC clock cycles. The first conversion after the ADC is switched on (ADEN in
ADCSRA is set) takes 25 ADC clock cycles in order to initialize the analog circuitry.

The actual sample-and-hold takes place 1.5 ADC clock cycles after the start of a normal
conversion and 13.5 ADC clock cycles after the start of an first conversion. When a con-
version is complete, the result is written to the ADC Data Registers, and ADIF is set. In
single conversion mode, ADSC is cleared simultaneously. The software may then set
ADSC again, and a new conversion will be initiated on the first rising ADC clock edge. 

In Free Running mode, a new conversion will be started immediately after the conver-
sion completes, while ADSC remains high. For a summary of conversion times, see
Table 73.

Figure 92.  ADC Timing Diagram, First Conversion (Single Conversion Mode)

Figure 93.  ADC Timing Diagram, Single Conversion
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ATmega8(L)
Analog Input Circuitry The analog input circuitry for single ended channels is illustrated in Figure 95. An analog
source applied to ADCn is subjected to the pin capacitance and input leakage of that
pin, regardless of whether that channel is selected as input for the ADC. When the chan-
nel is selected, the source must drive the S/H capacitor through the series resistance
(combined resistance in the input path).

The ADC is optimized for analog signals with an output impedance of approximately
10 kΩ or less. If such a source is used, the sampling time will be negligible. If a source
with higher impedance is used, the sampling time will depend on how long time the
source needs to charge the S/H capacitor, with can vary widely. The user is recom-
mended to only use low impedant sources with slowly varying signals, since this
minimizes the required charge transfer to the S/H capacitor.

Signal components higher than the Nyquist frequency (fADC/2) should not be present for
either kind of channels, to avoid distortion from unpredictable signal convolution. The
user is advised to remove high frequency components with a low-pass filter before
applying the signals as inputs to the ADC.

Figure 95.  Analog Input Circuitry

Analog Noise Canceling 
Techniques

Digital circuitry inside and outside the device generates EMI which might affect the
accuracy of analog measurements. If conversion accuracy is critical, the noise level can
be reduced by applying the following techniques:

1. Keep analog signal paths as short as possible. Make sure analog tracks run
over the analog ground plane, and keep them well away from high-speed
switching digital tracks.

2. The AVCC pin on the device should be connected to the digital VCC supply
voltage via an LC network as shown in Figure 96.

3. Use the ADC noise canceler function to reduce induced noise from the CPU.

4. If any ADC [3..0] port pins are used as digital outputs, it is essential that
these do not switch while a conversion is in progress. However, using the
Two-wire Interface (ADC4 and ADC5) will only affect the conversion on
ADC4 and ADC5 and not the other ADC channels.

ADCn

IIH

1..100 kΩ
CS/H= 14 pF

VCC/2

IIL
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Assembly Code Example for a Boot Loader” on page 216 for an assembly code
example.

Performing Page Erase by 
SPM

To execute page erase, set up the address in the Z-pointer, write “X0000011” to
SPMCR and execute SPM within four clock cycles after writing SPMCR. The data in R1
and R0 is ignored. The page address must be written to PCPAGE in the Z-register.
Other bits in the Z-pointer will be ignored during this operation.

• Page Erase to the RWW section: The NRWW section can be read during the page 
erase.

• Page Erase to the NRWW section: The CPU is halted during the operation.

Filling the Temporary Buffer 
(Page Loading)

To write an instruction word, set up the address in the Z-pointer and data in R1:R0, write
“00000001” to SPMCR and execute SPM within four clock cycles after writing SPMCR.
The content of PCWORD in the Z-register is used to address the data in the temporary
buffer. The temporary buffer will auto-erase after a page write operation or by writing the
RWWSRE bit in SPMCR. It is also erased after a System Reset. Note that it is not pos-
sible to write more than one time to each address without erasing the temporary buffer.

Note: If the EEPROM is written in the middle of an SPM page Load operation, all data loaded
will be lost.

Performing a Page Write To execute page write, set up the address in the Z-pointer, write “X0000101” to SPMCR
and execute SPM within four clock cycles after writing SPMCR. The data in R1 and R0
is ignored. The page address must be written to PCPAGE. Other bits in the Z-pointer
must be written to zero during this operation.

• Page Write to the RWW section: The NRWW section can be read during the page 
write.

• Page Write to the NRWW section: The CPU is halted during the operation.

Using the SPM Interrupt If the SPM interrupt is enabled, the SPM interrupt will generate a constant interrupt
when the SPMEN bit in SPMCR is cleared. This means that the interrupt can be used
instead of polling the SPMCR Register in software. When using the SPM interrupt, the
Interrupt Vectors should be moved to the BLS section to avoid that an interrupt is
accessing the RWW section when it is blocked for reading. How to move the interrupts
is described in “Interrupts” on page 44.

Consideration While Updating 
BLS

Special care must be taken if the user allows the Boot Loader section to be updated by
leaving Boot Lock bit11 unprogrammed. An accidental write to the Boot Loader itself can
corrupt the entire Boot Loader, and further software updates might be impossible. If it is
not necessary to change the Boot Loader software itself, it is recommended to program
the Boot Lock bit11 to protect the Boot Loader software from any internal software
changes.

Prevent Reading the RWW 
Section During Self-
Programming

During Self-Programming (either page erase or page write), the RWW section is always
blocked for reading. The user software itself must prevent that this section is addressed
during the self programming operation. The RWWSB in the SPMCR will be set as long
as the RWW section is busy. During Self-Programming the Interrupt Vector table should
be moved to the BLS as described in “Interrupts” on page 44, or the interrupts must be
disabled. Before addressing the RWW section after the programming is completed, the
user software must clear the RWWSB by writing the RWWSRE. See “Simple Assembly
Code Example for a Boot Loader” on page 216 for an example.
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Memory 
Programming

Program And Data 
Memory Lock Bits

The ATmega8 provides six Lock Bits which can be left unprogrammed (“1”) or can be
programmed (“0”) to obtain the additional features listed in Table 86. The Lock Bits can
only be erased to “1” with the Chip Erase command.

Note: 1. “1” means unprogrammed, “0” means programmed

Table 85.  Lock Bit Byte 

Lock Bit Byte Bit No. Description Default Value(1)

7 – 1 (unprogrammed)

6 – 1 (unprogrammed)

BLB12 5 Boot lock bit 1 (unprogrammed)

BLB11 4 Boot lock bit 1 (unprogrammed)

BLB02 3 Boot lock bit 1 (unprogrammed)

BLB01 2 Boot lock bit 1 (unprogrammed)

LB2 1 Lock bit 1 (unprogrammed)

LB1 0 Lock bit 1 (unprogrammed)

Table 86.  Lock Bit Protection Modes(2) 

Memory Lock Bits Protection Type

LB Mode LB2 LB1

1 1 1 No memory lock features enabled.

2 1 0

Further programming of the Flash and EEPROM is 
disabled in Parallel and Serial Programming mode. The 
Fuse Bits are locked in both Serial and Parallel 
Programming mode.(1)

3 0 0

Further programming and verification of the Flash and 
EEPROM is disabled in parallel and Serial Programming 
mode. The Fuse Bits are locked in both Serial and Parallel 
Programming modes.(1)

BLB0 Mode BLB02 BLB01

1 1 1
No restrictions for SPM or LPM accessing the Application 
section.

2 1 0 SPM is not allowed to write to the Application section.

3 0 0

SPM is not allowed to write to the Application section, and 
LPM executing from the Boot Loader section is not 
allowed to read from the Application section. If Interrupt 
Vectors are placed in the Boot Loader section, interrupts 
are disabled while executing from the Application section.

4 0 1

LPM executing from the Boot Loader section is not 
allowed to read from the Application section. If Interrupt 
Vectors are placed in the Boot Loader section, interrupts 
are disabled while executing from the Application section.

BLB1 Mode BLB12 BLB11
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5. This requirement applies to all ATmega8 Two-wire Serial Interface operation. Other
devices connected to the Two-wire Serial Bus need only obey the general fSCL
requirement.

6. The actual low period generated by the ATmega8 Two-wire Serial Interface is (1/fSCL
- 2/fCK), thus fCK must be greater than 6 MHz for the low time requirement to be
strictly met at fSCL = 100 kHz.

7. The actual low period generated by the ATmega8 Two-wire Serial Interface is (1/fSCL
- 2/fCK), thus the low time requirement will not be strictly met for fSCL > 308 kHz when
fCK = 8 MHz. Still, ATmega8 devices connected to the bus may communicate at full
speed (400 kHz) with other ATmega8 devices, as well as any other device with a
proper tLOW acceptance margin.

Figure 115.  Two-wire Serial Bus Timing

SPI Timing 
Characteristics

See Figure 116 and Figure 117 for details.

Note: 1. In SPI Programming mode the minimum SCK high/low period is:
- 2tCLCL for fCK < 12 MHz
- 3tCLCL for fCK > 12 MHz

tSU;STA

tLOW

tHIGH

tLOW

tof

tHD;STA tHD;DAT tSU;DAT
tSU;STO

tBUF

SCL

SDA

tr

Table 102.  SPI Timing Parameters

Description Mode Min Typ Max

1 SCK period Master See Table 50

ns

2 SCK high/low Master 50% duty cycle

3 Rise/Fall time Master 3.6

4 Setup Master 10

5 Hold Master 10

6 Out to SCK Master 0.5 • tSCK

7 SCK to out Master 10

8 SCK to out high Master 10

9 SS low to out Slave 15

10 SCK period Slave 4 • tck

11 SCK high/low(1) Slave 2 • tck

12 Rise/Fall time Slave 1.6

13 Setup Slave 10

14 Hold Slave 10

15 SCK to out Slave 15

16 SCK to SS high Slave 20

17 SS high to tri-state Slave 10

18 SS low to SCK Salve 2 • tck
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Figure 165.  BOD Thresholds vs. Temperature (BOD Level is 2.7v)

Figure 166.  Bandgap Voltage vs. VCC
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Internal Oscillator Speed Figure 169.  Watchdog Oscillator Frequency vs. VCC

Figure 170.  Calibrated 8 MHz RC Oscillator Frequency vs. Temperature
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ATmega8(L)
Figure 171.  Calibrated 8 MHz RC Oscillator Frequency vs. VCC

Figure 172.  Calibrated 8 MHz RC Oscillator Frequency vs. Osccal Value
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ATmega8(L)
Figure 179.  Calibrated 1 MHz RC Oscillator Frequency vs. Temperature

Figure 180.  Calibrated 1 MHz RC Oscillator Frequency vs. VCC
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Figure 191.  Reset Pulse Width vs. VCC
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