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Instruction Execution 
Timing

This section describes the general access timing concepts for instruction execution. The
AVR CPU is driven by the CPU clock clkCPU, directly generated from the selected clock
source for the chip. No internal clock division is used.

Figure 5 shows the parallel instruction fetches and instruction executions enabled by the
Harvard architecture and the fast-access Register File concept. This is the basic pipelin-
ing concept to obtain up to 1 MIPS per MHz with the corresponding unique results for
functions per cost, functions per clocks, and functions per power-unit.

Figure 5.  The Parallel Instruction Fetches and Instruction Executions 

Figure 6 shows the internal timing concept for the Register File. In a single clock cycle
an ALU operation using two register operands is executed, and the result is stored back
to the destination register.

Figure 6.  Single Cycle ALU Operation

Reset and Interrupt 
Handling

The AVR provides several different interrupt sources. These interrupts and the separate
Reset Vector each have a separate Program Vector in the Program memory space. All
interrupts are assigned individual enable bits which must be written logic one together
with the Global Interrupt Enable bit in the Status Register in order to enable the interrupt.
Depending on the Program Counter value, interrupts may be automatically disabled
when Boot Lock Bits BLB02 or BLB12 are programmed. This feature improves software
security. See the section “Memory Programming” on page 219 for details.

The lowest addresses in the Program memory space are by default defined as the
Reset and Interrupt Vectors. The complete list of Vectors is shown in “Interrupts” on
page 44. The list also determines the priority levels of the different interrupts. The lower
the address the higher is the priority level. RESET has the highest priority, and next is
INT0 – the External Interrupt Request 0. The Interrupt Vectors can be moved to the start

clk
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ATmega8(L)
Data Memory Access 
Times

This section describes the general access timing concepts for internal memory access.
The internal data SRAM access is performed in two clkCPU cycles as described in Figure
9.

Figure 9.  On-chip Data SRAM Access Cycles

EEPROM Data Memory The ATmega8 contains 512 bytes of data EEPROM memory. It is organized as a sepa-
rate data space, in which single bytes can be read and written. The EEPROM has an
endurance of at least 100,000 write/erase cycles. The access between the EEPROM
and the CPU is described bellow, specifying the EEPROM Address Registers, the
EEPROM Data Register, and the EEPROM Control Register.

“Memory Programming” on page 219 contains a detailed description on EEPROM Pro-
gramming in SPI- or Parallel Programming mode.

EEPROM Read/Write Access The EEPROM Access Registers are accessible in the I/O space.

The write access time for the EEPROM is given in Table 1 on page 19. A self-timing
function, however, lets the user software detect when the next byte can be written. If the
user code contains instructions that write the EEPROM, some precautions must be
taken. In heavily filtered power supplies, VCC is likely to rise or fall slowly on Power-
up/down. This causes the device for some period of time to run at a voltage lower than
specified as minimum for the clock frequency used. See “Preventing EEPROM Corrup-
tion” on page 21. for details on how to avoid problems in these situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be fol-
lowed. Refer to the description of the EEPROM Control Register for details on this.

When the EEPROM is read, the CPU is halted for four clock cycles before the next
instruction is executed. When the EEPROM is written, the CPU is halted for two clock
cycles before the next instruction is executed.
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Figure 14.  Reset Logic

Notes: 1. The Power-on Reset will not work unless the supply voltage has been below VPOT
(falling).

2. VBOT may be below nominal minimum operating voltage for some devices. For
devices where this is the case, the device is tested down to VCC = VBOT during the
production test. This guarantees that a Brown-out Reset will occur before VCC drops
to a voltage where correct operation of the microcontroller is no longer guaranteed.
The test is performed using BODLEVEL = 1 for ATmega8L and BODLEVEL = 0 for
ATmega8. BODLEVEL = 1 is not applicable for ATmega8.

Table 15.  Reset Characteristics

Symbol Parameter Condition Min Typ Max Units

VPOT

Power-on Reset Threshold 
Voltage (rising)(1) 1.4 2.3 V

Power-on Reset Threshold 
Voltage (falling)

1.3 2.3 V

VRST RESET Pin Threshold Voltage 0.1 0.9 VCC

tRST
Minimum pulse width on 
RESET Pin

1.5 µs

VBOT

Brown-out Reset Threshold 
Voltage(2)

BODLEVEL = 1 2.4 2.6 2.9
V

BODLEVEL = 0 3.7 4.0 4.5

tBOD

Minimum low voltage period for 
Brown-out Detection

BODLEVEL = 1 2 µs

BODLEVEL = 0 2 µs

VHYST Brown-out Detector hysteresis 130 mV

MCU Control and Status
Register (MCUCSR)

Brown-Out
Reset Circuit

BODEN
BODLEVEL

Delay Counters
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TIMEOUT
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ATmega8(L)
When switching between tri-state ({DDxn, PORTxn} = 0b00) and output high ({DDxn,
PORTxn} = 0b11), an intermediate state with either pull-up enabled ({DDxn, PORTxn} =
0b01) or output low ({DDxn, PORTxn} = 0b10) must occur. Normally, the pull-up
enabled state is fully acceptable, as a high-impedant environment will not notice the dif-
ference between a strong high driver and a pull-up. If this is not the case, the PUD bit in
the SFIOR Register can be set to disable all pull-ups in all ports.

Switching between input with pull-up and output low generates the same problem. The
user must use either the tri-state ({DDxn, PORTxn} = 0b00) or the output high state
({DDxn, PORTxn} = 0b11) as an intermediate step.

Table 20 summarizes the control signals for the pin value.

Reading the Pin Value Independent of the setting of Data Direction bit DDxn, the port pin can be read through
the PINxn Register Bit. As shown in Figure 22, the PINxn Register bit and the preceding
latch constitute a synchronizer. This is needed to avoid metastability if the physical pin
changes value near the edge of the internal clock, but it also introduces a delay. Figure
23 shows a timing diagram of the synchronization when reading an externally applied
pin value. The maximum and minimum propagation delays are denoted tpd,max and
tpd,min, respectively.

Figure 23.  Synchronization when Reading an Externally Applied Pin Value

Table 20.  Port Pin Configurations

DDxn PORTxn
PUD

(in SFIOR) I/O Pull-up Comment

0 0 X Input No Tri-state (Hi-Z)

0 1 0 Input Yes
Pxn will source current if external 
pulled low.

0 1 1 Input No Tri-state (Hi-Z)

1 0 X Output No Output Low (Sink)

1 1 X Output No Output High (Source)

XXX in r17, PINx

0x00 0xFF

INSTRUCTIONS

SYNC LATCH

PINxn

r17

XXX

SYSTEM CLK

tpd, max

tpd, min
51
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Figure 42.  Timer/Counter Timing Diagram, Setting of OCF1x, with Prescaler (fclk_I/O/8)

Figure 43 shows the count sequence close to TOP in various modes. When using phase
and frequency correct PWM mode the OCR1x Register is updated at BOTTOM. The
timing diagrams will be the same, but TOP should be replaced by BOTTOM, TOP-1 by
BOTTOM+1 and so on. The same renaming applies for modes that set the TOV1 Flag
at BOTTOM.

Figure 43.  Timer/Counter Timing Diagram, no Prescaling

Figure 44 shows the same timing data, but with the prescaler enabled. 
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ATmega8(L)
Registers The Timer/Counter (TCNT2) and Output Compare Register (OCR2) are 8-bit registers.
Interrupt request (shorten as Int.Req.) signals are all visible in the Timer Interrupt Flag
Register (TIFR). All interrupts are individually masked with the Timer Interrupt Mask
Register (TIMSK). TIFR and TIMSK are not shown in the figure since these registers are
shared by other timer units.

The Timer/Counter can be clocked internally, via the prescaler, or asynchronously
clocked from the TOSC1/2 pins, as detailed later in this section. The asynchronous
operation is controlled by the Asynchronous Status Register (ASSR). The Clock Select
logic block controls which clock source the Timer/Counter uses to increment (or decre-
ment) its value. The Timer/Counter is inactive when no clock source is selected. The
output from the clock select logic is referred to as the timer clock (clkT2).

The double buffered Output Compare Register (OCR2) is compared with the
Timer/Counter value at all times. The result of the compare can be used by the wave-
form generator to generate a PWM or variable frequency output on the Output Compare
Pin (OC2). For details, see “Output Compare Unit” on page 105. The Compare Match
event will also set the Compare Flag (OCF2) which can be used to generate an Output
Compare interrupt request.

Definitions Many register and bit references in this document are written in general form. A lower
case “n” replaces the Timer/Counter number, in this case 2. However, when using the
register or bit defines in a program, the precise form must be used (i.e., TCNT2 for
accessing Timer/Counter2 counter value and so on).

The definitions in Table 41 are also used extensively throughout the document.

Timer/Counter Clock 
Sources

The Timer/Counter can be clocked by an internal synchronous or an external asynchro-
nous clock source. The clock source clkT2 is by default equal to the MCU clock, clkI/O.
When the AS2 bit in the ASSR Register is written to logic one, the clock source is taken
from the Timer/Counter Oscillator connected to TOSC1 and TOSC2. For details on
asynchronous operation, see “Asynchronous Status Register – ASSR” on page 117. For
details on clock sources and prescaler, see “Timer/Counter Prescaler” on page 121.

Table 41.  Definitions

BOTTOM The counter reaches the BOTTOM when it becomes zero (0x00).

MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255).

TOP The counter reaches the TOP when it becomes equal to the highest
value in the count sequence. The TOP value can be assigned to be the
fixed value 0xFF (MAX) or the value stored in the OCR2 Register. The
assignment is dependent on the mode of operation.
103
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Timer/Counter Interrupt Mask 
Register – TIMSK

• Bit 7 – OCIE2: Timer/Counter2 Output Compare Match Interrupt Enable

When the OCIE2 bit is written to one and the I-bit in the Status Register is set (one), the
Timer/Counter2 Compare Match interrupt is enabled. The corresponding interrupt is
executed if a Compare Match in Timer/Counter2 occurs (i.e., when the OCF2 bit is set in
the Timer/Counter Interrupt Flag Register – TIFR).

• Bit 6 – TOIE2: Timer/Counter2 Overflow Interrupt Enable

When the TOIE2 bit is written to one and the I-bit in the Status Register is set (one), the
Timer/Counter2 Overflow interrupt is enabled. The corresponding interrupt is executed if
an overflow in Timer/Counter2 occurs (i .e., when the TOV2 bit is set in the
Timer/Counter Interrupt Flag Register – TIFR).

Timer/Counter Interrupt Flag 
Register – TIFR

• Bit 7 – OCF2: Output Compare Flag 2

The OCF2 bit is set (one) when a Compare Match occurs between the Timer/Counter2
and the data in OCR2 – Output Compare Register2. OCF2 is cleared by hardware when
executing the corresponding interrupt Handling Vector. Alternatively, OCF2 is cleared
by writing a logic one to the flag. When the I-bit in SREG, OCIE2 (Timer/Counter2 Com-
pare Match Interrupt Enable), and OCF2 are set (one), the Timer/Counter2 Compare
Match Interrupt is executed.

• Bit 6 – TOV2: Timer/Counter2 Overflow Flag

The TOV2 bit is set (one) when an overflow occurs in Timer/Counter2. TOV2 is cleared
by hardware when executing the corresponding interrupt Handling Vector. Alternatively,
TOV2 is cleared by writing a logic one to the flag. When the SREG I-bit, TOIE2
(Timer/Counter2 Overflow Interrupt Enable), and TOV2 are set (one), the
Timer/Counter2 Overflow interrupt is executed. In PWM mode, this bit is set when
Timer/Counter2 changes counting direction at 0x00.

Bit 7 6 5 4 3 2 1 0

OCIE2 TOIE2 TICIE1 OCIE1A OCIE1B TOIE1 – TOIE0 TIMSK

Read/Write R/W R/W R/W R/W R/W R/W R R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

OCF2 TOV2 ICF1 OCF1A OCF1B TOV1 – TOV0 TIFR

Read/Write R/W R/W R/W R/W R/W R/W R R/W

Initial Value 0 0 0 0 0 0 0 0
120 ATmega8(L) 
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ATmega8(L)
Timer/Counter Prescaler Figure 56.  Prescaler for Timer/Counter2

The clock source for Timer/Counter2 is named clkT2S. clkT2S is by default connected to
the main system I/O clock clkI/O. By setting the AS2 bit in ASSR, Timer/Counter2 is
asynchronously clocked from the TOSC1 pin. This enables use of Timer/Counter2 as a
Real Time Counter (RTC). When AS2 is set, pins TOSC1 and TOSC2 are disconnected
from Port B. A crystal can then be connected between the TOSC1 and TOSC2 pins to
serve as an independent clock source for Timer/Counter2. The Oscillator is optimized
for use with a 32.768 kHz crystal. Applying an external clock source to TOSC1 is not
recommended.

For Timer/Counter2, the possible prescaled selections are: clkT2S/8, clkT2S/32, clkT2S/64,
clkT2S/128, clkT2S/256, and clkT2S/1024. Additionally, clkT2S as well as 0 (stop) may be
selected. Setting the PSR2 bit in SFIOR resets the prescaler. This allows the user to
operate with a predictable prescaler. 

Special Function IO Register – 
SFIOR

• Bit 1 – PSR2: Prescaler Reset Timer/Counter2

When this bit is written to one, the Timer/Counter2 prescaler will be reset. The bit will be
cleared by hardware after the operation is performed. Writing a zero to this bit will have
no effect. This bit will always be read as zero if Timer/Counter2 is clocked by the internal
CPU clock. If this bit is written when Timer/Counter2 is operating in Asynchronous
mode, the bit will remain one until the prescaler has been reset. 

10-BIT T/C PRESCALER

TIMER/COUNTER2 CLOCK SOURCE

clkI/O clkT2S

TOSC1

AS2

CS20
CS21
CS22

cl
k T

2S
/8

cl
k T

2S
/6

4

cl
k T

2S
/1

28

cl
k T

2S
/1

02
4

cl
k T

2S
/2

56

cl
k T

2S
/3

2

0PSR2

Clear

clkT2

Bit 7 6 5 4 3 2 1 0

– – – – ACME PUD PSR2 PSR10 SFIOR

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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ATmega8(L)
Slave Transmitter Mode In the Slave Transmitter mode, a number of data bytes are transmitted to a Master
Receiver (see Figure 84). All the status codes mentioned in this section assume that the
prescaler bits are zero or are masked to zero.

Figure 84.  Data Transfer in Slave Transmitter Mode

To initiate the Slave Transmitter mode, TWAR and TWCR must be initialized as follows:

The upper seven bits are the address to which the Two-wire Serial Interface will respond
when addressed by a Master. If the LSB is set, the TWI will respond to the general call
address (0x00), otherwise it will ignore the general call address.

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one
to enable the acknowledgement of the device’s own slave address or the general call
address. TWSTA and TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its
own slave address (or the general call address if enabled) followed by the data direction
bit. If the direction bit is “1” (read), the TWI will operate in ST mode, otherwise SR mode
is entered. After its own slave address and the write bit have been received, the TWINT
Flag is set and a valid status code can be read from TWSR. The status code is used to
determine the appropriate software action. The appropriate action to be taken for each
status code is detailed in Table 69. The Slave Transmitter mode may also be entered if
arbitration is lost while the TWI is in the Master mode (see state 0xB0).

If the TWEA bit is written to zero during a transfer, the TWI will transmit the last byte of
the transfer. State 0xC0 or state 0xC8 will be entered, depending on whether the Master
Receiver transmits a NACK or ACK after the final byte. The TWI is switched to the not
addressed Slave mode, and will ignore the Master if it continues the transfer. Thus the
Master Receiver receives all “1” as serial data. State 0xC8 is entered if the Master
demands additional data bytes (by transmitting ACK), even though the Slave has trans-
mitted the last byte (TWEA zero and expecting NACK from the Master).

While TWEA is zero, the TWI does not respond to its own slave address. However, the
Two-wire Serial Bus is still monitored and address recognition may resume at any time
by setting TWEA. This implies that the TWEA bit may be used to temporarily isolate the
TWI from the Two-wire Serial Bus.

TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE

value Device’s Own Slave Address

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 0 1 0 0 0 1 0 X

Device 3 Device n

SDA

SCL

........ R1 R2

VCC

Device 2
MASTER

RECEIVER

Device 1
SLAVE

TRANSMITTER
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ADC Control and Status 
Register A – ADCSRA

• Bit 7 – ADEN: ADC Enable

Writing this bit to one enables the ADC. By writing it to zero, the ADC is turned off. Turn-
ing the ADC off while a conversion is in progress, will terminate this conversion.

• Bit 6 – ADSC: ADC Start Conversion

In Single Conversion mode, write this bit to one to start each conversion. In Free Run-
ning mode, write this bit to one to start the first conversion. The first conversion after
ADSC has been written after the ADC has been enabled, or if ADSC is written at the
same time as the ADC is enabled, will take 25 ADC clock cycles instead of the normal
13. This first conversion performs initialization of the ADC.

ADSC will read as one as long as a conversion is in progress. When the conversion is
complete, it returns to zero. Writing zero to this bit has no effect.

• Bit 5 – ADFR: ADC Free Running Select

When this bit is set (one) the ADC operates in Free Running mode. In this mode, the
ADC samples and updates the Data Registers continuously. Clearing this bit (zero) will
terminate Free Running mode.

• Bit 4 – ADIF: ADC Interrupt Flag

This bit is set when an ADC conversion completes and the Data Registers are updated.
The ADC Conversion Complete Interrupt is executed if the ADIE bit and the I-bit in
SREG are set. ADIF is cleared by hardware when executing the corresponding interrupt
Handling Vector. Alternatively, ADIF is cleared by writing a logical one to the flag.
Beware that if doing a Read-Modify-Write on ADCSRA, a pending interrupt can be dis-
abled. This also applies if the SBI and CBI instructions are used.

• Bit 3 – ADIE: ADC Interrupt Enable

When this bit is written to one and the I-bit in SREG is set, the ADC Conversion Com-
plete Interrupt is activated.

Bit 7 6 5 4 3 2 1 0

ADEN ADSC ADFR ADIF ADIE ADPS2 ADPS1 ADPS0 ADCSRA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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ATmega8(L)
sbiw loophi:looplo, 1 ;use subi for PAGESIZEB<=256
brne Rdloop

; return to RWW section
; verify that RWW section is safe to read

Return:
in temp1, SPMCR
sbrs temp1, RWWSB ; If RWWSB is set, the RWW section is 

not ready yet
ret
; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SPMEN)
rcallDo_spm
rjmp Return

Do_spm:
; check for previous SPM complete

Wait_spm:
in temp1, SPMCR
sbrc temp1, SPMEN
rjmp Wait_spm
; input: spmcrval determines SPM action
; disable interrupts if enabled, store status
in temp2, SREG
cli
; check that no EEPROM write access is present

Wait_ee:
sbic EECR, EEWE
rjmp Wait_ee
; SPM timed sequence
out SPMCR, spmcrval
spm
; restore SREG (to enable interrupts if originally enabled)
out SREG, temp2
ret

ATmega8 Boot Loader 
Parameters

In Table 82 through Table 84, the parameters used in the description of the self pro-
gramming are given. 

Table 82.  Boot Size Configuration

BOOTSZ1 BOOTSZ0
Boot 
Size Pages

Application
Flash 
Section

Boot 
Loader
Flash 
Section

End
Application
Section

Boot Reset 
Address 
(Start Boot 
Loader 
Section)

1 1
128 
words

4
0x000 - 
0xF7F

0xF80 - 
0xFFF

0xF7F 0xF80 

1 0
256 
words

8
0x000 - 
0xEFF

0xF00 - 
0xFFF

0xEFF 0xF00

0 1
512 
words

16
0x000 - 
0xDFF

0xE00 - 
0xFFF

0xDFF 0xE00

0 0
1024 
words

32
0x000 - 
0xBFF

0xC00 - 
0xFFF

0xBFF 0xC00
217
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Note: The different BOOTSZ Fuse configurations are shown in Figure 102.

For details about these two section, see “NRWW – No Read-While-Write Section” on
page 207 and “RWW – Read-While-Write Section” on page 207

Note: 1. Z15:Z13: always ignored
Z0: should be zero for all SPM commands, byte select for the LPM instruction.
See “Addressing the Flash During Self-Programming” on page 211 for details about
the use of Z-pointer during Self-Programming.

Table 83.  Read-While-Write Limit

Section Pages Address

Read-While-Write section (RWW) 96 0x000 - 0xBFF

No Read-While-Write section (NRWW) 32 0xC00 - 0xFFF

Table 84.  Explanation of Different Variables used in Figure 103 and the Mapping to the
Z-pointer

Variable
Corresponding

Z-value(1) Description

PCMSB 11 Most significant bit in the Program Counter. 
(The Program Counter is 12 bits PC[11:0])

PAGEMSB 4 Most significant bit which is used to address the 
words within one page (32 words in a page 
requires 5 bits PC [4:0]).

ZPCMSB Z12 Bit in Z-register that is mapped to PCMSB. 
Because Z0 is not used, the ZPCMSB equals 
PCMSB + 1.

ZPAGEMSB Z5 Bit in Z-register that is mapped to PAGEMSB. 
Because Z0 is not used, the ZPAGEMSB 
equals PAGEMSB + 1.

PCPAGE PC[11:5] Z12:Z6 Program counter page address: Page select, 
for page erase and page write

PCWORD PC[4:0] Z5:Z1 Program counter word address: Word select, 
for filling temporary buffer (must be zero during 
page write operation)
218 ATmega8(L) 
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ATmega8(L)
Memory 
Programming

Program And Data 
Memory Lock Bits

The ATmega8 provides six Lock Bits which can be left unprogrammed (“1”) or can be
programmed (“0”) to obtain the additional features listed in Table 86. The Lock Bits can
only be erased to “1” with the Chip Erase command.

Note: 1. “1” means unprogrammed, “0” means programmed

Table 85.  Lock Bit Byte 

Lock Bit Byte Bit No. Description Default Value(1)

7 – 1 (unprogrammed)

6 – 1 (unprogrammed)

BLB12 5 Boot lock bit 1 (unprogrammed)

BLB11 4 Boot lock bit 1 (unprogrammed)

BLB02 3 Boot lock bit 1 (unprogrammed)

BLB01 2 Boot lock bit 1 (unprogrammed)

LB2 1 Lock bit 1 (unprogrammed)

LB1 0 Lock bit 1 (unprogrammed)

Table 86.  Lock Bit Protection Modes(2) 

Memory Lock Bits Protection Type

LB Mode LB2 LB1

1 1 1 No memory lock features enabled.

2 1 0

Further programming of the Flash and EEPROM is 
disabled in Parallel and Serial Programming mode. The 
Fuse Bits are locked in both Serial and Parallel 
Programming mode.(1)

3 0 0

Further programming and verification of the Flash and 
EEPROM is disabled in parallel and Serial Programming 
mode. The Fuse Bits are locked in both Serial and Parallel 
Programming modes.(1)

BLB0 Mode BLB02 BLB01

1 1 1
No restrictions for SPM or LPM accessing the Application 
section.

2 1 0 SPM is not allowed to write to the Application section.

3 0 0

SPM is not allowed to write to the Application section, and 
LPM executing from the Boot Loader section is not 
allowed to read from the Application section. If Interrupt 
Vectors are placed in the Boot Loader section, interrupts 
are disabled while executing from the Application section.

4 0 1

LPM executing from the Boot Loader section is not 
allowed to read from the Application section. If Interrupt 
Vectors are placed in the Boot Loader section, interrupts 
are disabled while executing from the Application section.

BLB1 Mode BLB12 BLB11
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Parallel Programming 
Parameters, Pin 
Mapping, and 
Commands

This section describes how to parallel program and verify Flash Program memory,
EEPROM Data memory, Memory Lock Bits, and Fuse Bits in the ATmega8. Pulses are
assumed to be at least 250 ns unless otherwise noted.

Signal Names In this section, some pins of the ATmega8 are referenced by signal names describing
their functionality during parallel programming, see Figure 104 and Table 89. Pins not
described in the following table are referenced by pin names.

The XA1/XA0 pins determine the action executed when the XTAL1 pin is given a posi-
tive pulse. The bit coding is shown in Table 91.

When pulsing WR or OE, the command loaded determines the action executed. The dif-
ferent Commands are shown in Table 92.

Figure 104.  Parallel Programming

Table 89.  Pin Name Mapping 

Signal Name in 
Programming Mode Pin Name I/O Function

RDY/BSY PD1 O
0: Device is busy programming, 1: Device 
is ready for new command

OE PD2 I Output Enable (Active low)

WR PD3 I Write Pulse (Active low)

BS1 PD4 I
Byte Select 1 (“0” selects Low byte, “1” 
selects High byte)

XA0 PD5 I XTAL Action Bit 0

XA1 PD6 I XTAL Action Bit 1

VCC

+5V

GND

XTAL1

PD1

PD2

PD3

PD4

PD5

PD6

 PC[1:0]:PB[5:0] DATA

RESET

PD7

+12 V

BS1

XA0

XA1

OE

RDY/BSY

PAGEL

PC2

WR

BS2

AVCC

+5V
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Data Polling Flash When a page is being programmed into the Flash, reading an address location within
the page being programmed will give the value 0xFF. At the time the device is ready for
a new page, the programmed value will read correctly. This is used to determine when
the next page can be written. Note that the entire page is written simultaneously and any
address within the page can be used for polling. Data polling of the Flash will not work
for the value 0xFF, so when programming this value, the user will have to wait for at
least tWD_FLASH before programming the next page. As a chip-erased device contains
0xFF in all locations, programming of addresses that are meant to contain 0xFF, can be
skipped. See Table 97 for tWD_FLASH value.

Data Polling EEPROM When a new byte has been written and is being programmed into EEPROM, reading the
address location being programmed will give the value 0xFF. At the time the device is
ready for a new byte, the programmed value will read correctly. This is used to deter-
mine when the next byte can be written. This will not work for the value 0xFF, but the
user should have the following in mind: As a chip-erased device contains 0xFF in all
locations, programming of addresses that are meant to contain 0xFF, can be skipped.
This does not apply if the EEPROM is Re-programmed without chip-erasing the device.
In this case, data polling cannot be used for the value 0xFF, and the user will have to
wait at least tWD_EEPROM before programming the next byte. See Table 97 for tWD_EEPROM
value.

Figure 113.  Serial Programming Waveforms

Table 97.  Minimum Wait Delay Before Writing the Next Flash or EEPROM Location

Symbol Minimum Wait Delay

tWD_FUSE 4.5 ms

tWD_FLASH 4.5 ms

tWD_EEPROM 9.0 ms

tWD_ERASE 9.0 ms

MSB

MSB

LSB

LSB

SERIAL CLOCK INPUT
(SCK)

SERIAL DATA INPUT
 (MOSI)

(MISO)

SAMPLE

SERIAL DATA OUTPUT
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Idle Supply Current Figure 125.  Idle Supply Current vs. Frequency (0.1 - 1.0 MHz)

Figure 126.  Idle Supply Current vs. Frequency (1 - 20 MHz)
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Figure 149.  I/O Pin Sink Current vs. Output Voltage (VCC = 5V)

Figure 150.  I/O Pin Sink Current vs. Output Voltage (VCC = 2.7V)
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ATmega8(L)
Figure 159.  Reset Pin as I/O – Input Threshold Voltage vs. VCC (VIL, I/O Pin Read as
“0”)

Figure 160.  Reset Pin as I/O – Pin Hysteresis vs. VCC
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ATmega8(L)
Figure 167.  Analog Comparator Offset Voltage vs. Common Mode Voltage (VCC = 5V)

Figure 168.  Analog Comparator Offset Voltage vs. Common Mode Voltage (VCC =
2.7V)
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ATmega8(L)
Figure 175.  Calibrated 4 MHz RC Oscillator Frequency vs. Osccal Value

Figure 176.  Calibrated 2 MHz RC Oscillator Frequency vs. Temperature
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