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Unconnected pins If some pins are unused, it is recommended to ensure that these pins have a defined
level. Even though most of the digital inputs are disabled in the deep sleep modes as
described above, floating inputs should be avoided to reduce current consumption in all
other modes where the digital inputs are enabled (Reset, Active mode and Idle mode).

The simplest method to ensure a defined level of an unused pin, is to enable the internal
pull-up. In this case, the pull-up will be disabled during reset. If low power consumption
during reset is important, it is recommended to use an external pull-up or pull-down.
Connecting unused pins directly to VCC or GND is not recommended, since this may
cause excessive currents if the pin is accidentally configured as an output.

Alternate Port Functions Most port pins have alternate functions in addition to being general digital I/Os. Figure
25 shows how the port pin control signals from the simplified Figure 22 can be overrid-
den by alternate functions. The overriding signals may not be present in all port pins, but
the figure serves as a generic description applicable to all port pins in the AVR micro-
controller family.

Figure 25.  Alternate Port Functions(1)

Note: 1. WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clkI/O,
SLEEP, and PUD are common to all ports. All other signals are unique for each pin.
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Timer/Counter Clock 
Sources

The Timer/Counter can be clocked by an internal or an external clock source. The clock
source is selected by the clock select logic which is controlled by the clock select
(CS02:0) bits located in the Timer/Counter Control Register (TCCR0). For details on
clock sources and prescaler, see “Timer/Counter0 and Timer/Counter1 Prescalers” on
page 72.

Counter Unit The main part of the 8-bit Timer/Counter is the programmable counter unit. Figure 27
shows a block diagram of the counter and its surroundings.

Figure 27.  Counter Unit Block Diagram

Signal description (internal signals):

count Increment TCNT0 by 1.

clkTn Timer/Counter clock, referred to as clkT0 in the following.

max Signalize that TCNT0 has reached maximum value.

The counter is incremented at each timer clock (clkT0). clkT0 can be generated from an
external or internal clock source, selected by the clock select bits (CS02:0). When no
clock source is selected (CS02:0 = 0) the timer is stopped. However, the TCNT0 value
can be accessed by the CPU, regardless of whether clkT0 is present or not. A CPU write
overrides (has priority over) all counter clear or count operations.

Operation The counting direction is always up (incrementing), and no counter clear is performed.
The counter simply overruns when it passes its maximum 8-bit value (MAX = 0xFF) and
then restarts from the bottom (0x00). In normal operation the Timer/Counter Overflow
Flag (TOV0) will be set in the same timer clock cycle as the TCNT0 becomes zero. The
TOV0 Flag in this case behaves like a ninth bit, except that it is only set, not cleared.
However, combined with the timer overflow interrupt that automatically clears the TOV0
Flag, the timer resolution can be increased by software. A new counter value can be
written anytime.
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ATmega8(L)
Timer/Counter Timing 
Diagrams

The Timer/Counter is a synchronous design and the timer clock (clkT0) is therefore
shown as a clock enable signal in the following figures. The figures include information
on when Interrupt Flags are set. Figure 28 contains timing data for basic Timer/Counter
operation. The figure shows the count sequence close to the MAX value.

Figure 28.  Timer/Counter Timing Diagram, No Prescaling

Figure 29 shows the same timing data, but with the prescaler enabled.

Figure 29.  Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)
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8-bit Timer/Counter2 
with PWM and 
Asynchronous 
Operation

Timer/Counter2 is a general purpose, single channel, 8-bit Timer/Counter module. The
main features are:
• Single Channel Counter
• Clear Timer on Compare Match (Auto Reload)
• Glitch-free, phase Correct Pulse Width Modulator (PWM)
• Frequency Generator
• 10-bit Clock Prescaler
• Overflow and Compare Match Interrupt Sources (TOV2 and OCF2)
• Allows Clocking from External 32 kHz Watch Crystal Independent of the I/O Clock

Overview A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 45. For the
actual placement of I/O pins, refer to “Pin Configurations” on page 2. CPU accessible
I/O Registers, including I/O bits and I/O pins, are shown in bold. The device-specific I/O
Register and bit locations are listed in the “8-bit Timer/Counter Register Description” on
page 115.

Figure 45.  8-bit Timer/Counter Block Diagram 
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Force Output Compare In non-PWM Waveform Generation modes, the match output of the comparator can be
forced by writing a one to the Force Output Compare (FOC2) bit. Forcing Compare
Match will not set the OCF2 Flag or reload/clear the timer, but the OC2 pin will be
updated as if a real Compare Match had occurred (the COM21:0 bits settings define
whether the OC2 pin is set, cleared or toggled).

Compare Match Blocking by 
TCNT2 Write

All CPU write operations to the TCNT2 Register will block any Compare Match that
occurs in the next timer clock cycle, even when the timer is stopped. This feature allows
OCR2 to be initialized to the same value as TCNT2 without triggering an interrupt when
the Timer/Counter clock is enabled.

Using the Output Compare 
Unit

Since writing TCNT2 in any mode of operation will block all compare matches for one
timer clock cycle, there are risks involved when changing TCNT2 when using the Output
Compare channel, independently of whether the Timer/Counter is running or not. If the
value written to TCNT2 equals the OCR2 value, the Compare Match will be missed,
resulting in incorrect waveform generation. Similarly, do not write the TCNT2 value
equal to BOTTOM when the counter is downcounting.

The setup of the OC2 should be performed before setting the Data Direction Register for
the port pin to output. The easiest way of setting the OC2 value is to use the Force Out-
put Compare (FOC2) strobe bit in Normal mode. The OC2 Register keeps its value even
when changing between waveform generation modes.

Be aware that the COM21:0 bits are not double buffered together with the compare
value. Changing the COM21:0 bits will take effect immediately.
106 ATmega8(L) 
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Data Reception – The 
USART Receiver

The USART Receiver is enabled by writing the Receive Enable (RXEN) bit in the
UCSRB Register to one. When the Receiver is enabled, the normal pin operation of the
RxD pin is overridden by the USART and given the function as the Receiver’s serial
input. The baud rate, mode of operation and frame format must be set up once before
any serial reception can be done. If synchronous operation is used, the clock on the
XCK pin will be used as transfer clock.

Receiving Frames with 5 to 8 
Data Bits

The Receiver starts data reception when it detects a valid start bit. Each bit that follows
the start bit will be sampled at the baud rate or XCK clock, and shifted into the Receive
Shift Register until the first stop bit of a frame is received. A second stop bit will be
ignored by the Receiver. When the first stop bit is received (i.e., a complete serial frame
is present in the Receive Shift Register), the contents of the Shift Register will be moved
into the receive buffer. The receive buffer can then be read by reading the UDR I/O
location.

The following code example shows a simple USART receive function based on polling
of the Receive Complete (RXC) Flag. When using frames with less than eight bits the
most significant bits of the data read from the UDR will be masked to zero. The USART
has to be initialized before the function can be used.

Note: 1. The example code assumes that the part specific header file is included.

The function simply waits for data to be present in the receive buffer by checking the
RXC Flag, before reading the buffer and returning the value.

Assembly Code Example(1)

USART_Receive:

; Wait for data to be received

sbis UCSRA, RXC

rjmp USART_Receive

; Get and return received data from buffer

in r16, UDR

ret

C Code Example(1)

unsigned char USART_Receive( void )

{

/* Wait for data to be received */

while ( !(UCSRA & (1<<RXC)) )

;

/* Get and return received data from buffer */

return UDR;

}
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Receive Compete Flag and 
Interrupt

The USART Receiver has one flag that indicates the Receiver state.

The Receive Complete (RXC) Flag indicates if there are unread data present in the
receive buffer. This flag is one when unread data exist in the receive buffer, and zero
when the receive buffer is empty (i.e., does not contain any unread data). If the Receiver
is disabled (RXEN = 0), the receive buffer will be flushed and consequently the RXC bit
will become zero.

When the Receive Complete Interrupt Enable (RXCIE) in UCSRB is set, the USART
Receive Complete Interrupt will be executed as long as the RXC Flag is set (provided
that global interrupts are enabled). When interrupt-driven data reception is used, the
receive complete routine must read the received data from UDR in order to clear the
RXC Flag, otherwise a new interrupt will occur once the interrupt routine terminates.

Receiver Error Flags The USART Receiver has three error flags: Frame Error (FE), Data OverRun (DOR) and
Parity Error (PE). All can be accessed by reading UCSRA. Common for the error flags is
that they are located in the receive buffer together with the frame for which they indicate
the error status. Due to the buffering of the error flags, the UCSRA must be read before
the receive buffer (UDR), since reading the UDR I/O location changes the buffer read
location. Another equality for the error flags is that they can not be altered by software
doing a write to the flag location. However, all flags must be set to zero when the
UCSRA is written for upward compatibility of future USART implementations. None of
the error flags can generate interrupts.

The Frame Error (FE) Flag indicates the state of the first stop bit of the next readable
frame stored in the receive buffer. The FE Flag is zero when the stop bit was correctly
read (as one), and the FE Flag will be one when the stop bit was incorrect (zero). This
flag can be used for detecting out-of-sync conditions, detecting break conditions and
protocol handling. The FE Flag is not affected by the setting of the USBS bit in UCSRC
since the Receiver ignores all, except for the first, stop bits. For compatibility with future
devices, always set this bit to zero when writing to UCSRA.

The Data OverRun (DOR) Flag indicates data loss due to a Receiver buffer full condi-
tion. A Data OverRun occurs when the receive buffer is full (two characters), it is a new
character waiting in the Receive Shift Register, and a new start bit is detected. If the
DOR Flag is set there was one or more serial frame lost between the frame last read
from UDR, and the next frame read from UDR. For compatibility with future devices,
always write this bit to zero when writing to UCSRA. The DOR Flag is cleared when the
frame received was successfully moved from the Shift Register to the receive buffer.

The Parity Error (PE) Flag indicates that the next frame in the receive buffer had a parity
error when received. If parity check is not enabled the PE bit will always be read zero.
For compatibility with future devices, always set this bit to zero when writing to UCSRA.
For more details see “Parity Bit Calculation” on page 135 and “Parity Checker” on page
144.
143
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ATmega8(L)
This bit is used for Synchronous mode only. Write this bit to zero when Asynchronous
mode is used. The UCPOL bit sets the relationship between data output change and
data input sample, and the synchronous clock (XCK).

USART Baud Rate Registers – 
UBRRL and UBRRHs

The UBRRH Register shares the same I/O location as the UCSRC Register. See the
“Accessing UBRRH/UCSRC Registers” on page 149 section which describes how to
access this register.

• Bit 15 – URSEL: Register Select

This bit selects between accessing the UBRRH or the UCSRC Register. It is read as
zero when reading UBRRH. The URSEL must be zero when writing the UBRRH.

• Bit 14:12 – Reserved Bits

These bits are reserved for future use. For compatibility with future devices, these bit
must be written to zero when UBRRH is written.

• Bit 11:0 – UBRR11:0: USART Baud Rate Register

This is a 12-bit register which contains the USART baud rate. The UBRRH contains the
four most significant bits, and the UBRRL contains the eight least significant bits of the
USART baud rate. Ongoing transmissions by the Transmitter and Receiver will be cor-
rupted if the baud rate is changed. Writing UBRRL will trigger an immediate update of
the baud rate prescaler.

Table 59.  UCPOL Bit Settings

UCPOL
Transmitted Data Changed (Output of 
TxD Pin)

Received Data Sampled (Input on 
RxD Pin)

0 Rising XCK Edge Falling XCK Edge

1 Falling XCK Edge Rising XCK Edge

Bit 15 14 13 12 11 10 9 8

URSEL – – – UBRR[11:8] UBRRH

UBRR[7:0] UBRRL

7 6 5 4 3 2 1 0

Read/Write R/W R R R R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
155
2486M–AVR–12/03



ATmega8(L)
described later on. However, it is important that the TWINT bit is set in the value
written. Writing a one to TWINT clears the flag. The TWI will not start any opera-
tion as long as the TWINT bit in TWCR is set. Immediately after the application
has cleared TWINT, the TWI will initiate transmission of the data packet.

6. When the data packet has been transmitted, the TWINT Flag in TWCR is set,
and TWSR is updated with a status code indicating that the data packet has suc-
cessfully been sent. The status code will also reflect whether a Slave
acknowledged the packet or not.

7. The application software should now examine the value of TWSR, to make sure
that the data packet was successfully transmitted, and that the value of the ACK
bit was as expected. If TWSR indicates otherwise, the application software might
take some special action, like calling an error routine. Assuming that the status
code is as expected, the application must write a specific value to TWCR,
instructing the TWI hardware to transmit a STOP condition. Which value to write
is described later on. However, it is important that the TWINT bit is set in the
value written. Writing a one to TWINT clears the flag. The TWI will not start any
operation as long as the TWINT bit in TWCR is set. Immediately after the appli-
cation has cleared TWINT, the TWI will initiate transmission of the STOP
condition. Note that TWINT is NOT set after a STOP condition has been sent.

Even though this example is simple, it shows the principles involved in all TWI transmis-
sions. These can be summarized as follows:

• When the TWI has finished an operation and expects application response, the 
TWINT Flag is set. The SCL line is pulled low until TWINT is cleared.

• When the TWINT Flag is set, the user must update all TWI Registers with the value 
relevant for the next TWI bus cycle. As an example, TWDR must be loaded with the 
value to be transmitted in the next bus cycle.

• After all TWI Register updates and other pending application software tasks have 
been completed, TWCR is written. When writing TWCR, the TWINT bit should be 
set. Writing a one to TWINT clears the flag. The TWI will then commence executing 
whatever operation was specified by the TWCR setting.

In the following an assembly and C implementation of the example is given. Note that
the code below assumes that several definitions have been made, for example by using
include-files.
173
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Slave Transmitter Mode In the Slave Transmitter mode, a number of data bytes are transmitted to a Master
Receiver (see Figure 84). All the status codes mentioned in this section assume that the
prescaler bits are zero or are masked to zero.

Figure 84.  Data Transfer in Slave Transmitter Mode

To initiate the Slave Transmitter mode, TWAR and TWCR must be initialized as follows:

The upper seven bits are the address to which the Two-wire Serial Interface will respond
when addressed by a Master. If the LSB is set, the TWI will respond to the general call
address (0x00), otherwise it will ignore the general call address.

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one
to enable the acknowledgement of the device’s own slave address or the general call
address. TWSTA and TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its
own slave address (or the general call address if enabled) followed by the data direction
bit. If the direction bit is “1” (read), the TWI will operate in ST mode, otherwise SR mode
is entered. After its own slave address and the write bit have been received, the TWINT
Flag is set and a valid status code can be read from TWSR. The status code is used to
determine the appropriate software action. The appropriate action to be taken for each
status code is detailed in Table 69. The Slave Transmitter mode may also be entered if
arbitration is lost while the TWI is in the Master mode (see state 0xB0).

If the TWEA bit is written to zero during a transfer, the TWI will transmit the last byte of
the transfer. State 0xC0 or state 0xC8 will be entered, depending on whether the Master
Receiver transmits a NACK or ACK after the final byte. The TWI is switched to the not
addressed Slave mode, and will ignore the Master if it continues the transfer. Thus the
Master Receiver receives all “1” as serial data. State 0xC8 is entered if the Master
demands additional data bytes (by transmitting ACK), even though the Slave has trans-
mitted the last byte (TWEA zero and expecting NACK from the Master).

While TWEA is zero, the TWI does not respond to its own slave address. However, the
Two-wire Serial Bus is still monitored and address recognition may resume at any time
by setting TWEA. This implies that the TWEA bit may be used to temporarily isolate the
TWI from the Two-wire Serial Bus.

TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE

value Device’s Own Slave Address

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 0 1 0 0 0 1 0 X

Device 3 Device n

SDA

SCL

........ R1 R2

VCC

Device 2
MASTER

RECEIVER

Device 1
SLAVE

TRANSMITTER
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takes 13 ADC clock cycles. The first conversion after the ADC is switched on (ADEN in
ADCSRA is set) takes 25 ADC clock cycles in order to initialize the analog circuitry.

The actual sample-and-hold takes place 1.5 ADC clock cycles after the start of a normal
conversion and 13.5 ADC clock cycles after the start of an first conversion. When a con-
version is complete, the result is written to the ADC Data Registers, and ADIF is set. In
single conversion mode, ADSC is cleared simultaneously. The software may then set
ADSC again, and a new conversion will be initiated on the first rising ADC clock edge. 

In Free Running mode, a new conversion will be started immediately after the conver-
sion completes, while ADSC remains high. For a summary of conversion times, see
Table 73.

Figure 92.  ADC Timing Diagram, First Conversion (Single Conversion Mode)

Figure 93.  ADC Timing Diagram, Single Conversion
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Setting the Boot Loader Lock 
Bits by SPM

To set the Boot Loader Lock Bits, write the desired data to R0, write “X0001001” to
SPMCR and execute SPM within four clock cycles after writing SPMCR. The only
accessible Lock Bits are the Boot Lock Bits that may prevent the Application and Boot
Loader section from any software update by the MCU. 

See Table 78 and Table 79 for how the different settings of the Boot Loader Bits affect
the Flash access.

If bits 5..2 in R0 are cleared (zero), the corresponding Boot Lock bit will be programmed
if an SPM instruction is executed within four cycles after BLBSET and SPMEN are set in
SPMCR. The Z-pointer is don’t care during this operation, but for future compatibility it is
recommended to load the Z-pointer with 0x0001 (same as used for reading the Lock
Bits). For future compatibility It is also recommended to set bits 7, 6, 1, and 0 in R0 to “1”
when writing the Lock Bits. When programming the Lock Bits the entire Flash can be
read during the operation.

EEPROM Write Prevents 
Writing to SPMCR

Note that an EEPROM write operation will block all software programming to Flash.
Reading the Fuses and Lock Bits from software will also be prevented during the
EEPROM write operation. It is recommended that the user checks the status bit (EEWE)
in the EECR Register and verifies that the bit is cleared before writing to the SPMCR
Register.

Reading the Fuse and Lock 
Bits from Software

It is possible to read both the Fuse and Lock Bits from software. To read the Lock Bits,
load the Z-pointer with 0x0001 and set the BLBSET and SPMEN bits in SPMCR. When
an LPM instruction is executed within three CPU cycles after the BLBSET and SPMEN
bits are set in SPMCR, the value of the Lock Bits will be loaded in the destination regis-
ter. The BLBSET and SPMEN bits will auto-clear upon completion of reading the Lock
Bits or if no LPM instruction is executed within three CPU cycles or no SPM instruction
is executed within four CPU cycles. When BLBSET and SPMEN are cleared, LPM will
work as described in the Instruction set Manual.

The algorithm for reading the Fuse Low bits is similar to the one described above for
reading the Lock Bits. To read the Fuse Low bits, load the Z-pointer with 0x0000 and set
the BLBSET and SPMEN bits in SPMCR. When an LPM instruction is executed within
three cycles after the BLBSET and SPMEN bits are set in the SPMCR, the value of the
Fuse Low bits (FLB) will be loaded in the destination register as shown below. Refer to
Table 88 on page 221 for a detailed description and mapping of the fuse low bits.

Similarly, when reading the Fuse High bits, load 0x0003 in the Z-pointer. When an LPM
instruction is executed within three cycles after the BLBSET and SPMEN bits are set in
the SPMCR, the value of the Fuse High bits (FHB) will be loaded in the destination reg-
ister as shown below. Refer to Table 87 on page 220 for detailed description and
mapping of the fuse high bits.

Fuse and Lock Bits that are programmed, will be read as zero. Fuse and Lock Bits that
are unprogrammed, will be read as one.

Bit 7 6 5 4 3 2 1 0

R0 1 1 BLB12 BLB11 BLB02 BLB01 1 1

Bit 7 6 5 4 3 2 1 0

Rd – – BLB12 BLB11 BLB02 BLB01 LB2 LB1

Bit 7 6 5 4 3 2 1 0

Rd FLB7 FLB6 FLB5 FLB4 FLB3 FLB2 FLB1 FLB0

Bit 7 6 5 4 3 2 1 0

Rd FHB7 FHB6 FHB5 FHB4 FHB3 FHB2 FHB1 FHB0
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Programming the Fuse High 
Bits

The algorithm for programming the Fuse high bits is as follows (refer to “Programming
the Flash” on page 225 for details on Command and Data loading):

1. A: Load Command “0100 0000”.

2. C: Load Data Low byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. Set BS1 to “1” and BS2 to “0”. This selects high data byte.

4. Give WR a negative pulse and wait for RDY/BSY to go high.

5. Set BS1 to “0”. This selects low data byte.

Programming the Lock Bits The algorithm for programming the Lock Bits is as follows (refer to “Programming the
Flash” on page 225 for details on Command and Data loading):

1. A: Load Command “0010 0000”.

2. C: Load Data Low byte. Bit n = “0” programs the Lock bit.

3. Give WR a negative pulse and wait for RDY/BSY to go high.

The Lock Bits can only be cleared by executing Chip Erase.

Reading the Fuse and Lock 
Bits

The algorithm for reading the Fuse and Lock Bits is as follows (refer to “Programming
the Flash” on page 225 for details on Command loading):

1. A: Load Command “0000 0100”.

2. Set OE to “0”, BS2 to “0”, and BS1 to “0”. The status of the Fuse Low bits can
now be read at DATA (“0” means programmed).

3. Set OE to “0”, BS2 to “1”, and BS1 to “1”. The status of the Fuse High bits can
now be read at DATA (“0” means programmed).

4. Set OE to “0”, BS2 to “0”, and BS1 to “1”. The status of the Lock Bits can now be
read at DATA (“0” means programmed).

5. Set OE to “1”.

Figure 108.  Mapping Between BS1, BS2 and the Fuse- and Lock Bits During Read

Fuse low byte

Lock bits 0

1

BS2

Fuse high byte

0

1

BS1

DATA
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5. This requirement applies to all ATmega8 Two-wire Serial Interface operation. Other
devices connected to the Two-wire Serial Bus need only obey the general fSCL
requirement.

6. The actual low period generated by the ATmega8 Two-wire Serial Interface is (1/fSCL
- 2/fCK), thus fCK must be greater than 6 MHz for the low time requirement to be
strictly met at fSCL = 100 kHz.

7. The actual low period generated by the ATmega8 Two-wire Serial Interface is (1/fSCL
- 2/fCK), thus the low time requirement will not be strictly met for fSCL > 308 kHz when
fCK = 8 MHz. Still, ATmega8 devices connected to the bus may communicate at full
speed (400 kHz) with other ATmega8 devices, as well as any other device with a
proper tLOW acceptance margin.

Figure 115.  Two-wire Serial Bus Timing

SPI Timing 
Characteristics

See Figure 116 and Figure 117 for details.

Note: 1. In SPI Programming mode the minimum SCK high/low period is:
- 2tCLCL for fCK < 12 MHz
- 3tCLCL for fCK > 12 MHz

tSU;STA

tLOW

tHIGH

tLOW

tof

tHD;STA tHD;DAT tSU;DAT
tSU;STO

tBUF

SCL

SDA

tr

Table 102.  SPI Timing Parameters

Description Mode Min Typ Max

1 SCK period Master See Table 50

ns

2 SCK high/low Master 50% duty cycle

3 Rise/Fall time Master 3.6

4 Setup Master 10

5 Hold Master 10

6 Out to SCK Master 0.5 • tSCK

7 SCK to out Master 10

8 SCK to out high Master 10

9 SS low to out Slave 15

10 SCK period Slave 4 • tck

11 SCK high/low(1) Slave 2 • tck

12 Rise/Fall time Slave 1.6

13 Setup Slave 10

14 Hold Slave 10

15 SCK to out Slave 15

16 SCK to SS high Slave 20

17 SS high to tri-state Slave 10

18 SS low to SCK Salve 2 • tck
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Figure 129.  Idle Supply Current vs. VCC (Internal RC Oscillator, 2 MHz)

Figure 130.  Idle Supply Current vs. VCC (Internal RC Oscillator, 1 MHz)
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Figure 145.  Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 5V)

Figure 146.  Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 2.7V)
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Figure 175.  Calibrated 4 MHz RC Oscillator Frequency vs. Osccal Value

Figure 176.  Calibrated 2 MHz RC Oscillator Frequency vs. Temperature
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Figure 177.  Calibrated 2 MHz RC Oscillator Frequency vs. VCC

Figure 178.  Calibrated 2 MHz RC Oscillator Frequency vs. Osccal Value
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Changes from Rev. 
2486B-12/01 to Rev. 
2486C-03/02

All page numbers refers to this document.

1 Updated TWI Chapter.

More details regarding use of the TWI Power-down operation and using the TWI as
Master with low TWBRR values are added into the datasheet.

Added the note at the end of the “Bit Rate Generator Unit” on page 167.

Added the description at the end of “Address Match Unit” on page 167.

2 Updated Description of OSCCAL Calibration Byte.

In the datasheet, it was not explained how to take advantage of the calibration bytes
for 2, 4, and 8 MHz Oscillator selections. This is now added in the following
sections:

Improved description of “Oscillator Calibration Register – OSCCAL” on page 29 and
“Calibration Byte” on page 221.

3 Added Some Preliminary Test Limits and Characterization Data.

Removed some of the TBD’s in the following tables and pages:

Table 3 on page 24, Table 15 on page 36, Table 16 on page 40, Table 17 on page
42, “TA = -40×C to 85×C, VCC = 2.7V to 5.5V (unless otherwise noted)” on page
237, Table 99 on page 239, and Table 102 on page 241.

4 Updated Programming Figures.

Figure 104 on page 222 and Figure 112 on page 232 are updated to also reflect that
AVCC must be connected during Programming mode.

5 Added a Description on how to Enter Parallel Programming Mode if RESET
Pin is Disabled or if External Oscillators are Selected.

Added a note in section “Enter Programming Mode” on page 224.
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