
Microchip Technology - ATMEGA8L-8MC Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor AVR

Core Size 8-Bit

Speed 8MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 23

Program Memory Size 8KB (4K x 16)

Program Memory Type FLASH

EEPROM Size 512 x 8

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature 0°C ~ 70°C (TA)

Mounting Type Surface Mount

Package / Case 32-VFQFN Exposed Pad

Supplier Device Package 32-VQFN (5x5)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atmega8l-8mc

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega8l-8mc-4426337
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

When using the SEI instruction to enable interrupts, the instruction following SEI will be
executed before any pending interrupts, as shown in the following example.

Interrupt Response Time The interrupt execution response for all the enabled AVR interrupts is four clock cycles
minimum. After four clock cycles, the Program Vector address for the actual interrupt
handling routine is executed. During this 4-clock cycle period, the Program Counter is
pushed onto the Stack. The Vector is normally a jump to the interrupt routine, and this
jump takes three clock cycles. If an interrupt occurs during execution of a multi-cycle
instruction, this instruction is completed before the interrupt is served. If an interrupt
occurs when the MCU is in sleep mode, the interrupt execution response time is
increased by four clock cycles. This increase comes in addition to the start-up time from
the selected sleep mode.

A return from an interrupt handling routine takes four clock cycles. During these four
clock cycles, the Program Counter (2 bytes) is popped back from the Stack, the Stack
Pointer is incremented by 2, and the I-bit in SREG is set.

Assembly Code Example

sei ; set global interrupt enable

sleep; enter sleep, waiting for interrupt

; note: will enter sleep before any pending

; interrupt(s)

C Code Example

_SEI(); /* set global interrupt enable */

_SLEEP(); /* enter sleep, waiting for interrupt */

/* note: will enter sleep before any pending interrupt(s) */
14 ATmega8(L)
2486M–AVR–12/03

ATmega8(L)
Crystal Oscillator XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can
be configured for use as an On-chip Oscillator, as shown in Figure 11. Either a quartz
crystal or a ceramic resonator may be used. The CKOPT Fuse selects between two dif-
ferent Oscillator amplifier modes. When CKOPT is programmed, the Oscillator output
will oscillate a full rail-to-rail swing on the output. This mode is suitable when operating
in a very noisy environment or when the output from XTAL2 drives a second clock
buffer. This mode has a wide frequency range. When CKOPT is unprogrammed, the
Oscillator has a smaller output swing. This reduces power consumption considerably.
This mode has a limited frequency range and it cannot be used to drive other clock
buffers.

For resonators, the maximum frequency is 8 MHz with CKOPT unprogrammed and
16 MHz with CKOPT programmed. C1 and C2 should always be equal for both crystals
and resonators. The optimal value of the capacitors depends on the crystal or resonator
in use, the amount of stray capacitance, and the electromagnetic noise of the environ-
ment. Some initial guidelines for choosing capacitors for use with crystals are given in
Table 4. For ceramic resonators, the capacitor values given by the manufacturer should
be used.

Figure 11. Crystal Oscillator Connections

The Oscillator can operate in three different modes, each optimized for a specific fre-
quency range. The operating mode is selected by the fuses CKSEL3..1 as shown in
Table 4.

Note: 1. This option should not be used with crystals, only with ceramic resonators.

The CKSEL0 Fuse together with the SUT1..0 Fuses select the start-up times as shown
in Table 5.

Table 4. Crystal Oscillator Operating Modes

CKOPT CKSEL3..1
 Frequency
Range(MHz)

Recommended Range for Capacitors
C1 and C2 for Use with Crystals (pF)

1 101(1) 0.4 - 0.9 –

1 110 0.9 - 3.0 12 - 22

1 111 3.0 - 8.0 12 - 22

0 101, 110, 111 1.0 ≤ 12 - 22

XTAL2

XTAL1

GND

C2

C1
25
2486M–AVR–12/03

Calibrated Internal RC
Oscillator

The calibrated internal RC Oscillator provides a fixed 1.0, 2.0, 4.0, or 8.0 MHz clock. All
frequencies are nominal values at 5V and 25°C. This clock may be selected as the sys-
tem clock by programming the CKSEL Fuses as shown in Table 9. If selected, it will
operate with no external components. The CKOPT Fuse should always be unpro-
grammed when using this clock option. During reset, hardware loads the calibration byte
into the OSCCAL Register and thereby automatically calibrates the RC Oscillator. At 5V,
25°C and 1.0 MHz Oscillator frequency selected, this calibration gives a frequency
within ± 3% of the nominal frequency. Using run-time calibration methods as described
in application notes available at www.atmel.com/avr it is possible to achieve ± 1% accu-
racy at any given VCC and Temperature. When this Oscillator is used as the chip clock,
the Watchdog Oscillator will still be used for the Watchdog Timer and for the Reset
Time-out. For more information on the pre-programmed calibration value, see the sec-
tion “Calibration Byte” on page 221.

Note: 1. The device is shipped with this option selected.

When this Oscillator is selected, start-up times are determined by the SUT Fuses as
shown in Table 10. PB6 (XTAL1/TOSC1) and PB7(XTAL2/TOSC2) can be used as
either general I/O pins or Timer Oscillator pins..

Note: 1. The device is shipped with this option selected.

Table 9. Internal Calibrated RC Oscillator Operating Modes

 CKSEL3..0 Nominal Frequency (MHz)

0001(1) 1.0

0010 2.0

0011 4.0

0100 8.0

Table 10. Start-up Times for the Internal Calibrated RC Oscillator Clock Selection

SUT1..0

Start-up Time from
Power-down and

Power-save

Additional Delay
from Reset
(VCC = 5.0V) Recommended Usage

00 6 CK – BOD enabled

01 6 CK 4.1 ms Fast rising power

10(1) 6 CK 65 ms Slowly rising power

11 Reserved
28 ATmega8(L)
2486M–AVR–12/03

External Reset An External Reset is generated by a low level on the RESET pin. Reset pulses longer
than the minimum pulse width (see Table 15) will generate a reset, even if the clock is
not running. Shorter pulses are not guaranteed to generate a reset. When the applied
signal reaches the Reset Threshold Voltage – VRST on its positive edge, the delay
counter starts the MCU after the time-out period tTOUT has expired.

Figure 17. External Reset During Operation

Brown-out Detection ATmega8 has an On-chip Brown-out Detection (BOD) circuit for monitoring the VCC
level during operation by comparing it to a fixed trigger level. The trigger level for the
BOD can be selected by the fuse BODLEVEL to be 2.7V (BODLEVEL unprogrammed),
or 4.0V (BODLEVEL programmed). The trigger level has a hysteresis to ensure spike
free Brown-out Detection. The hysteresis on the detection level should be interpreted as
VBOT+ = VBOT + VHYST/2 and VBOT- = VBOT - VHYST/2.

The BOD circuit can be enabled/disabled by the fuse BODEN. When the BOD is
enabled (BODEN programmed), and VCC decreases to a value below the trigger level
(VBOT- in Figure 18), the Brown-out Reset is immediately activated. When VCC increases
above the trigger level (VBOT+ in Figure 18), the delay counter starts the MCU after the
time-out period tTOUT has expired.

The BOD circuit will only detect a drop in VCC if the voltage stays below the trigger level
for longer than tBOD given in Table 15.

Figure 18. Brown-out Reset During Operation

CC

VCC

RESET

TIME-OUT

INTERNAL
RESET

VBOT-
VBOT+

tTOUT
38 ATmega8(L)
2486M–AVR–12/03

ATmega8(L)
Watchdog Timer The Watchdog Timer is clocked from a separate On-chip Oscillator which runs at
1 MHz. This is the typical value at VCC = 5V. See characterization data for typical values
at other VCC levels. By controlling the Watchdog Timer prescaler, the Watchdog Reset
interval can be adjusted as shown in Table 17 on page 42. The WDR – Watchdog Reset
– instruction resets the Watchdog Timer. The Watchdog Timer is also reset when it is
disabled and when a Chip Reset occurs. Eight different clock cycle periods can be
selected to determine the reset period. If the reset period expires without another
Watchdog Reset, the ATmega8 resets and executes from the Reset Vector. For timing
details on the Watchdog Reset, refer to page 39.

To prevent unintentional disabling of the Watchdog, a special turn-off sequence must be
followed when the Watchdog is disabled. Refer to the description of the Watchdog Timer
Control Register for details.

Figure 20. Watchdog Timer

Watchdog Timer Control
Register – WDTCR

• Bits 7..5 – Res: Reserved Bits

These bits are reserved bits in the ATmega8 and will always read as zero.

• Bit 4 – WDCE: Watchdog Change Enable

This bit must be set when the WDE bit is written to logic zero. Otherwise, the Watchdog
will not be disabled. Once written to one, hardware will clear this bit after four clock
cycles. Refer to the description of the WDE bit for a Watchdog disable procedure. In
Safety Level 1 and 2, this bit must also be set when changing the prescaler bits. See the
Code Examples on page 43.

WATCHDOG
OSCILLATOR

Bit 7 6 5 4 3 2 1 0

– – – WDCE WDE WDP2 WDP1 WDP0 WDTCR

Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
41
2486M–AVR–12/03

ATmega8(L)
I/O Ports

Introduction All AVR ports have true Read-Modify-Write functionality when used as general digital
I/O ports. This means that the direction of one port pin can be changed without uninten-
tionally changing the direction of any other pin with the SBI and CBI instructions. The
same applies when changing drive value (if configured as output) or enabling/disabling
of pull-up resistors (if configured as input). Each output buffer has symmetrical drive
characteristics with both high sink and source capability. The pin driver is strong enough
to drive LED displays directly. All port pins have individually selectable pull-up resistors
with a supply-voltage invariant resistance. All I/O pins have protection diodes to both
VCC and Ground as indicated in Figure 21. Refer to “Electrical Characteristics” on page
237 for a complete list of parameters.

Figure 21. I/O Pin Equivalent Schematic

All registers and bit references in this section are written in general form. A lower case
“x” represents the numbering letter for the port, and a lower case “n” represents the bit
number. However, when using the register or bit defines in a program, the precise form
must be used (i.e., PORTB3 for bit 3 in Port B, here documented generally as PORTxn).
The physical I/O Registers and bit locations are listed in “Register Description for I/O
Ports” on page 63.

Three I/O memory address locations are allocated for each port, one each for the Data
Register – PORTx, Data Direction Register – DDRx, and the Port Input Pins – PINx. The
Port Input Pins I/O location is read only, while the Data Register and the Data Direction
Register are read/write. In addition, the Pull-up Disable – PUD bit in SFIOR disables the
pull-up function for all pins in all ports when set.

Using the I/O port as General Digital I/O is described in “Ports as General Digital I/O” on
page 50. Most port pins are multiplexed with alternate functions for the peripheral fea-
tures on the device. How each alternate function interferes with the port pin is described
in “Alternate Port Functions” on page 54. Refer to the individual module sections for a
full description of the alternate functions.

Note that enabling the alternate function of some of the port pins does not affect the use
of the other pins in the port as general digital I/O.

Cpin

Logic

Rpu

See Figure
"General Digital I/O" for

Details

Pxn
49
2486M–AVR–12/03

Figure 42. Timer/Counter Timing Diagram, Setting of OCF1x, with Prescaler (fclk_I/O/8)

Figure 43 shows the count sequence close to TOP in various modes. When using phase
and frequency correct PWM mode the OCR1x Register is updated at BOTTOM. The
timing diagrams will be the same, but TOP should be replaced by BOTTOM, TOP-1 by
BOTTOM+1 and so on. The same renaming applies for modes that set the TOV1 Flag
at BOTTOM.

Figure 43. Timer/Counter Timing Diagram, no Prescaling

Figure 44 shows the same timing data, but with the prescaler enabled.

OCFnx

OCRnx

TCNTn

OCRnx Value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2

clkI/O

clkTn
(clkI/O/8)

TOVn (FPWM)
and ICFn (if used

as TOP)

OCRnx
(Update at TOP)

TCNTn
(CTC and FPWM)

TCNTn
(PC and PFC PWM)

TOP - 1 TOP TOP - 1 TOP - 2

Old OCRnx Value New OCRnx Value

TOP - 1 TOP BOTTOM BOTTOM + 1

clkTn
(clkI/O/1)

clkI/O
94 ATmega8(L)
2486M–AVR–12/03

ATmega8(L)
what type of waveform generation to be used, see Table 39. Modes of operation sup-
ported by the Timer/Counter unit are: Normal mode (counter), Clear Timer on Compare
Match (CTC) mode, and three types of Pulse Width Modulation (PWM) modes. (See
“Modes of Operation” on page 86.)

Note: 1. The CTC1 and PWM11:0 bit definition names are obsolete. Use the WGM12:0 definitions. However, the functionality and
location of these bits are compatible with previous versions of the timer.

Table 39. Waveform Generation Mode Bit Description

Mode WGM13
WGM12
(CTC1)

WGM11
(PWM11)

WGM10
(PWM10)

Timer/Counter Mode of
Operation(1) TOP

Update of
OCR1x

TOV1 Flag
Set on

0 0 0 0 0 Normal 0xFFFF Immediate MAX

1 0 0 0 1 PWM, Phase Correct, 8-bit 0x00FF TOP BOTTOM

2 0 0 1 0 PWM, Phase Correct, 9-bit 0x01FF TOP BOTTOM

3 0 0 1 1 PWM, Phase Correct, 10-bit 0x03FF TOP BOTTOM

4 0 1 0 0 CTC OCR1A Immediate MAX

5 0 1 0 1 Fast PWM, 8-bit 0x00FF TOP TOP

6 0 1 1 0 Fast PWM, 9-bit 0x01FF TOP TOP

7 0 1 1 1 Fast PWM, 10-bit 0x03FF TOP TOP

8 1 0 0 0 PWM, Phase and Frequency
Correct

ICR1 BOTTOM BOTTOM

9 1 0 0 1 PWM, Phase and Frequency
Correct

OCR1A BOTTOM BOTTOM

10 1 0 1 0 PWM, Phase Correct ICR1 TOP BOTTOM

11 1 0 1 1 PWM, Phase Correct OCR1A TOP BOTTOM

12 1 1 0 0 CTC ICR1 Immediate MAX

13 1 1 0 1 (Reserved) – – –

14 1 1 1 0 Fast PWM ICR1 TOP TOP

15 1 1 1 1 Fast PWM OCR1A TOP TOP
97
2486M–AVR–12/03

ATmega8(L)
When configured as a Master, the SPI interface has no automatic control of the SS line.
This must be handled by user software before communication can start. When this is
done, writing a byte to the SPI Data Register starts the SPI clock generator, and the
hardware shifts the eight bits into the Slave. After shifting one byte, the SPI clock gener-
ator stops, setting the end of Transmission Flag (SPIF). If the SPI interrupt enable bit
(SPIE) in the SPCR Register is set, an interrupt is requested. The Master may continue
to shift the next byte by writing it into SPDR, or signal the end of packet by pulling high
the Slave Select, SS line. The last incoming byte will be kept in the Buffer Register for
later use.

When configured as a Slave, the SPI interface will remain sleeping with MISO tri-stated
as long as the SS pin is driven high. In this state, software may update the contents of
the SPI Data Register, SPDR, but the data will not be shifted out by incoming clock
pulses on the SCK pin until the SS pin is driven low. As one byte has been completely
shifted, the end of Transmission Flag, SPIF is set. If the SPI interrupt enable bit, SPIE,
in the SPCR Register is set, an interrupt is requested. The Slave may continue to place
new data to be sent into SPDR before reading the incoming data. The last incoming byte
will be kept in the Buffer Register for later use.

Figure 58. SPI Master-Slave Interconnection

The system is single buffered in the transmit direction and double buffered in the receive
direction. This means that bytes to be transmitted cannot be written to the SPI Data
Register before the entire shift cycle is completed. When receiving data, however, a
received character must be read from the SPI Data Register before the next character
has been completely shifted in. Otherwise, the first byte is lost.

In SPI Slave mode, the control logic will sample the incoming signal of the SCK pin. To
ensure correct sampling of the clock signal, the frequency of the SPI clock should never
exceed fosc/4.

When the SPI is enabled, the data direction of the MOSI, MISO, SCK, and SS pins is
overridden according to Table 47. For more details on automatic port overrides, refer to
“Alternate Port Functions” on page 54.

Note: 1. See “Port B Pins Alternate Functions” on page 56 for a detailed description of how to
define the direction of the user defined SPI pins.

Table 47. SPI Pin Overrides(1)

Pin Direction, Master SPI Direction, Slave SPI

MOSI User Defined Input

MISO Input User Defined

SCK User Defined Input

SS User Defined Input

MSB MASTER LSB

8 BIT SHIFT REGISTER

MSB SLAVE LSB

8 BIT SHIFT REGISTER
MISO

MOSI

SPI
CLOCK GENERATOR

SCK

SS

MISO

MOSI

SCK

SS
VCC

SHIFT
ENABLE
123
2486M–AVR–12/03

ATmega8(L)
Sp Stop bit, always high.

IDLE No transfers on the communication line (RxD or TxD). An IDLE line must be
high.

The frame format used by the USART is set by the UCSZ2:0, UPM1:0 and USBS bits in
UCSRB and UCSRC. The Receiver and Transmitter use the same setting. Note that
changing the setting of any of these bits will corrupt all ongoing communication for both
the Receiver and Transmitter.

The USART Character SiZe (UCSZ2:0) bits select the number of data bits in the frame.
The USART Parity mode (UPM1:0) bits enable and set the type of parity bit. The selec-
tion between one or two stop bits is done by the USART Stop Bit Select (USBS) bit. The
Receiver ignores the second stop bit. An FE (Frame Error) will therefore only be
detected in the cases where the first stop bit is zero.

Parity Bit Calculation The parity bit is calculated by doing an exclusive-or of all the data bits. If odd parity is
used, the result of the exclusive or is inverted. The relation between the parity bit and
data bits is as follows:

Peven Parity bit using even parity.

Podd Parity bit using odd parity.

dn Data bit n of the character.

If used, the parity bit is located between the last data bit and first stop bit of a serial
frame.

USART Initialization The USART has to be initialized before any communication can take place. The initial-
ization process normally consists of setting the baud rate, setting frame format and
enabling the Transmitter or the Receiver depending on the usage. For interrupt driven
USART operation, the Global Interrupt Flag should be cleared (and interrupts globally
disabled) when doing the initialization.

Before doing a re-initialization with changed baud rate or frame format, be sure that
there are no ongoing transmissions during the period the registers are changed. The
TXC Flag can be used to check that the Transmitter has completed all transfers, and the
RXC Flag can be used to check that there are no unread data in the receive buffer. Note
that the TXC Flag must be cleared before each transmission (before UDR is written) if it
is used for this purpose.

The following simple USART initialization code examples show one assembly and one
C function that are equal in functionality. The examples assume asynchronous opera-
tion using polling (no interrupts enabled) and a fixed frame format. The baud rate is
given as a function parameter. For the assembly code, the baud rate parameter is
assumed to be stored in the r17:r16 Registers. When the function writes to the UCSRC
Register, the URSEL bit (MSB) must be set due to the sharing of I/O location by UBRRH
and UCSRC.

Peven dn 1– … d3 d2 d1 d0 0
Podd

⊕ ⊕ ⊕ ⊕ ⊕ ⊕
dn 1– … d3 d2 d1 d0 1⊕ ⊕ ⊕ ⊕ ⊕ ⊕

=
=

135
2486M–AVR–12/03

Note: 1. The example codes assume that the part specific header file is included.

More advanced initialization routines can be made that include frame format as parame-
ters, disable interrupts and so on. However, many applications use a fixed setting of the
Baud and Control Registers, and for these types of applications the initialization code
can be placed directly in the main routine, or be combined with initialization code for
other I/O modules.

Assembly Code Example(1)

USART_Init:

; Set baud rate

out UBRRH, r17

out UBRRL, r16

; Enable Receiver and Transmitter

ldi r16, (1<<RXEN)|(1<<TXEN)

out UCSRB,r16

; Set frame format: 8data, 2stop bit

ldi r16, (1<<URSEL)|(1<<USBS)|(3<<UCSZ0)

out UCSRC,r16

ret

C Code Example(1)

void USART_Init(unsigned int baud)

{

/* Set baud rate */

UBRRH = (unsigned char)(baud>>8);

UBRRL = (unsigned char)baud;

/* Enable Receiver and Transmitter */

UCSRB = (1<<RXEN)|(1<<TXEN);

/* Set frame format: 8data, 2stop bit */

UCSRC = (1<<URSEL)|(1<<USBS)|(3<<UCSZ0);

}

136 ATmega8(L)
2486M–AVR–12/03

Multi-processor
Communication Mode

Setting the Multi-processor Communication mode (MPCM) bit in UCSRA enables a fil-
tering function of incoming frames received by the USART Receiver. Frames that do not
contain address information will be ignored and not put into the receive buffer. This
effectively reduces the number of incoming frames that has to be handled by the CPU,
in a system with multiple MCUs that communicate via the same serial bus. The Trans-
mitter is unaffected by the MPCM setting, but has to be used differently when it is a part
of a system utilizing the Multi-processor Communication mode.

If the Receiver is set up to receive frames that contain 5 to 8 data bits, then the first stop
bit indicates if the frame contains data or address information. If the Receiver is set up
for frames with nine data bits, then the ninth bit (RXB8) is used for identifying address
and data frames. When the frame type bit (the first stop or the ninth bit) is one, the frame
contains an address. When the frame type bit is zero the frame is a data frame.

The Multi-processor Communication mode enables several Slave MCUs to receive data
from a Master MCU. This is done by first decoding an address frame to find out which
MCU has been addressed. If a particular Slave MCU has been addressed, it will receive
the following data frames as normal, while the other Slave MCUs will ignore the
received frames until another address frame is received.

Using MPCM For an MCU to act as a Master MCU, it can use a 9-bit character frame format (UCSZ =
7). The ninth bit (TXB8) must be set when an address frame (TXB8 = 1) or cleared when
a data frame (TXB = 0) is being transmitted. The Slave MCUs must in this case be set to
use a 9-bit character frame format.

The following procedure should be used to exchange data in Multi-processor Communi-
cation mode:

1. All Slave MCUs are in Multi-processor Communication mode (MPCM in UCSRA
is set).

2. The Master MCU sends an address frame, and all slaves receive and read this
frame. In the Slave MCUs, the RXC Flag in UCSRA will be set as normal.

3. Each Slave MCU reads the UDR Register and determines if it has been
selected. If so, it clears the MPCM bit in UCSRA, otherwise it waits for the next
address byte and keeps the MPCM setting.

4. The addressed MCU will receive all data frames until a new address frame is
received. The other Slave MCUs, which still have the MPCM bit set, will ignore
the data frames.

5. When the last data frame is received by the addressed MCU, the addressed
MCU sets the MPCM bit and waits for a new address frame from Master. The
process then repeats from 2.

Using any of the 5- to 8-bit character frame formats is possible, but impractical since the
Receiver must change between using n and n+1 character frame formats. This makes
full-duplex operation difficult since the Transmitter and Receiver uses the same charac-
ter size setting. If 5- to 8-bit character frames are used, the Transmitter must be set to
use two stop bit (USBS = 1) since the first stop bit is used for indicating the frame type.

Do not use Read-Modify-Write instructions (SBI and CBI) to set or clear the MPCM bit.
The MPCM bit shares the same I/O location as the TXC Flag and this might accidentally
be cleared when using SBI or CBI instructions.
148 ATmega8(L)
2486M–AVR–12/03

• Bit 5:4 – UPM1:0: Parity Mode

These bits enable and set type of Parity Generation and Check. If enabled, the Trans-
mitter will automatically generate and send the parity of the transmitted data bits within
each frame. The Receiver will generate a parity value for the incoming data and com-
pare it to the UPM0 setting. If a mismatch is detected, the PE Flag in UCSRA will be set.

• Bit 3 – USBS: Stop Bit Select

This bit selects the number of stop bits to be inserted by the trAnsmitter. The Receiver
ignores this setting.

• Bit 2:1 – UCSZ1:0: Character Size

The UCSZ1:0 bits combined with the UCSZ2 bit in UCSRB sets the number of data bits
(Character Size) in a frame the Receiver and Transmitter use.

• Bit 0 – UCPOL: Clock Polarity

Table 56. UPM Bits Settings

UPM1 UPM0 Parity Mode

0 0 Disabled

0 1 Reserved

1 0 Enabled, Even Parity

1 1 Enabled, Odd Parity

Table 57. USBS Bit Settings

USBS Stop Bit(s)

0 1-bit

1 2-bit

Table 58. UCSZ Bits Settings

UCSZ2 UCSZ1 UCSZ0 Character Size

0 0 0 5-bit

0 0 1 6-bit

0 1 0 7-bit

0 1 1 8-bit

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Reserved

1 1 1 9-bit
154 ATmega8(L)
2486M–AVR–12/03

ATmega8(L)
Data Packet Format All data packets transmitted on the TWI bus are nine bits long, consisting of one data
byte and an acknowledge bit. During a data transfer, the Master generates the clock and
the START and STOP conditions, while the Receiver is responsible for acknowledging
the reception. An Acknowledge (ACK) is signalled by the Receiver pulling the SDA line
low during the ninth SCL cycle. If the Receiver leaves the SDA line high, a NACK is sig-
nalled. When the Receiver has received the last byte, or for some reason cannot receive
any more bytes, it should inform the Transmitter by sending a NACK after the final byte.
The MSB of the data byte is transmitted first.

Figure 72. Data Packet Format

Combining Address and Data
Packets into a Transmission

A transmission basically consists of a START condition, a SLA+R/W, one or more data
packets and a STOP condition. An empty message, consisting of a START followed by
a STOP condition, is illegal. Note that the Wired-ANDing of the SCL line can be used to
implement handshaking between the Master and the Slave. The Slave can extend the
SCL low period by pulling the SCL line low. This is useful if the clock speed set up by the
Master is too fast for the Slave, or the Slave needs extra time for processing between
the data transmissions. The Slave extending the SCL low period will not affect the SCL
high period, which is determined by the Master. As a consequence, the Slave can
reduce the TWI data transfer speed by prolonging the SCL duty cycle.

Figure 73 shows a typical data transmission. Note that several data bytes can be trans-
mitted between the SLA+R/W and the STOP condition, depending on the software
protocol implemented by the application software.

Figure 73. Typical Data Transmission

1 2 7 8 9

Data MSB Data LSB ACK

Aggregate
SDA

SDA from
Transmitter

SDA from
Receiver

SCL from
Master

SLA+R/W Data Byte
STOP, REPEATED

START or Next
Data Byte

1 2 7 8 9

Data Byte

Data MSB Data LSB ACK

SDA

SCL

START

1 2 7 8 9

Addr MSB Addr LSB R/W ACK

SLA+R/W STOP
163
2486M–AVR–12/03

ATmega8(L)
Slave Transmitter Mode In the Slave Transmitter mode, a number of data bytes are transmitted to a Master
Receiver (see Figure 84). All the status codes mentioned in this section assume that the
prescaler bits are zero or are masked to zero.

Figure 84. Data Transfer in Slave Transmitter Mode

To initiate the Slave Transmitter mode, TWAR and TWCR must be initialized as follows:

The upper seven bits are the address to which the Two-wire Serial Interface will respond
when addressed by a Master. If the LSB is set, the TWI will respond to the general call
address (0x00), otherwise it will ignore the general call address.

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one
to enable the acknowledgement of the device’s own slave address or the general call
address. TWSTA and TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its
own slave address (or the general call address if enabled) followed by the data direction
bit. If the direction bit is “1” (read), the TWI will operate in ST mode, otherwise SR mode
is entered. After its own slave address and the write bit have been received, the TWINT
Flag is set and a valid status code can be read from TWSR. The status code is used to
determine the appropriate software action. The appropriate action to be taken for each
status code is detailed in Table 69. The Slave Transmitter mode may also be entered if
arbitration is lost while the TWI is in the Master mode (see state 0xB0).

If the TWEA bit is written to zero during a transfer, the TWI will transmit the last byte of
the transfer. State 0xC0 or state 0xC8 will be entered, depending on whether the Master
Receiver transmits a NACK or ACK after the final byte. The TWI is switched to the not
addressed Slave mode, and will ignore the Master if it continues the transfer. Thus the
Master Receiver receives all “1” as serial data. State 0xC8 is entered if the Master
demands additional data bytes (by transmitting ACK), even though the Slave has trans-
mitted the last byte (TWEA zero and expecting NACK from the Master).

While TWEA is zero, the TWI does not respond to its own slave address. However, the
Two-wire Serial Bus is still monitored and address recognition may resume at any time
by setting TWEA. This implies that the TWEA bit may be used to temporarily isolate the
TWI from the Two-wire Serial Bus.

TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE

value Device’s Own Slave Address

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 0 1 0 0 0 1 0 X

Device 3 Device n

SDA

SCL

........ R1 R2

VCC

Device 2
MASTER

RECEIVER

Device 1
SLAVE

TRANSMITTER
185
2486M–AVR–12/03

Parallel Programming
Parameters, Pin
Mapping, and
Commands

This section describes how to parallel program and verify Flash Program memory,
EEPROM Data memory, Memory Lock Bits, and Fuse Bits in the ATmega8. Pulses are
assumed to be at least 250 ns unless otherwise noted.

Signal Names In this section, some pins of the ATmega8 are referenced by signal names describing
their functionality during parallel programming, see Figure 104 and Table 89. Pins not
described in the following table are referenced by pin names.

The XA1/XA0 pins determine the action executed when the XTAL1 pin is given a posi-
tive pulse. The bit coding is shown in Table 91.

When pulsing WR or OE, the command loaded determines the action executed. The dif-
ferent Commands are shown in Table 92.

Figure 104. Parallel Programming

Table 89. Pin Name Mapping

Signal Name in
Programming Mode Pin Name I/O Function

RDY/BSY PD1 O
0: Device is busy programming, 1: Device
is ready for new command

OE PD2 I Output Enable (Active low)

WR PD3 I Write Pulse (Active low)

BS1 PD4 I
Byte Select 1 (“0” selects Low byte, “1”
selects High byte)

XA0 PD5 I XTAL Action Bit 0

XA1 PD6 I XTAL Action Bit 1

VCC

+5V

GND

XTAL1

PD1

PD2

PD3

PD4

PD5

PD6

 PC[1:0]:PB[5:0] DATA

RESET

PD7

+12 V

BS1

XA0

XA1

OE

RDY/BSY

PAGEL

PC2

WR

BS2

AVCC

+5V
222 ATmega8(L)
2486M–AVR–12/03

ATmega8(L)
Figure 111. Parallel Programming Timing, Reading Sequence (within the same Page)
with Timing Requirements(1)

Note: 1. The timing requirements shown in Figure 109 (i.e., tDVXH, tXHXL, and tXLDX) also apply
to reading operation.

Table 95. Parallel Programming Characteristics, VCC = 5V ± 10%

Symbol Parameter Min Typ Max Units

VPP Programming Enable Voltage 11.5 12.5 V

IPP Programming Enable Current 250 µA

tDVXH Data and Control Valid before XTAL1 High 67 ns

tXLXH XTAL1 Low to XTAL1 High 200 ns

tXHXL XTAL1 Pulse Width High 150 ns

tXLDX Data and Control Hold after XTAL1 Low 67 ns

tXLWL XTAL1 Low to WR Low 0 ns

tXLPH XTAL1 Low to PAGEL high 0 ns

tPLXH PAGEL low to XTAL1 high 150 ns

tBVPH BS1 Valid before PAGEL High 67 ns

tPHPL PAGEL Pulse Width High 150 ns

tPLBX BS1 Hold after PAGEL Low 67 ns

tWLBX BS2/1 Hold after WR Low 67 ns

tPLWL PAGEL Low to WR Low 67 ns

tBVWL BS1 Valid to WR Low 67 ns

tWLWH WR Pulse Width Low 150 ns

tWLRL WR Low to RDY/BSY Low 0 1 µs

tWLRH WR Low to RDY/BSY High(1) 3.7 4.5 ms

tWLRH_CE WR Low to RDY/BSY High for Chip Erase(2) 7.5 9 ms

tXLOL XTAL1 Low to OE Low 0 ns

XTAL1

OE

ADDR0 (Low Byte) DATA (Low Byte) DATA (High Byte) ADDR1 (Low Byte)DATA

BS1

XA0

XA1

LOAD ADDRESS
(LOW BYTE)

READ DATA
(LOW BYTE)

READ DATA
(HIGH BYTE)

LOAD ADDRESS
(LOW BYTE)

tBVDV

tOLDV

tXLOL

tOHDZ
231
2486M–AVR–12/03

ATmega8(L)
Note: a = address high bits
b = address low bits
H = 0 – Low byte, 1 – High byte
o = data out
i = data in
x = don’t care

Table 98. Serial Programming Instruction Set

Instruction

Instruction Format

OperationByte 1 Byte 2 Byte 3 Byte4

Programming Enable 1010 1100 0101 0011 xxxx xxxx xxxx xxxx Enable Serial Programming after
RESET goes low.

Chip Erase 1010 1100 100x xxxx xxxx xxxx xxxx xxxx Chip Erase EEPROM and Flash.

Read Program Memory 0010 H000 0000 aaaa bbbb bbbb oooo oooo Read H (high or low) data o from
Program memory at word address
a:b.

Load Program Memory
Page

0100 H000 0000 xxxx xxxb bbbb iiii iiii Write H (high or low) data i to
Program memory page at word
address b. Data Low byte must be
loaded before Data High byte is
applied within the same address.

Write Program Memory
Page

0100 1100 0000 aaaa bbbx xxxx xxxx xxxx Write Program memory Page at
address a:b.

Read EEPROM Memory 1010 0000 00xx xxxa bbbb bbbb oooo oooo Read data o from EEPROM
memory at address a:b.

Write EEPROM Memory 1100 0000 00xx xxxa bbbb bbbb iiii iiii Write data i to EEPROM memory at
address a:b.

Read Lock Bits 0101 1000 0000 0000 xxxx xxxx xxoo oooo Read Lock Bits. “0” = programmed,
“1” = unprogrammed. See Table
85 on page 219 for details.

Write Lock Bits 1010 1100 111x xxxx xxxx xxxx 11ii iiii Write Lock Bits. Set bits = “0” to
program Lock Bits. See Table 85
on page 219 for details.

Read Signature Byte 0011 0000 00xx xxxx xxxx xxbb oooo oooo Read Signature Byte o at address
b.

Write Fuse Bits 1010 1100 1010 0000 xxxx xxxx iiii iiii Set bits = “0” to program, “1” to
unprogram. See Table 88 on
page 221 for details.

Write Fuse High Bits 1010 1100 1010 1000 xxxx xxxx iiii iiii Set bits = “0” to program, “1” to
unprogram. See Table 87 on
page 220 for details.

Read Fuse Bits 0101 0000 0000 0000 xxxx xxxx oooo oooo Read Fuse Bits. “0” = programmed,
“1” = unprogrammed. See Table
88 on page 221 for details.

Read Fuse High Bits 0101 1000 0000 1000 xxxx xxxx oooo oooo Read Fuse high bits. “0” = pro-
grammed, “1” = unprogrammed.
See Table 87 on page 220 for
details.

Read Calibration Byte 0011 1000 00xx xxxx 0000 00bb oooo oooo Read Calibration Byte
235
2486M–AVR–12/03

Figure 141. Standby Supply Current vs. VCC (6 MHz Resonator, Watchdog Timer
Disabled)

Figure 142. Standby Supply Current vs. VCC (6 MHz Xtal, Watchdog Timer Disabled)

STANDBY SUPPLY CURRENT vs. VCC

6 MHz RESONATOR, WATCHDOG TIMER DISABLED

0

20

40

60

80

100

120

140

160

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

uA
)

STANDBY SUPPLY CURRENT vs. VCC

6 MHz XTAL, WATCHDOG TIMER DISABLED

0

20

40

60

80

100

120

140

160

180

200

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

uA
)

256 ATmega8(L)
2486M–AVR–12/03

Datasheet Change
Log for ATmega8

This document contains a log on the changes made to the datasheet for ATmega8.

Changes from Rev.
2486K-08/03 to Rev.
2486L-10/03

All page numbers refers to this document.

1. Updated “Calibrated Internal RC Oscillator” on page 28.

Changes from Rev.
2486K-08/03 to Rev.
2486L-10/03

All page numbers refers to this document.

1. Removed “Preliminary” and TBDs from the datasheet.

2. Renamed ICP to ICP1 in the datasheet.

3. Removed instructions CALL and JMP from the datasheet.

4. Updated tRST in Table 15 on page 36, VBG in Table 16 on page 40, Table 100 on
page 239 and Table 102 on page 241.

5. Replaced text “XTAL1 and XTAL2 should be left unconnected (NC)” after
Table 9 in “Calibrated Internal RC Oscillator” on page 28. Added text regard-
ing XTAL1/XTAL2 and CKOPT Fuse in “Timer/Counter Oscillator” on page 30.

6. Updated Watchdog Timer code examples in “Timed Sequences for Changing
the Configuration of the Watchdog Timer” on page 43.

7. Removed bit 4, ADHSM, from “Special Function IO Register – SFIOR” on page
56.

8. Added note 2 to Figure 103 on page 212.

9. Updated item 4 in the “Serial Programming Algorithm” on page 233.

10. Added tWD_FUSE to Table 97 on page 234 and updated Read Calibration Byte,
Byte 3, in Table 98 on page 235.

11. Updated Absolute Maximum Ratings* and DC Characteristics in “Electrical
Characteristics” on page 237.

Changes from Rev.
2486J-02/03 to Rev.
2486K-08/03

All page numbers refers to this document.

1. Updated VBOT values in Table 15 on page 36.

2. Updated “ADC Characteristics” on page 243.

3. Updated “ATmega8 Typical Characteristics” on page 244.

4. Updated “Erratas” on page 291.

Changes from Rev.
2486I-12/02 to Rev.
2486J-02/03

All page numbers refers to this document.
292 ATmega8(L)
2486M–AVR–12/03

