
Atmel - ATMEGA8L-8PI Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor AVR

Core Size 8-Bit

Speed 8MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 23

Program Memory Size 8KB (4K x 16)

Program Memory Type FLASH

EEPROM Size 512 x 8

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 6x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Through Hole

Package / Case 28-DIP (0.300", 7.62mm)

Supplier Device Package 28-PDIP

Purchase URL https://www.e-xfl.com/product-detail/atmel/atmega8l-8pi

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega8l-8pi-4380359
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Instruction Execution
Timing

This section describes the general access timing concepts for instruction execution. The
AVR CPU is driven by the CPU clock clkCPU, directly generated from the selected clock
source for the chip. No internal clock division is used.

Figure 5 shows the parallel instruction fetches and instruction executions enabled by the
Harvard architecture and the fast-access Register File concept. This is the basic pipelin-
ing concept to obtain up to 1 MIPS per MHz with the corresponding unique results for
functions per cost, functions per clocks, and functions per power-unit.

Figure 5. The Parallel Instruction Fetches and Instruction Executions

Figure 6 shows the internal timing concept for the Register File. In a single clock cycle
an ALU operation using two register operands is executed, and the result is stored back
to the destination register.

Figure 6. Single Cycle ALU Operation

Reset and Interrupt
Handling

The AVR provides several different interrupt sources. These interrupts and the separate
Reset Vector each have a separate Program Vector in the Program memory space. All
interrupts are assigned individual enable bits which must be written logic one together
with the Global Interrupt Enable bit in the Status Register in order to enable the interrupt.
Depending on the Program Counter value, interrupts may be automatically disabled
when Boot Lock Bits BLB02 or BLB12 are programmed. This feature improves software
security. See the section “Memory Programming” on page 219 for details.

The lowest addresses in the Program memory space are by default defined as the
Reset and Interrupt Vectors. The complete list of Vectors is shown in “Interrupts” on
page 44. The list also determines the priority levels of the different interrupts. The lower
the address the higher is the priority level. RESET has the highest priority, and next is
INT0 – the External Interrupt Request 0. The Interrupt Vectors can be moved to the start

clk

1st Instruction Fetch

1st Instruction Execute
2nd Instruction Fetch

2nd Instruction Execute
3rd Instruction Fetch

3rd Instruction Execute
4th Instruction Fetch

T1 T2 T3 T4

CPU

Total Execution Time

Register Operands Fetch

ALU Operation Execute

Result Write Back

T1 T2 T3 T4

clkCPU
12 ATmega8(L)
2486M–AVR–12/03

When using the SEI instruction to enable interrupts, the instruction following SEI will be
executed before any pending interrupts, as shown in the following example.

Interrupt Response Time The interrupt execution response for all the enabled AVR interrupts is four clock cycles
minimum. After four clock cycles, the Program Vector address for the actual interrupt
handling routine is executed. During this 4-clock cycle period, the Program Counter is
pushed onto the Stack. The Vector is normally a jump to the interrupt routine, and this
jump takes three clock cycles. If an interrupt occurs during execution of a multi-cycle
instruction, this instruction is completed before the interrupt is served. If an interrupt
occurs when the MCU is in sleep mode, the interrupt execution response time is
increased by four clock cycles. This increase comes in addition to the start-up time from
the selected sleep mode.

A return from an interrupt handling routine takes four clock cycles. During these four
clock cycles, the Program Counter (2 bytes) is popped back from the Stack, the Stack
Pointer is incremented by 2, and the I-bit in SREG is set.

Assembly Code Example

sei ; set global interrupt enable

sleep; enter sleep, waiting for interrupt

; note: will enter sleep before any pending

; interrupt(s)

C Code Example

_SEI(); /* set global interrupt enable */

_SLEEP(); /* enter sleep, waiting for interrupt */

/* note: will enter sleep before any pending interrupt(s) */
14 ATmega8(L)
2486M–AVR–12/03

The EEPROM Address
Register – EEARH and EEARL

• Bits 15..9 – Res: Reserved Bits

These bits are reserved bits in the ATmega8 and will always read as zero.

• Bits 8..0 – EEAR8..0: EEPROM Address

The EEPROM Address Registers – EEARH and EEARL – specify the EEPROM
address in the 512 bytes EEPROM space. The EEPROM data bytes are addressed lin-
early between 0 and 511. The initial value of EEAR is undefined. A proper value must be
written before the EEPROM may be accessed.

The EEPROM Data Register –
EEDR

• Bits 7..0 – EEDR7..0: EEPROM Data

For the EEPROM write operation, the EEDR Register contains the data to be written to
the EEPROM in the address given by the EEAR Register. For the EEPROM read oper-
ation, the EEDR contains the data read out from the EEPROM at the address given by
EEAR.

The EEPROM Control
Register – EECR

• Bits 7..4 – Res: Reserved Bits

These bits are reserved bits in the ATmega8 and will always read as zero.

• Bit 3 – EERIE: EEPROM Ready Interrupt Enable

Writing EERIE to one enables the EEPROM Ready Interrupt if the I bit in SREG is set.
Writing EERIE to zero disables the interrupt. The EEPROM Ready interrupt generates a
constant interrupt when EEWE is cleared.

• Bit 2 – EEMWE: EEPROM Master Write Enable

The EEMWE bit determines whether setting EEWE to one causes the EEPROM to be
written. When EEMWE is set, setting EEWE within four clock cycles will write data to the
EEPROM at the selected address If EEMWE is zero, setting EEWE will have no effect.
When EEMWE has been written to one by software, hardware clears the bit to zero after
four clock cycles. See the description of the EEWE bit for an EEPROM write procedure.

• Bit 1 – EEWE: EEPROM Write Enable

The EEPROM Write Enable Signal EEWE is the write strobe to the EEPROM. When
address and data are correctly set up, the EEWE bit must be written to one to write the

Bit 15 14 13 12 11 10 9 8

– – – – – – – EEAR8 EEARH

EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 EEARL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 X

X X X X X X X X

Bit 7 6 5 4 3 2 1 0

MSB LSB EEDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – – – EERIE EEMWE EEWE EERE EECR

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 X 0
18 ATmega8(L)
2486M–AVR–12/03

ATmega8(L)
System Clock and
Clock Options

Clock Systems and their
Distribution

Figure 10 presents the principal clock systems in the AVR and their distribution. All of
the clocks need not be active at a given time. In order to reduce power consumption, the
clocks to modules not being used can be halted by using different sleep modes, as
described in “Power Management and Sleep Modes” on page 31. The clock systems
are detailed Figure 10.

Figure 10. Clock Distribution

CPU Clock – clkCPU The CPU clock is routed to parts of the system concerned with operation of the AVR
core. Examples of such modules are the General Purpose Register File, the Status Reg-
ister and the Data memory holding the Stack Pointer. Halting the CPU clock inhibits the
core from performing general operations and calculations.

I/O Clock – clkI/O The I/O clock is used by the majority of the I/O modules, like Timer/Counters, SPI, and
USART. The I/O clock is also used by the External Interrupt module, but note that some
external interrupts are detected by asynchronous logic, allowing such interrupts to be
detected even if the I/O clock is halted. Also note that address recognition in the TWI
module is carried out asynchronously when clkI/O is halted, enabling TWI address recep-
tion in all sleep modes.

Flash Clock – clkFLASH The Flash clock controls operation of the Flash interface. The Flash clock is usually
active simultaneously with the CPU clock.

General I/O
Modules

Asynchronous
Timer/Counter

ADC CPU Core RAM

clkI/O

clkASY

AVR Clock
Control Unit

clkCPU

Flash and
EEPROM

clkFLASH

clkADC

Source Clock

Watchdog Timer

Watchdog
Oscillator

Reset Logic

Clock
Multiplexer

Watchdog Clock

Calibrated RC
Oscillator

Timer/Counter
Oscillator

Crystal
Oscillator

Low-Frequency
Crystal Oscillator

External RC
Oscillator External Clock
23
2486M–AVR–12/03

Notes: 1. These options should only be used when not operating close to the maximum fre-
quency of the device, and only if frequency stability at start-up is not important for the
application. These options are not suitable for crystals.

2. These options are intended for use with ceramic resonators and will ensure fre-
quency stability at start-up. They can also be used with crystals when not operating
close to the maximum frequency of the device, and if frequency stability at start-up is
not important for the application.

Low-frequency Crystal
Oscillator

To use a 32.768 kHz watch crystal as the clock source for the device, the Low-fre-
quency Crystal Oscillator must be selected by setting the CKSEL Fuses to “1001”. The
crystal should be connected as shown in Figure 11. By programming the CKOPT Fuse,
the user can enable internal capacitors on XTAL1 and XTAL2, thereby removing the
need for external capacitors. The internal capacitors have a nominal value of 36 pF.

When this Oscillator is selected, start-up times are determined by the SUT Fuses as
shown in Table 6.

Note: 1. These options should only be used if frequency stability at start-up is not important for
the application.

Table 5. Start-up Times for the Crystal Oscillator Clock Selection

CKSEL0 SUT1..0

Start-up Time
from Power-down
and Power-save

Additional Delay
from Reset
(VCC = 5.0V) Recommended Usage

0 00 258 CK(1) 4.1 ms
Ceramic resonator, fast
rising power

0 01 258 CK(1) 65 ms
Ceramic resonator, slowly
rising power

0 10 1K CK(2) –
Ceramic resonator, BOD
enabled

0 11 1K CK(2) 4.1 ms
Ceramic resonator, fast
rising power

1 00 1K CK(2) 65 ms
Ceramic resonator, slowly
rising power

1 01 16K CK –
Crystal Oscillator, BOD
enabled

1 10 16K CK 4.1 ms
Crystal Oscillator, fast
rising power

1 11 16K CK 65 ms
Crystal Oscillator, slowly
rising power

Table 6. Start-up Times for the Low-frequency Crystal Oscillator Clock Selection

SUT1..0

Start-up Time from
Power-down and

Power-save

Additional Delay
from Reset
(VCC = 5.0V) Recommended Usage

00 1K CK(1) 4.1 ms Fast rising power or BOD enabled

01 1K CK(1) 65 ms Slowly rising power

10 32K CK 65 ms Stable frequency at start-up

11 Reserved
26 ATmega8(L)
2486M–AVR–12/03

ATmega8(L)
Power-on Reset A Power-on Reset (POR) pulse is generated by an On-chip detection circuit. The detec-
tion level is defined in Table 15. The POR is activated whenever VCC is below the
detection level. The POR circuit can be used to trigger the Start-up Reset, as well as to
detect a failure in supply voltage.

A Power-on Reset (POR) circuit ensures that the device is reset from Power-on. Reach-
ing the Power-on Reset threshold voltage invokes the delay counter, which determines
how long the device is kept in RESET after VCC rise. The RESET signal is activated
again, without any delay, when VCC decreases below the detection level.

Figure 15. MCU Start-up, RESET Tied to VCC

Figure 16. MCU Start-up, RESET Extended Externally

V

RESET

TIME-OUT

INTERNAL
RESET

tTOUT

VPOT

VRST

CC

RESET

TIME-OUT

INTERNAL
RESET

tTOUT

VPOT

VRST

VCC
37
2486M–AVR–12/03

External Reset An External Reset is generated by a low level on the RESET pin. Reset pulses longer
than the minimum pulse width (see Table 15) will generate a reset, even if the clock is
not running. Shorter pulses are not guaranteed to generate a reset. When the applied
signal reaches the Reset Threshold Voltage – VRST on its positive edge, the delay
counter starts the MCU after the time-out period tTOUT has expired.

Figure 17. External Reset During Operation

Brown-out Detection ATmega8 has an On-chip Brown-out Detection (BOD) circuit for monitoring the VCC
level during operation by comparing it to a fixed trigger level. The trigger level for the
BOD can be selected by the fuse BODLEVEL to be 2.7V (BODLEVEL unprogrammed),
or 4.0V (BODLEVEL programmed). The trigger level has a hysteresis to ensure spike
free Brown-out Detection. The hysteresis on the detection level should be interpreted as
VBOT+ = VBOT + VHYST/2 and VBOT- = VBOT - VHYST/2.

The BOD circuit can be enabled/disabled by the fuse BODEN. When the BOD is
enabled (BODEN programmed), and VCC decreases to a value below the trigger level
(VBOT- in Figure 18), the Brown-out Reset is immediately activated. When VCC increases
above the trigger level (VBOT+ in Figure 18), the delay counter starts the MCU after the
time-out period tTOUT has expired.

The BOD circuit will only detect a drop in VCC if the voltage stays below the trigger level
for longer than tBOD given in Table 15.

Figure 18. Brown-out Reset During Operation

CC

VCC

RESET

TIME-OUT

INTERNAL
RESET

VBOT-
VBOT+

tTOUT
38 ATmega8(L)
2486M–AVR–12/03

• Bit 0 – IVCE: Interrupt Vector Change Enable

The IVCE bit must be written to logic one to enable change of the IVSEL bit. IVCE is
cleared by hardware four cycles after it is written or when IVSEL is written. Setting the
IVCE bit will disable interrupts, as explained in the IVSEL description above. See Code
Example below.

Assembly Code Example

Move_interrupts:

; Enable change of Interrupt Vectors

ldi r16, (1<<IVCE)

out GICR, r16

; Move interrupts to boot Flash section

ldi r16, (1<<IVSEL)

out GICR, r16

ret

C Code Example

void Move_interrupts(void)

{

/* Enable change of Interrupt Vectors */

GICR = (1<<IVCE);

/* Move interrupts to boot Flash section */

GICR = (1<<IVSEL);

}

48 ATmega8(L)
2486M–AVR–12/03

ATmega8(L)
• Bit 1, 0 – ISC01, ISC00: Interrupt Sense Control 0 Bit 1 and Bit 0

The External Interrupt 0 is activated by the external pin INT0 if the SREG I-flag and the
corresponding interrupt mask are set. The level and edges on the external INT0 pin that
activate the interrupt are defined in Table 32. The value on the INT0 pin is sampled
before detecting edges. If edge or toggle interrupt is selected, pulses that last longer
than one clock period will generate an interrupt. Shorter pulses are not guaranteed to
generate an interrupt. If low level interrupt is selected, the low level must be held until
the completion of the currently executing instruction to generate an interrupt.

General Interrupt Control
Register – GICR

• Bit 7 – INT1: External Interrupt Request 1 Enable

When the INT1 bit is set (one) and the I-bit in the Status Register (SREG) is set (one),
the external pin interrupt is enabled. The Interrupt Sense Control1 bits 1/0 (ISC11 and
ISC10) in the MCU general Control Register (MCUCR) define whether the external
interrupt is activated on rising and/or falling edge of the INT1 pin or level sensed. Activity
on the pin will cause an interrupt request even if INT1 is configured as an output. The
corresponding interrupt of External Interrupt Request 1 is executed from the INT1 Inter-
rupt Vector.

• Bit 6 – INT0: External Interrupt Request 0 Enable

When the INT0 bit is set (one) and the I-bit in the Status Register (SREG) is set (one),
the external pin interrupt is enabled. The Interrupt Sense Control0 bits 1/0 (ISC01 and
ISC00) in the MCU general Control Register (MCUCR) define whether the external
interrupt is activated on rising and/or falling edge of the INT0 pin or level sensed. Activity
on the pin will cause an interrupt request even if INT0 is configured as an output. The
corresponding interrupt of External Interrupt Request 0 is executed from the INT0 Inter-
rupt Vector.

Table 32. Interrupt 0 Sense Control

ISC01 ISC00 Description

0 0 The low level of INT0 generates an interrupt request.

0 1 Any logical change on INT0 generates an interrupt request.

1 0 The falling edge of INT0 generates an interrupt request.

1 1 The rising edge of INT0 generates an interrupt request.

Bit 7 6 5 4 3 2 1 0

INT1 INT0 – – – – IVSEL IVCE GICR

Read/Write R/W R/W R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
65
2486M–AVR–12/03

ATmega8(L)
(ICF1) must be cleared by software (writing a logical one to the I/O bit location). For
measuring frequency only, the clearing of the ICF1 Flag is not required (if an interrupt
handler is used).

Output Compare Units The 16-bit comparator continuously compares TCNT1 with the Output Compare Regis-
ter (OCR1x). If TCNT equals OCR1x the comparator signals a match. A match will set
the Output Compare Flag (OCF1x) at the next timer clock cycle. If enabled (OCIE1x =
1), the Output Compare Flag generates an Output Compare interrupt. The OCF1x Flag
is automatically cleared when the interrupt is executed. Alternatively the OCF1x Flag
can be cleared by software by writing a logical one to its I/O bit location. The waveform
generator uses the match signal to generate an output according to operating mode set
by the Waveform Generation mode (WGM13:0) bits and Compare Output mode
(COM1x1:0) bits. The TOP and BOTTOM signals are used by the waveform generator
for handling the special cases of the extreme values in some modes of operation (See
“Modes of Operation” on page 86.)

A special feature of Output Compare unit A allows it to define the Timer/Counter TOP
value (i.e. counter resolution). In addition to the counter resolution, the TOP value
defines the period time for waveforms generated by the waveform generator.

Figure 35 shows a block diagram of the Output Compare unit. The small “n” in the regis-
ter and bit names indicates the device number (n = 1 for Timer/Counter 1), and the “x”
indicates Output Compare unit (A/B). The elements of the block diagram that are not
directly a part of the Output Compare unit are gray shaded.

Figure 35. Output Compare Unit, Block Diagram

The OCR1x Register is double buffered when using any of the twelve Pulse Width Mod-
ulation (PWM) modes. For the normal and Clear Timer on Compare (CTC) modes of
operation, the double buffering is disabled. The double buffering synchronizes the

OCFnx (Int.Req.)

= (16-bit Comparator)

OCRnx Buffer (16-bit Register)

OCRnxH Buf. (8-bit)

OCnx

TEMP (8-bit)

DATA BUS (8-bit)

OCRnxL Buf. (8-bit)

TCNTn (16-bit Counter)

TCNTnH (8-bit) TCNTnL (8-bit)

COMnx1:0WGMn3:0

OCRnx (16-bit Register)

OCRnxH (8-bit) OCRnxL (8-bit)

Waveform Generator
TOP

BOTTOM
83
2486M–AVR–12/03

ATmega8(L)
Compare Match Output
Unit

The Compare Output mode (COM1x1:0) bits have two functions. The waveform genera-
tor uses the COM1x1:0 bits for defining the Output Compare (OC1x) state at the next
Compare Match. Secondly the COM1x1:0 bits control the OC1x pin output source. Fig-
ure 36 shows a simplified schematic of the logic affected by the COM1x1:0 bit setting.
The I/O Registers, I/O bits, and I/O pins in the figure are shown in bold. Only the parts of
the general I/O Port Control Registers (DDR and PORT) that are affected by the
COM1x1:0 bits are shown. When referring to the OC1x state, the reference is for the
internal OC1x Register, not the OC1x pin. If a System Reset occur, the OC1x Register is
reset to “0”.

Figure 36. Compare Match Output Unit, Schematic

The general I/O port function is overridden by the Output Compare (OC1x) from the
waveform generator if either of the COM1x1:0 bits are set. However, the OC1x pin
direction (input or output) is still controlled by the Data Direction Register (DDR) for the
port pin. The Data Direction Register bit for the OC1x pin (DDR_OC1x) must be set as
output before the OC1x value is visible on the pin. The port override function is generally
independent of the Waveform Generation mode, but there are some exceptions. Refer
to Table 36, Table 37 and Table 38 for details.

The design of the Output Compare Pin logic allows initialization of the OC1x state
before the output is enabled. Note that some COM1x1:0 bit settings are reserved for
certain modes of operation. See “16-bit Timer/Counter Register Description” on page
95.

The COM1x1:0 bits have no effect on the Input Capture unit.

PORT

DDR

D Q

D Q

OCnx
PinOCnx

D Q
Waveform
Generator

COMnx1

COMnx0

0

1

D
AT

A
B

U
S

FOCnx

clkI/O
85
2486M–AVR–12/03

• Bit 2 – TCN2UB: Timer/Counter2 Update Busy

When Timer/Counter2 operates asynchronously and TCNT2 is written, this bit becomes
set. When TCNT2 has been updated from the temporary storage register, this bit is
cleared by hardware. A logical zero in this bit indicates that TCNT2 is ready to be
updated with a new value.

• Bit 1 – OCR2UB: Output Compare Register2 Update Busy

When Timer/Counter2 operates asynchronously and OCR2 is written, this bit becomes
set. When OCR2 has been updated from the temporary storage register, this bit is
cleared by hardware. A logical zero in this bit indicates that OCR2 is ready to be
updated with a new value.

• Bit 0 – TCR2UB: Timer/Counter Control Register2 Update Busy

When Timer/Counter2 operates asynchronously and TCCR2 is written, this bit becomes
set. When TCCR2 has been updated from the temporary storage register, this bit is
cleared by hardware. A logical zero in this bit indicates that TCCR2 is ready to be
updated with a new value.

If a write is performed to any of the three Timer/Counter2 Registers while its update
busy flag is set, the updated value might get corrupted and cause an unintentional inter-
rupt to occur.

The mechanisms for reading TCNT2, OCR2, and TCCR2 are different. When reading
TCNT2, the actual timer value is read. When reading OCR2 or TCCR2, the value in the
temporary storage register is read.

Asynchronous Operation of
Timer/Counter2

When Timer/Counter2 operates asynchronously, some considerations must be taken.

• Warning: When switching between asynchronous and synchronous clocking of
Timer/Counter2, the Timer Registers TCNT2, OCR2, and TCCR2 might be
corrupted. A safe procedure for switching clock source is:

1. Disable the Timer/Counter2 interrupts by clearing OCIE2 and TOIE2.

2. Select clock source by setting AS2 as appropriate.

3. Write new values to TCNT2, OCR2, and TCCR2.

4. To switch to asynchronous operation: Wait for TCN2UB, OCR2UB, and
TCR2UB.

5. Clear the Timer/Counter2 Interrupt Flags.

6. Enable interrupts, if needed.

• The Oscillator is optimized for use with a 32.768 kHz watch crystal. Applying an
external clock to the TOSC1 pin may result in incorrect Timer/Counter2 operation.
The CPU main clock frequency must be more than four times the Oscillator
frequency.

• When writing to one of the registers TCNT2, OCR2, or TCCR2, the value is
transferred to a temporary register, and latched after two positive edges on TOSC1.
The user should not write a new value before the contents of the temporary register
have been transferred to its destination. Each of the three mentioned registers have
their individual temporary register, which means that e.g. writing to TCNT2 does not
disturb an OCR2 write in progress. To detect that a transfer to the destination
register has taken place, the Asynchronous Status Register – ASSR has been
implemented.

• When entering Power-save mode after having written to TCNT2, OCR2, or TCCR2,
the user must wait until the written register has been updated if Timer/Counter2 is
used to wake up the device. Otherwise, the MCU will enter sleep mode before the
118 ATmega8(L)
2486M–AVR–12/03

ATmega8(L)
Accessing
UBRRH/UCSRC
Registers

The UBRRH Register shares the same I/O location as the UCSRC Register. Therefore
some special consideration must be taken when accessing this I/O location.

Write Access When doing a write access of this I/O location, the high bit of the value written, the
USART Register Select (URSEL) bit, controls which one of the two registers that will be
written. If URSEL is zero during a write operation, the UBRRH value will be updated. If
URSEL is one, the UCSRC setting will be updated.

The following code examples show how to access the two registers.

Note: 1. The example code assumes that the part specific header file is included.

As the code examples illustrate, write accesses of the two registers are relatively unaf-
fected of the sharing of I/O location.

Assembly Code Examples(1)

...

; Set UBRRH to 2

ldi r16,0x02

out UBRRH,r16

...

; Set the USBS and the UCSZ1 bit to one, and

; the remaining bits to zero.

ldi r16,(1<<URSEL)|(1<<USBS)|(1<<UCSZ1)

out UCSRC,r16

...

C Code Examples(1)

...

/* Set UBRRH to 2 */

UBRRH = 0x02;

...

/* Set the USBS and the UCSZ1 bit to one, and */

/* the remaining bits to zero. */

UCSRC = (1<<URSEL)|(1<<USBS)|(1<<UCSZ1);

...
149
2486M–AVR–12/03

This bit only has effect for the asynchronous operation. Write this bit to zero when using
synchronous operation.

Writing this bit to one will reduce the divisor of the baud rate divider from 16 to 8 effec-
tively doubling the transfer rate for asynchronous communication.

• Bit 0 – MPCM: Multi-processor Communication Mode

This bit enables the Multi-processor Communication mode. When the MPCM bit is writ-
ten to one, all the incoming frames received by the USART Receiver that do not contain
address information will be ignored. The Transmitter is unaffected by the MPCM setting.
For more detailed information see “Multi-processor Communication Mode” on page 148.

USART Control and Status
Register B – UCSRB

• Bit 7 – RXCIE: RX Complete Interrupt Enable

Writing this bit to one enables interrupt on the RXC Flag. A USART Receive Complete
interrupt will be generated only if the RXCIE bit is written to one, the Global Interrupt
Flag in SREG is written to one and the RXC bit in UCSRA is set.

• Bit 6 – TXCIE: TX Complete Interrupt Enable

Writing this bit to one enables interrupt on the TXC Flag. A USART Transmit Complete
interrupt will be generated only if the TXCIE bit is written to one, the Global Interrupt
Flag in SREG is written to one and the TXC bit in UCSRA is set.

• Bit 5 – UDRIE: USART Data Register Empty Interrupt Enable

Writing this bit to one enables interrupt on the UDRE Flag. A Data Register Empty inter-
rupt will be generated only if the UDRIE bit is written to one, the Global Interrupt Flag in
SREG is written to one and the UDRE bit in UCSRA is set.

• Bit 4 – RXEN: Receiver Enable

Writing this bit to one enables the USART Receiver. The Receiver will override normal
port operation for the RxD pin when enabled. Disabling the Receiver will flush the
receive buffer invalidating the FE, DOR and PE Flags.

• Bit 3 – TXEN: Transmitter Enable

Writing this bit to one enables the USART Transmitter. The Transmitter will override nor-
mal port operation for the TxD pin when enabled. The disabling of the Transmitter
(writing TXEN to zero) will not become effective until ongoing and pending transmis-
sions are completed (i.e., when the Transmit Shift Register and Transmit Buffer Register
do not contain data to be transmitted). When disabled, the Transmitter will no longer
override the TxD port.

• Bit 2 – UCSZ2: Character Size

The UCSZ2 bits combined with the UCSZ1:0 bit in UCSRC sets the number of data bits
(Character Size) in a frame the Receiver and Transmitter use.

• Bit 1 – RXB8: Receive Data Bit 8

RXB8 is the ninth data bit of the received character when operating with serial frames
with nine data bits. Must be read before reading the low bits from UDR.

• Bit 0 – TXB8: Transmit Data Bit 8

Bit 7 6 5 4 3 2 1 0

RXCIE TXCIE UDRIE RXEN TXEN UCSZ2 RXB8 TXB8 UCSRB

Read/Write R/W R/W R/W R/W R/W R/W R R/W

Initial Value 0 0 0 0 0 0 0 0
152 ATmega8(L)
2486M–AVR–12/03

ATmega8(L)
This bit is used for Synchronous mode only. Write this bit to zero when Asynchronous
mode is used. The UCPOL bit sets the relationship between data output change and
data input sample, and the synchronous clock (XCK).

USART Baud Rate Registers –
UBRRL and UBRRHs

The UBRRH Register shares the same I/O location as the UCSRC Register. See the
“Accessing UBRRH/UCSRC Registers” on page 149 section which describes how to
access this register.

• Bit 15 – URSEL: Register Select

This bit selects between accessing the UBRRH or the UCSRC Register. It is read as
zero when reading UBRRH. The URSEL must be zero when writing the UBRRH.

• Bit 14:12 – Reserved Bits

These bits are reserved for future use. For compatibility with future devices, these bit
must be written to zero when UBRRH is written.

• Bit 11:0 – UBRR11:0: USART Baud Rate Register

This is a 12-bit register which contains the USART baud rate. The UBRRH contains the
four most significant bits, and the UBRRL contains the eight least significant bits of the
USART baud rate. Ongoing transmissions by the Transmitter and Receiver will be cor-
rupted if the baud rate is changed. Writing UBRRL will trigger an immediate update of
the baud rate prescaler.

Table 59. UCPOL Bit Settings

UCPOL
Transmitted Data Changed (Output of
TxD Pin)

Received Data Sampled (Input on
RxD Pin)

0 Rising XCK Edge Falling XCK Edge

1 Falling XCK Edge Rising XCK Edge

Bit 15 14 13 12 11 10 9 8

URSEL – – – UBRR[11:8] UBRRH

UBRR[7:0] UBRRL

7 6 5 4 3 2 1 0

Read/Write R/W R R R R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
155
2486M–AVR–12/03

ATmega8(L)
The TWAR should be loaded with the 7-bit Slave address (in the seven most significant
bits of TWAR) to which the TWI will respond when programmed as a Slave Transmitter
or Receiver, and not needed in the Master modes. In multimaster systems, TWAR must
be set in masters which can be addressed as Slaves by other Masters.

The LSB of TWAR is used to enable recognition of the general call address (0x00).
There is an associated address comparator that looks for the slave address (or general
call address if enabled) in the received serial address. If a match is found, an interrupt
request is generated.

• Bits 7..1 – TWA: TWI (Slave) Address Register

These seven bits constitute the slave address of the TWI unit.

• Bit 0 – TWGCE: TWI General Call Recognition Enable Bit

If set, this bit enables the recognition of a General Call given over the Two-wire Serial
Bus.

Using the TWI The AVR TWI is byte-oriented and interrupt based. Interrupts are issued after all bus
events, like reception of a byte or transmission of a START condition. Because the TWI
is interrupt-based, the application software is free to carry on other operations during a
TWI byte transfer. Note that the TWI Interrupt Enable (TWIE) bit in TWCR together with
the Global Interrupt Enable bit in SREG allow the application to decide whether or not
assertion of the TWINT Flag should generate an interrupt request. If the TWIE bit is
cleared, the application must poll the TWINT Flag in order to detect actions on the TWI
bus.

When the TWINT Flag is asserted, the TWI has finished an operation and awaits appli-
cation response. In this case, the TWI Status Register (TWSR) contains a value
indicating the current state of the TWI bus. The application software can then decide
how the TWI should behave in the next TWI bus cycle by manipulating the TWCR and
TWDR Registers.

Figure 77 is a simple example of how the application can interface to the TWI hardware.
In this example, a Master wishes to transmit a single data byte to a Slave. This descrip-
tion is quite abstract, a more detailed explanation follows later in this section. A simple
code example implementing the desired behavior is also presented.

TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE TWAR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 0
171
2486M–AVR–12/03

Notes: 1. Program the Fuse Bits before programming the Lock Bits.
2. “1” means unprogrammed, “0” means programmed

Fuse Bits The ATmega8 has two fuse bytes. Table 87 and Table 88 describe briefly the functional-
ity of all the fuses and how they are mapped into the fuse bytes. Note that the fuses are
read as logical zero, “0”, if they are programmed.

Notes: 1. The SPIEN Fuse is not accessible in Serial Programming mode.
2. The CKOPT Fuse functionality depends on the setting of the CKSEL bits, see “Clock

Sources” on page 24 for details.
3. The default value of BOOTSZ1..0 results in maximum Boot Size. See Table 82 on

page 217.
4. When programming the RSTDISBL Fuse Parallel Programming has to be used to

change fuses or perform further programming.

1 1 1
No restrictions for SPM or LPM accessing the Boot Loader
section.

2 1 0 SPM is not allowed to write to the Boot Loader section.

3 0 0

SPM is not allowed to write to the Boot Loader section,
and LPM executing from the Application section is not
allowed to read from the Boot Loader section. If Interrupt
Vectors are placed in the Application section, interrupts
are disabled while executing from the Boot Loader
section.

4 0 1

LPM executing from the Application section is not allowed
to read from the Boot Loader section. If Interrupt Vectors
are placed in the Application section, interrupts are
disabled while executing from the Boot Loader section.

Table 86. Lock Bit Protection Modes(2) (Continued)

Memory Lock Bits Protection Type

Table 87. Fuse High Byte

Fuse High
Byte

Bit
No. Description Default Value

RSTDISBL(4) 7
Select if PC6 is I/O pin or RESET pin

1 (unprogrammed, PC6 is
RESET-pin)

WDTON 6
WDT always on

1 (unprogrammed, WDT
enabled by WDTCR)

SPIEN(1) 5
Enable Serial Program and Data
Downloading

0 (programmed, SPI prog.
enabled)

CKOPT(2) 4 Oscillator options 1 (unprogrammed)

EESAVE 3
EEPROM memory is preserved
through the Chip Erase

1 (unprogrammed,
EEPROM not preserved)

BOOTSZ1 2
Select Boot Size (see Table 82 for
details) 0 (programmed)(3)

BOOTSZ0 1
Select Boot Size (see Table 82 for
details) 0 (programmed)(3)

BOOTRST 0 Select Reset Vector 1 (unprogrammed)
220 ATmega8(L)
2486M–AVR–12/03

ATmega8(L)
Note: a = address high bits
b = address low bits
H = 0 – Low byte, 1 – High byte
o = data out
i = data in
x = don’t care

Table 98. Serial Programming Instruction Set

Instruction

Instruction Format

OperationByte 1 Byte 2 Byte 3 Byte4

Programming Enable 1010 1100 0101 0011 xxxx xxxx xxxx xxxx Enable Serial Programming after
RESET goes low.

Chip Erase 1010 1100 100x xxxx xxxx xxxx xxxx xxxx Chip Erase EEPROM and Flash.

Read Program Memory 0010 H000 0000 aaaa bbbb bbbb oooo oooo Read H (high or low) data o from
Program memory at word address
a:b.

Load Program Memory
Page

0100 H000 0000 xxxx xxxb bbbb iiii iiii Write H (high or low) data i to
Program memory page at word
address b. Data Low byte must be
loaded before Data High byte is
applied within the same address.

Write Program Memory
Page

0100 1100 0000 aaaa bbbx xxxx xxxx xxxx Write Program memory Page at
address a:b.

Read EEPROM Memory 1010 0000 00xx xxxa bbbb bbbb oooo oooo Read data o from EEPROM
memory at address a:b.

Write EEPROM Memory 1100 0000 00xx xxxa bbbb bbbb iiii iiii Write data i to EEPROM memory at
address a:b.

Read Lock Bits 0101 1000 0000 0000 xxxx xxxx xxoo oooo Read Lock Bits. “0” = programmed,
“1” = unprogrammed. See Table
85 on page 219 for details.

Write Lock Bits 1010 1100 111x xxxx xxxx xxxx 11ii iiii Write Lock Bits. Set bits = “0” to
program Lock Bits. See Table 85
on page 219 for details.

Read Signature Byte 0011 0000 00xx xxxx xxxx xxbb oooo oooo Read Signature Byte o at address
b.

Write Fuse Bits 1010 1100 1010 0000 xxxx xxxx iiii iiii Set bits = “0” to program, “1” to
unprogram. See Table 88 on
page 221 for details.

Write Fuse High Bits 1010 1100 1010 1000 xxxx xxxx iiii iiii Set bits = “0” to program, “1” to
unprogram. See Table 87 on
page 220 for details.

Read Fuse Bits 0101 0000 0000 0000 xxxx xxxx oooo oooo Read Fuse Bits. “0” = programmed,
“1” = unprogrammed. See Table
88 on page 221 for details.

Read Fuse High Bits 0101 1000 0000 1000 xxxx xxxx oooo oooo Read Fuse high bits. “0” = pro-
grammed, “1” = unprogrammed.
See Table 87 on page 220 for
details.

Read Calibration Byte 0011 1000 00xx xxxx 0000 00bb oooo oooo Read Calibration Byte
235
2486M–AVR–12/03

Notes: 1. “Max” means the highest value where the pin is guaranteed to be read as low
2. “Min” means the lowest value where the pin is guaranteed to be read as high
3. Although each I/O port can sink more than the test conditions (20mA at Vcc = 5V, 10mA at Vcc = 3V) under steady state

conditions (non-transient), the following must be observed:
PDIP Package:
1] The sum of all IOL, for all ports, should not exceed 400 mA.
2] The sum of all IOL, for ports C0 - C5 should not exceed 200 mA.
3] The sum of all IOL, for ports B0 - B7, C6, D0 - D7 and XTAL2, should not exceed 100 mA.
TQFP and MLF Package:
1] The sum of all IOL, for all ports, should not exceed 400 mA.
2] The sum of all IOL, for ports C0 - C5, should not exceed 200 mA.
3] The sum of all IOL, for ports C6, D0 - D4, should not exceed 300 mA.
4] The sum of all IOL, for ports B0 - B7, D5 - D7, should not exceed 300 mA.
If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater
than the listed test condition.

4. Although each I/O port can source more than the test conditions (20mA at Vcc = 5V, 10mA at Vcc = 3V) under steady state
conditions (non-transient), the following must be observed:
PDIP Package:
1] The sum of all IOH, for all ports, should not exceed 400 mA.
2] The sum of all IOH, for port C0 - C5, should not exceed 100 mA.
3] The sum of all IOH, for ports B0 - B7, C6, D0 - D7 and XTAL2, should not exceed 100 mA.
TQFP and MLF Package:
1] The sum of all IOH, for all ports, should not exceed 400 mA.
2] The sum of all IOH, for ports C0 - C5, should not exceed 200 mA.
3] The sum of all IOH, for ports C6, D0 - D4, should not exceed 300 mA.
4] The sum of all IOH, for ports B0 - B7, D5 - D7, should not exceed 300 mA.
If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current
greater than the listed test condition.

5. Minimum VCC for Power-down is 2.5V.

ICC

Power Supply Current

Active 4 MHz, VCC = 3V
(ATmega8L)

5 mA

Active 8 MHz, VCC = 5V
(ATmega8)

15 mA

Idle 4 MHz, VCC = 3V
(ATmega8L)

2 mA

Idle 8 MHz, VCC = 5V
(ATmega8)

7 mA

Power-down mode(5)
WDT enabled, VCC = 3V 25 µA

WDT disabled, VCC = 3V 2 µA

VACIO
Analog Comparator
Input Offset Voltage

VCC = 5V
Vin = VCC/2

20 mV

IACLK
Analog Comparator
Input Leakage Current

VCC = 5V
Vin = VCC/2

-50 50 nA

tACID
Analog Comparator
Propagation Delay

VCC = 2.7V
VCC = 4.0V

750
500

ns

TA = -40°C to 85°C, VCC = 2.7V to 5.5V (unless otherwise noted) (Continued)

Symbol Parameter Condition Min Typ Max Units
238 ATmega8(L)
2486M–AVR–12/03

ATmega8(L)
Figure 179. Calibrated 1 MHz RC Oscillator Frequency vs. Temperature

Figure 180. Calibrated 1 MHz RC Oscillator Frequency vs. VCC

CALIBRATED 1MHz RC OSCILLATOR FREQUENCY vs. TEMPERATURE

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

-60 -40 -20 0 20 40 60 80 100

Temperature (˚C)

F
R

C
 (

M
H

z)

5.5V

2.7V

4.0V

CALIBRATED 1MHz RC OSCILLATOR FREQUENCY vs. VCC

0.9

0.95

1

1.05

1.1

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

F
R

C
 (

M
H

z)

85°C

25°C

-40°C
275
2486M–AVR–12/03

