

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	13
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 6x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f1076cgsp-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RL78/I1A

Operating Ambient Temperature

• Standard: -40 °C to +105 °C

• Extend: -40 °C to +125 °C

Package Type and Pin Count SSOP: 20, 30, 38

ROM, RAM capacities

Flash ROM	Data flash	RAM	RL78/I1A				
			20 pins	30 pins	38 pins		
64 KB	4 KB	4 KB ^{Note}	_	R5F107AE	R5F107DE		
32 KB	4 KB	2 KB	R5F1076C	R5F107AC	-		

Note This is about 3 KB when the self-programming function and data flash function are used.

1.2 List of Part Numbers

Figure 1-1. Part Number, Memory Size, and Package of RL78/I1A

Pin count	Package	Operating Ambient Temperature	Part Number
20 pin	20-pin plastic LSSOP	TA = -40 to +105°C	R5F1076CGSP#V0, R5F1076CGSP#X0
	(4.4 × 6.5)	TA = -40 to +125°C	R5F1076CMSP#V0, R5F1076CMSP#X0
30 pin	30-pin plastic LSSOP (7.62 mm (300))	TA = -40 to +105°C	R5F107ACGSP#V0, R5F107AEGSP#V0, R5F107ACGSP#X0, R5F107AEGSP#X0
		TA = -40 to +125°C	R5F107ACMSP#V0, R5F107AEMSP#V0, R5F107ACMSP#X0, R5F107AEMSP#X0
38 pin	38-pin plastic SSOP	TA = -40 to +105°C	R5F107DEGSP#V0, R5F107DEGSP#X0
	(7.62 mm (300))	TA = -40 to +125°C	R5F107DEMSP#V0, R5F107DEMSP#X0

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.3.3 38-pin products

• 38-pin plastic SSOP (7.62 mm (300))

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR1) or the input switch control register (ISC). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR1) and Figure 15-20 Format of Input Switch Control Register (ISC) in the RL78/I1A User's Manual.

RL78/I1A

1.5 Block Diagram

1.5.1 20-pin products

- Remarks 1. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR1) or the input switch control register (ISC). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR1) and Figure 15-20 Format of Input Switch Control Register (ISC) in the RL78/I1A User's Manual.
 - **2.** The shared function CMP3P can be assigned to P147 by setting the CMPSEL0 bit in the comparator input switch control register (CMPSEL).

1.6 Outline of Functions

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR1) is set to 00H.

					(1/3)				
	Item	20-pin	30	-pin	38-pin				
		R5F1076C	R5F107AC	R5F107AE	R5F107DE				
Code flash me	emory (KB)	32	32	64	64				
Data flash me	mory (KB)	4	4	4	4				
RAM (KB)		2	2 2 4 ^{Note 1} 4 ^{Note}						
Address space	е	1 MB							
Main system clock	High-speed system clock	X1 (crystal/ceramic) oso HS (High-speed main) r LS (Low-speed main) m	cillation, external main sy node: 1 to 20 MHz (V_{DD} node: 1 to 8 MHz (V_{DD} =	stem clock input (EXCLK) = 2.7 to 5.5 V), = 2.7 to 5.5 V)					
	High-speed on-chip oscillator	HS (High-speed main) r LS (Low-speed main) m	mode: 1 to 32 MHz (V_{DD} node: 1 to 8 MHz (V_{DD} =	= 2.7 to 5.5 V), 2.7 to 5.5 V)					
Clock for 16-b and KC0	it timers KB0 to KB2,	64 MHz (TYP.)	64 MHz (TYP.)						
Subsystem clo only)	ock (38-pin products	XT1 (crystal) oscillation, external subsystem clock input (EXCLKS) 32.768 kHz							
Low-speed on	-chip oscillator	15 kHz (TYP.)							
General-purpo	ose register	(8-bit register \times 8) \times 4 b	anks						
Minimum instr	ruction execution time	0.03125 μ s (High-speed on-chip oscillator: fi $_{\rm H}$ = 32 MHz operation)							
		0.05 μ s (High-speed system clock: f _{MX} = 20 MHz operation)							
		30.5 µs (Subsystem clock: fsuB = 32.768 kHz operation) (38-pin products only)							
Instruction set		 8-bit operation, 16-bit operation Multiplication (8 bits × 8 bits) Bit manipulation (Set, reset, test, and Boolean operation), etc. 							
I/O port	Total	16	:	26	34				
	CMOS I/O	13	:	23	29				
	CMOS input	3		3	5				
	CMOS output	-		-	_				
Timer	16-bit timer TAU	8 channels (no timer output)	8 channels (timer outpu	t: 1, PWM output: 1 ^{Note 2})	8 channels (timer outputs: 3, PWM outputs: 3 ^{Note 2})				
	16-bit timer KB	2 channels (PWM outputs: 4)	3	channels (PWM outputs: 6	3)				
	16-bit timer KC	1 channel (PWM outputs: 3)	1 channel (PWM outputs: 6)						

Notes 1. This is about 3 KB when the self-programming function and data flash function are used. (For details, see CHAPTER 3 in the RL78/I1A User's Manual.)

The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see 6.9.3 Operation as multiple PWM output function in the RL78/I1A User's Manual).

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P02, P03, P05, P06, P10 to P12, P30, P31, P40, P75 to P77, P120, P147, P200 to P206	-40	mA
		Total of all pins	P02, P03, P40, P120	-70	mA
		–170 mA	P05, P06, P10 to P12, P30, P31, P75 to P77, P147, P200 to P206	-100	mA
	Іон2	Per pin	P20 to P22, P24 to P27	-0.5	mA
		Total of all pins		-2	mA
Output current, low	Iol1	Per pin	P02, P03, P05, P06, P10 to P12, P30, P31, P40, P75 to P77, P120, P147, P200 to P206	40	mA
		Total of all pins 170 mA	P02, P03, P40, P120	70	mA
			P05, P06, P10 to P12, P30, P31, P75 to P77, P147, P200 to P206	100	mA
	IOL2	Per pin	P20 to P22, P24 to P27	1	mA
		Total of all pins		5	mA
Operating ambient	TA	In normal operation	on mode	-40 to +105	°C
temperature		In flash memory p	programming mode		
Storage temperature	Tstg			-65 to +150	°C

Absolute Maximum Ratings (T_A = 25°C) (2/2)

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	Voh1	P02, P03, P05, P06, P10 to P12, P30, P31, P40, P75 to P77, P120, P147,	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -3.0 \ \text{mA} \end{array}$	$V_{\text{DD}} - 0.7$			V
		P200 to P206	2.7 V \leq V _{DD} \leq 5.5 V, Іон1 = -1.0 mA	$V_{\text{DD}} - 0.5$			V
	V он2	P20 to P22, P24 to P27	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Ioh2 = -100 μ A	Vdd - 0.5			V
Output voltage, low	Vol1	P02, P03, P05, P06, P10 to P12, P30, P31, P40, P75 to P77, P120, P147,	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 8.5 \ mA \end{array} \end{array} \label{eq:DD}$			0.7	V
		P200 to P206	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 4.0 \ mA \end{array} \end{array} \label{eq:DD}$			0.4	V
			$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 1.5 \ \text{mA} \end{array} \end{array}$			0.4	V
	Vol2	P20 to P22, P24 to P27	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ lol2 = 400 μ A			0.4	V

(T_A = -40 to +105°C, 2.7 V \leq V_DD \leq 5.5 V, V_SS = 0 V)

Caution P02, P10 to P12 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Condition	าร		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ilihi	P02, P03, P05, P06, P10 to P12, P20 to P22, P24 to P27, P30, P31, P40, P75 to P77, P120, P137, P147, P200 to P206, RESET	VI = VDD				1	μA
	Ілн2	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VDD In input port or external clock input				1	μA
				In resonator connection			10	μA
Input leakage current, low	ILIL1	P02, P03, P05, P06, P10 to P12, P20 to P22, P24 to P27, P30, P31, P40, P75 to P77, P120, P137, P147, P200 to P206, RESET	VI = Vss				-1	μA
	Ilil2	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VSS	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
On-chip pull-up resistance	Ru	P02, P03, P05, P06, P10 to P12, P30, P31, P40, P75 to P77, P120, P147, P200 to P206	Vı = Vss, In	input port	10	20	100	kΩ

(T_A = -40 to +105°C, 2.7 V \leq V_DD \leq 5.5 V, V_SS = 0 V)

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Minimum Instruction Execution Time during Main System Clock Operation

Supply voltage VDD [V]

TCY VS VDD (LS (low-speed main) mode)

When the high-speed on-chip oscillator clock is selected

During self programming
 When high-speed system clock is selected

(4) Communication at different potential (2.5 V, 3 V) (UART mode) (1/2) (T_A = -40 to +105°C, 2.7 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Parameter	Symbol	Conditions			HS (high-speed main) Mode		LS (low-sp Mo	Unit							
						MAX.	MIN.	MAX.							
Transfer	ansfer Reception 4.0 V		$^{\prime} \leq V_{\text{DD}} \leq 5.5 \text{ V}, 2.7 \text{ V} \leq V_{\text{b}} \leq 4.0 \text{ V}$		fмск/6 ^{Note 1}		fмск/6 ^{Note 1}	bps							
rate				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		5.3		1.3	Mbps						
			2.7 V	$V \le V_{DD}$ < 4.0 V, 2.3 V $\le V_b \le$ 2.7 V		fмск/6 ^{Note 1}		fмск/6 ^{Note 1}	bps						
										Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		5.3		1.3	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are:HS (high-speed main) mode: $32 \text{ MHz} (2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V})$ LS (low-speed main) mode: $8 \text{ MHz} (2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V})$, TA = -40 to +85 °C.

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

- **Remarks 1.** V_b[V]: Communication line voltage
 - **2.** q: UART number (q = 0, 1), g: PIM and POM number (g = 0, 1)
 - 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03)

2.5.2 Serial interface IICA

(1) I^2C standard mode

$(T_A = -40 \text{ to } +105^{\circ}C^{\text{Note 3}}, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (hig main)	h-speed Mode	LS (low main)	/-speed Mode	Unit
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Standard mode: $f_{CLK} \ge 1 \text{ MHz}$	0	100	0	100	kHz
Setup time of restart condition	tsu:sta		4.7		4.7		μS
Hold time ^{Note 1}	thd:sta		4.0		4.0		μS
Hold time when SCLA0 = "L"	t LOW		4.7		4.7		μS
Hold time when SCLA0 = "H"	t high		4.0		4.0		μS
Data setup time (reception)	tsu:dat		250		250		ns
Data hold time (transmission) ^{Note 2}	thd:dat		0	3.45	0	3.45	μS
Setup time of stop condition	tsu:sto		4.0		4.0		μS
Bus-free time	t BUF		4.7		4.7		μS

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

- 2. The maximum value (MAX.) of the:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
- 3. Operating conditions of LS (low-speed main) mode is $T_A = -40$ to +85 °C.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: C_b = 400 pF, R_b = 2.7 k Ω

(2) When reference voltage (+) = AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin: ANI16 to ANI19

 $⁽T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.7 \text{ V} \le \text{AV}_{REFP} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{REFP}, \text{Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = V _{DD} ^{Notes 3}			1.2	±5.0	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V_{\text{DD}} \leq 5.5~V$	2.125		39	μs
		Target ANI pin : ANI16 to ANI19	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	3.1875		39	μS
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution AV _{REFP} = V _{DD} ^{Notes 3}				±0.35	%FSR
Full-scale error ^{Notes 1, 2}	Efs	10-bit resolution AV _{REFP} = V _{DD} ^{Notes 3}				±0.35	%FSR
Integral linearity error ^{Note} 1	ILE	10-bit resolution AV _{REFP} = V _{DD} ^{Notes 3}				±3.5	LSB
Differential linearity error ^{Note 1}	DLE	10-bit resolution AV _{REFP} = V _{DD} ^{Notes 3}				±2.0	LSB
Analog input voltage	Vain	ANI16 to ANI19		0		AVREFP and VDD	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- **3.** When AVREFP < VDD, the MAX. values are as follows.

Overall error: Add ± 1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

Zero-scale error/Full-scale error: Add $\pm 0.05\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/Differential linearity error: Add ±0.5 LSB to the MAX. value when AVREFP = VDD.

- **Notes 1.** Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, comparator, programmable gain amplifier, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: $2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}$ @1 MHz to 20 MHz
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is T_A = 25°C

(T_A = -40 to +125°C, 2.7 V \leq V_DD \leq 5.5 V, Vss = 0 V) (2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	DD2 ^{Note 2}	HALT	HS (high-	f _{IH} = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		0.50	2.0	mA
Current Note 1		mode	speed main) mode ^{Note 7}		V _{DD} = 3.0 V		0.50	2.0	mA
			HS (high-	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.40	2.2	mA
			speed main)	V _{DD} = 5.0 V	Resonator connection		0.50	2.3	mA
			mode	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.40	2.2	mA
				V _{DD} = 3.0 V	Resonator connection		0.50	2.3	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.24	1.22	mA
				V _{DD} = 5.0 V	Resonator connection		0.30	1.28	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.24	1.22	mA
				V _{DD} = 3.0 V	Resonator connection		0.30	1.28	mA
			HS (high- speed main) mode ^{Note 7}	$f_{H} = 4 \text{ MHz}^{Note 4}$	V _{DD} = 5.0 V		0.95	3.7	mA
				fpll = 64 MHz, fclk = 16 MHz	V _{DD} = 3.0 V		0.95	3.7	mA
			Subsystem clock operation	fs∪в = 32.768 kHz ^{Note 5}	Square wave input		0.28	0.70	μA
				T _A = -40°C	Resonator connection		0.47	0.89	μA
				$f_{SUB} = 32.768 \text{ kHz}^{Note 5}$ $T_A = +25^{\circ}\text{C}$ $f_{SUB} = 32.768 \text{ kHz}^{Note 5}$ $T_A = +50^{\circ}\text{C}$ $f_{SUB} = 32.768 \text{ kHz}^{Note 5}$ $T_A = +70^{\circ}\text{C}$	Square wave input		0.33	0.70	μA
					Resonator connection		0.52	0.89	μA
					Square wave input		0.41	1.90	μA
					Resonator connection		0.60	2.09	μA
					Square wave input		0.54	2.80	μA
					Resonator connection		0.73	2.99	μA
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		1.27	6.10	μA
				T _A = +85°C	Resonator connection		1.46	6.29	μA
				fs∪в = 32.768 kHz ^{Note 5}	Square wave input		3.04	15.5	μA
				T _A = +105°C	Resonator connection		3.23	15.7	μA
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		7.20	45.2	μA
				T _A = +125°C	Resonator connection		7.53	45.5	μA
		STOP	T _A = -40°C				0.18	0.50	μA
		mode Note 8	T _A = +25°C				0.23	0.50	μA
			T _A = +50°C	T _A = +50°C				1.70	μA
			T _A = +70°C				0.44	2.60	μA
			T _A = +85°C	T _A = +85°C				5.90	μA
		-	T _A = +105°C				2.94	15.3	μA
			T _A = +125°C				7.14	45.1	μA

(Notes and Remarks are listed on the next page.)

3.4 AC Characteristics

 $(T_A = -40 \text{ to } +125^{\circ}C, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Items	Symbol		Cond	itions		MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum instruction execution time)	T _{CY} Main system HS (high-speed main) mode clock (f _{MAIN}) operation		0.05		1	μS			
		Subsystem cl	lock (fsuв)	opera	ation	28.5	30.5	31.3	μS
		In the self programming mode	HS (high-s main) mod	ipeed le	T _A = -40 to +105°C	0.05		1	μs
External system clock frequency	fex	(1.0		20.0	MHz		
	fexs					32		35	kHz
External system clock input high-	texн, texL				24			ns	
level width, low-level width	texns, texus			13.7			μS		
TI03, TI05, TI06, TI07 input high- level width, low-level width	tтıн, tтı∟					2/f _{мск} +10			ns
T003, T005, T006, TKB000,	fто	HS (high-speed main)		4.0 \	$V \le V_{\text{DD}} \le 5.5 \text{ V}$			5	MHz
TKBO01, TKBO10, TKBO11, TKBO20, TKBO21, TKCO00 to TKCO05 output frequency (When duty = 50%)	mode			2.7 \	$V \leq V_{DD} < 4.0 V$			4	MHz
Interrupt input high-level width, low-level width	tinth, tintl	$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$		$V \le V_{DD} \le 5.5 V$	1			μS	
RESET low-level width	trsl					10			μS

Remark fmck: Timer array unit operation clock frequency

(Operation clock to be set by the CKS0n bit of timer mode register 0n (TMR0n). n: Channel number (n = 0 to 7))

(4) Communication at different potential (2.5 V, 3 V) (UART mode) (1/2) (T_A = -40 to +125°C, 2.7 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Parameter	Symbol	Conditions			HS (high-speed main) Mode		Unit
					MIN.	MAX.	
Transfer rate		Reception				fмск/6 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		3.3	Mbps
			$2.7 V \le V_{DD} < 4.0 V,$ 2.3 V $\le V_b \le 2.7 V$			fмск/6 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		3.3	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. The operating frequencies of the CPU/peripheral hardware clock (fcLK) are: HS (high-speed main) mode: 20 MHz ($2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$)

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. Vb[V]: Communication line voltage

- **2.** q: UART number (q = 0, 1), g: PIM and POM number (g = 0, 1)
- 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03)

(4) Communication at different potential (2.5 V, 3 V) (UART mode) (2/2) (T_A = -40 to +125°C, 2.7 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Parameter	Symbol		Conditions			HS (high-speed main) Mode	
					MIN.	MAX.	
Transfer rate		Transmission	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$			Note 1	bps
			$2.7~V \le V_b \le 4.0~V$	Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 1.4 k Ω , V_b = 2.7 V		2.8 ^{Note 2}	Mbps
			$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$	_		Note 3	bps
				Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 2.7 k Ω , V_b = 2.3 V		1.2 ^{Note 4}	Mbps

Notes 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq V_{DD} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]
Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. See **Note 1** above to calculate the maximum transfer rate under conditions of the customer.
- 3. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq V_DD < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) = $\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

4. This value as an example is calculated when the conditions described in the "Conditions" column are met. See **Note 3** above to calculate the maximum transfer rate under conditions of the customer.

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. $R_b[\Omega]$: Communication line (TxDq) pull-up resistance,

Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage

- **2.** q: UART number (q = 0, 1), g: PIM and POM number (g = 0, 1)
- 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00 to 03))

(3) When reference voltage (+) = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = V_{SS} (ADREFM = 0), target pin: ANI0 to ANI2, ANI4 to ANI7, ANI16 to ANI19, internal reference voltage, and temperature sensor output voltage

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution			1.2	±7.0	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V_{\text{DD}} \leq 5.5~V$	2.125		39	μs
		Target pin: ANI0 to ANI2,	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	3.4		39	μS
		ANI4 to ANI7, ANI16 to ANI19					
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V_{\text{DD}} \leq 5.5~V$	2.375		39	μS
		Target pin: Internal reference voltage, and	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	3.8		39	μS
		temperature sensor output					
		voltage (HS (high-speed					
		main) mode)					
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution				±0.60	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution				±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution				±4.0	LSB
Differential linearity error Note	DLE	10-bit resolution				±2.0	LSB
1							
Analog input voltage	VAIN	ANI0 to ANI2, ANI4 to ANI7		0		VDD	V
		ANI16 to ANI19		0		VDD	V
		Internal reference voltage			VBGR Note 3		V
		(HS (high-speed main) mode)					
		Temperature sensor output voltage (HS (high-speed main) mode)		Ň	/TMPS25 Note	3	V

(T _A = -40 to +125°C	$, 2.7 V \le V_{DD} \le 5.5 V,$	Vss = 0 V, Reference vo	oltage (+) = VDD, Referen	ce voltage (-) = Vss)
---------------------------------	---------------------------------	-------------------------	---------------------------	-----------------------

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- **2.** This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. See 3.6.2 Temperature sensor/internal reference voltage characteristics.

3.6.4 Comparator

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input offset voltage	VIOCMP			±5	±40	mV
Input voltage range	VICMP	CMP0P to CMP5P	0		VDD	V
		СМРСОМ	0.045		0.9Vdd	V
Internal reference voltage deviation	ΔV_{IREF}	CmRVM register values: 7FH to 80H (m = 0 to 2)			±2	LSB
		Other than above			±1	LSB
Response time	tcr, tcr	Input amplitude = ±100 mV		70	150	ns
Operation stabilization wait time ^{Note 1}	t CMP	$3.3~V \leq V_{\text{DD}} \leq 5.5~V$	1			μs
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V}$	3			μs
Reference voltage stabilization wait time	tvr	CVRE: 0 to 1 ^{Note 2}	10			μS

$(T_A = -40 \text{ to } +125^{\circ}\text{C})$	$2.7 V \leq AV_{REFP} = V_{DD} \leq 5.5 V. V_{S}$	$s = AV_{REFM} = 0 V$
(,,	• • • • • • • • • • • • • • • • • • • •

- **Notes 1.** Time required until a state is entered where the DC and AC specifications of the comparator are satisfied after the operation of the comparator has been enabled (CMPnEN bit = 1: n = 0 to 5)
 - Enable comparator output (CnOE bit = 1; n = 0 to 5) after enabling operation of the internal reference voltage generator (by setting the CVREm bit to 1; m = 0 to 2) and waiting for the operation stabilization time to elapse.
- **Remark** These characteristics apply when AV_{REFP} is selected as the power supply source of the internal reference voltage by using the CVRVS0 bit, and when AV_{REFM} is selected as GND of the internal reference voltage by using the CVRVS1 bit.

