

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 11x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	30-LSSOP (0.240", 6.10mm Width)
Supplier Device Package	30-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f107acgsp-x0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3 Pin Configuration (Top View)

1.3.1 20-pin products

• 20-pin plastic LSSOP (4.4 x 6.5)

Remarks 1. For pin identification, see 1.4 Pin Identification.

- Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR1) or the input switch control register (ISC). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR1) and Figure 15-20 Format of Input Switch Control Register (ISC) in the RL78/I1A User's Manual.
- **3.** The shared function CMP3P can be assigned to P147 by setting the CMPSEL0 bit in the comparator input switch control register (CMPSEL).

1.3.3 38-pin products

• 38-pin plastic SSOP (7.62 mm (300))

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR1) or the input switch control register (ISC). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR1) and Figure 15-20 Format of Input Switch Control Register (ISC) in the RL78/I1A User's Manual.

RL78/I1A

1.4 Pin Identification

ANI0 to ANI2,		REGC:	Regulator Capacitance
ANI4 to ANI7,		RESET:	Reset
ANI16 to ANI19:	Analog Input	RTC1HZ:	Real-time Clock Correction Clock
AVREFM:	Analog Reference Voltage Minus		(1 Hz) Output
AVREFP:	Analog Reference Voltage Plus	RxD0, RxD1,	
CMP0P to CMP5P:	Comparator Analog Input	DALIRxD4:	Receive Data
CMPCOM:	Comparator External Reference	SCK00:	Serial Clock Input/Output
	Voltage	SCLA0:	Serial Clock Input/Output
EXCLK:	External Clock Input (Main System	SDAA0:	Serial Data Input/Output
	Clock)	SI00:	Serial Data Input
EXCLKS:	External Clock Input (Subsystem	SO00:	Serial Data Output
	Clock)	TI03, TI05, TI06,	
INTP0, INTP3,		TI07:	Timer Input
INTP4, INTP9,		TO03, TO05, TO06,	
INTP10, INTP11,		TKBO00, TKBO01 to	
INTP20 to INTP23:	Interrupt Request from Peripheral	TKBO20, TKBO21,	
P02, P03,		TKCO00 to TKCO05:	Timer Output
P05, P06:	Port 0	TOOL0:	Data Input/Output for Tool
P10 to P12:	Port 1	TxRx4:	Serial Data Input/Output for Single
P20 to P22,			Wired UART
P24 to P27:	Port 2	TxD0, TxD1	
P30, P31:	Port 3	DALITxD4:	Transmit Data
P40:	Port 4	Vdd:	Power Supply
P75 to P77:	Port 7	Vss:	Ground
P120 to P124:	Port 12	X1, X2:	Crystal Oscillator (Main System Clock)
P137:	Port 13	XT1, XT2:	Crystal Oscillator (Subsystem Clock)
P147:	Port 14		
P200 to P206:	Port 20		

RL78/I1A

1.5.2 30-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR1) or the input switch control register (ISC). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR1) and Figure 15-20 Format of Input Switch Control Register (ISC) in the RL78/I1A User's Manual.

RL78/I1A

					(2/3)			
	Item		20-pin	30-pin	38-pin			
			R5F1076C	R5F107AC, R5F107AE	R5F107DE			
Timer	Watchdog	g timer		1 channel				
	Real-time	clock		1 channel ^{Notes 1, 2}				
	(RTC)							
	12-bit inte (IT)	rval timer		1 channel				
	RTC output			-	1 1 Hz (subsystem clock: f _{SUB} = 32.768 kHz)			
8/10-bit resolution A/D converter		onverter	6 channels	11 channels	11 channels			
Comparator	Comparator		4 channels	6 channels	6 channels			
Programmable gain amplifier				1 channel				
-	0	Input ^{Note 3}	4 channels	6 channels	6 channels			
Serial interface		<u> </u>	[20-pin] Note 5		1			
-			UART (Supporting LI	N-bus and DMX512): 1 channel				
			UART (Supporting DALI communication): 1 channel					
			[30-pin products]					
			UART (Supporting LIN-bus and DMX512): 1 channel					
			UART: 1 channel					
			UART (Supporting D.	ALI communication): 1 channel				
			[38-pin products]					
			CSI: 1 channel/UART	Γ (Supporting LIN-bus and DMX512): 1 channel				
			UART: 1 channel					
			UART (Supporting D)	ALI communication): 1 channel	1			
	I ² C bi	us	1 channel	1 channel	1 channel			
Multiplier and d	ivider/mul	tiply-	• 16 bits × 16 bits = 32	bits (Unsigned or signed)				
accumulator			• 32 bits ÷ 32 bits = 32 bits (Unsigned)					
Vectored interr	t Interr		27		20			
sources				30	30			
	Exter	nai		ĨŬ	11			
Reset			Reset by RESET pin Internal reset by wate	andog timer				
			 Internal reset by water Internal reset by pow 	er-on-reset				
			Internal reset by volta	age detector				
			 Internal reset by illegation 	al instruction execution ^{Note 4}				
			Internal reset by RAM	Λ parity error				
			Internal reset by illegal-memory access					

Notes 1. The subsystem clock (fsub) can be selected as the operating clock only for 38-pin products.

2. The 20- and 30-pin products can only be used as the constant-period interrupt function.

- 3. The comparator input is alternatively used with analog input pin (ANI pin).
- The illegal instruction is generated when instruction code FFH is executed. Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or onchip debug emulator.
- 5. The 20 pin products can only be used 1 UART simultaneously due to sharing of the same I/O pins.

2. ELECTRICAL SPECIFICATIONS (G: Industrial applications, T_A = -40 to +105°C)

In this chapter, shows the electrical spesificatons of the target products. Target products (G: Industrial applications): $T_A = -40$ to $+105^{\circ}C$ R5F107xxGxx

- Cautions 1. The RL78/I1A has an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. The pins mounted depend on the product. See 2.1 Port Function to 2.2.1 Functions for each product in the RL78/I1A User's Manual.

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P02, P03, P05, P06, P10 to P12, P30, P31, P40, P75 to P77, P120, P147, P200 to P206	-40	mA
		Total of all pins	P02, P03, P40, P120	-70	mA
		–170 mA	P05, P06, P10 to P12, P30, P31, P75 to P77, P147, P200 to P206	-100	mA
	Іон2	Per pin	P20 to P22, P24 to P27	-0.5	mA
		Total of all pins		-2	mA
Output current, low	Iol1	Per pin	P02, P03, P05, P06, P10 to P12, P30, P31, P40, P75 to P77, P120, P147, P200 to P206	40	mA
		Total of all pins	P02, P03, P40, P120	70	mA
		170 mA	P05, P06, P10 to P12, P30, P31, P75 to P77, P147, P200 to P206	100	mA
	IOL2	Per pin	P20 to P22, P24 to P27	1	mA
		Total of all pins		5	mA
Operating ambient	TA	In normal operation mode		-40 to +105	°C
temperature		In flash memory p	In flash memory programming mode		
Storage temperature	Tstg			-65 to +150	°C

Absolute Maximum Ratings (T_A = 25°C) (2/2)

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +105^{\circ}\text{C}^{\text{Note 6}}, 2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbo I	Conditions		HS (high-speed main) Mode		LS (low-spee	Unit	
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkCY2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	20 MHz < fмск	8/fмск		-		ns
Note 5			fмск \leq 20 MHz	6/fмск		6/fмск		ns
		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	16 MHz < fмск	8/fмск		-		ns
			fмск \leq 16 MHz	6/fмск		6/fмск		ns
SCKp high-/low- level width	tкн2, tкL2			tксү2/2		tксү2/2		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsik2			1/fмск+20		1/fмск+30		ns
SIp hold time (from SCKp↑) ^{Note 2}	t KSI2			1/fмск+31		1/fмск+31		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso2	C = 30 pF ^{Note 4}			2/fмск+ 44		2/f _{мск} + 110	ns

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
 - **6.** Operating conditions of LS (low-speed main) mode is $T_A = -40$ to +85 °C.

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 1)
 - 2. fMCK: Serial array unit operation clock frequency
 - (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
 - n: Channel number (mn = 00))

(3) When reference voltage (+) = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = V_{ss} (ADREFM = 0), target pin: ANI0 to ANI2, ANI4 to ANI7, ANI16 to ANI19, internal reference voltage, and temperature sensor output voltage

Parameter	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
Resolution	RES					10	bit
Overall error ^{Note 1}	AINL	10-bit resolution			1.2	±7.0	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{\text{DD}} \leq 5.5~V$	2.125		39	μs
		Target pin: ANI0 to ANI2, ANI4 to ANI7, ANI16 to ANI19	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	3.1875		39	μS
Conversion time	t CONV	10-bit resolution	-bit resolution $3.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ 2			39	μs
		Target pin: Internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μS
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution				±0.60	%FSR
Full-scale error ^{Notes 1, 2}	Efs	10-bit resolution				±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution				±4.0	LSB
Differential linearity error ^{Note 1}	DLE	10-bit resolution				±2.0	LSB
Analog input voltage	VAIN	ANI0 to ANI2, ANI4 to ANI7	ANI0 to ANI2, ANI4 to ANI7			Vdd	V
		ANI16 to ANI19		0		VDD	V
		Internal reference voltage (HS (high-speed main) mode)			VBGR ^{Note 3}		V
		Temperature sensor output (HS (high-speed main) mod	voltage e)	VTMPS25 ^{Note 3}			V

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{V}_{DD}, \text{ Reference voltage (-)} = \text{V}_{SS})$

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. See 2.6.2 Temperature sensor/internal reference voltage characteristics.

2.6.6 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode (TA = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVD0	Power supply rise time	3.97	4.06	4.14	V
voltage			Power supply fall time	3.89	3.98	4.06	V
		VLVD1	Power supply rise time	3.67	3.75	3.82	V
			Power supply fall time	3.59	3.67	3.74	V
		VLVD2	Power supply rise time	3.06	3.13	3.19	V
			Power supply fall time	2.99	3.06	3.12	V
		VLVD3	Power supply rise time	2.95	3.02	3.08	V
			Power supply fall time	2.89	2.96	3.02	V
		VLVD4	Power supply rise time	2.85	2.92	2.97	V
			Power supply fall time	2.79	2.86	2.91	V
		VLVD5	Power supply rise time	2.75	2.81	2.87	V
			Power supply fall time	2.70	2.75	2.81	V
Minimum puls	se width	tLW		300			μS
Detection del	ay time					300	μS

LVD Detection Voltage of Interrupt & Reset Mode

(TA = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol		Cond	itions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	VLVD0	VPOC2, VP	POC1, VPOC0 = 0, 1, 1, f	falling reset voltage: 2.7 V	2.70	2.75	2.81	V
mode	VLVD1	LV	VIS1, LVIS0 = 1, 0	Rising release reset voltage	2.85	2.92	2.97	V
				Falling interrupt voltage	2.79	2.86	2.91	V
	VLVD2	L۱	VIS1, LVIS0 = 0, 1	Rising release reset voltage	2.95	3.02	3.08	V
	VLVD3 LVIS1, LVIS0 = 0, 0		Falling interrupt voltage	2.89	2.96	3.02	V	
		Rising release reset voltage	3.97	4.06	4.14	V		
				Falling interrupt voltage	3.89	3.98	4.06	V

2.6.7 Supply voltage rise inclination characteristics

(T_A = -40 to +105°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply voltage rise	SVDD				54	V/ms

Caution Keep the internal reset status by using the LVD circuit or an external reset signal until VDD rises to within the operating voltage range shown in 32.4 AC Characteristics.

2.8 Flash Memory Programming Characteristics

1	$T_{A} = -40$	to +105°C	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ Vec = 0 V	٦
	IA = -40	$10 \pm 105 $ C,	, Z.1 V – VDD – 3.3 V, VSS – U V	,

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fclk	$2.7~V \leq V_{DD} \leq 5.5~V$	1		32	MHz
Number of code flash rewrites ^{Notes 1, 2, 3}	Cerwr	Retained for 20 years, $T_A = 85^{\circ}C^{Note 3}$	1,000			Times
Number of data flash	-	Retained for 1 year, $T_A = 25^{\circ}C^{Note 3}$		1,000,000		
rewrites ^{Notes 1, 2, 3}		Retained for 5 years, $T_A = 85^{\circ}C^{Note 3}$	100,000			
		Retained for 20 years, $T_A = 85^{\circ}C^{Note 3}$	10,000			

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library
- **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.
- 2.9 Dedicated Flash Memory Programmer Communication (UART)

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115.2 k		1 M	bps

3.3 DC Characteristics

3.3.1 Pin characteristics

$(T_A = -40 \text{ to } +125^{\circ}C, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, Iон1 high ^{Note 1}	Іон1	Per pin for P02, P03, P05, P06, P10 to P12, P30, P31, P40, P75 to P77, P120, P147, P200 to P206	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-3.0 ^{Note 2}	mA
			$2.7~V \leq V_{\text{DD}} < 4.0~V$			-1.0	mA
		Total of P02, P03, P40, P120	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-9.0	mA
Іон2		(When duty ≤ 70% ^{Note 3})	$2.7~V \leq V_{\text{DD}} < 4.0~V$			-3.0	mA
		Total of P05, P06, P10 to P12, P30, P31, P75 to P77, P147, P200 to P206 (When duty $\leq 70\%^{Note 3}$) Total of all pins	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-21.0	mA
			$2.7~V \leq V_{\text{DD}} < 4.0~V$			-6.0	mA
			$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-21.0	mA
		(When duty $\leq 70\%^{\text{Note 3}}$)	$2.7~V \leq V_{\text{DD}} < 4.0~V$			-9.0	mA
	Іон2	Per pin for P20 to P22, P24 to P27	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$			-0.1 ^{Note 2}	mA
		Total of all pins (When duty $\leq 70\%^{Note 3}$)	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$			-0.4	mA

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from the V_{DD} pin to an output pin.
 - 2. However, do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = $(I_{OH} \times 0.7)/(n \times 0.01)$
- <Example> Where n = 80% and IoH = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P02, P10 to P12 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	Voh1	P02, P03, P05, P06, P10 to P12, P30, P31, P40, P75 to P77, P120, P147, P200 to P206	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -3.0 \ \text{mA} \end{array} \end{array} \label{eq:VDD}$	$V_{\text{DD}} - 0.7$			V
			$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -1.0 \ \text{mA} \end{array}$	Vdd - 0.5			V
Vor	Vон2	P20 to P22, P24 to P27	$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH2}} = -100 \ \mu\text{A} \end{array}$	Vdd - 0.5			V
Output voltage, low	V _{OL1}	P02, P03, P05, P06, P10 to P12, P30, P31, P40, P75 to P77, P120, P147,	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 8.5 \ mA \end{array} \end{array} \label{eq:DD}$			0.7	V
		P200 to P206	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 4.0 \ mA \end{array} \end{array} \label{eq:DD}$			0.4	V
			$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 1.5 \ mA \end{array} \end{array} \label{eq:DD}$			0.4	V
	V _{OL2}	P20 to P22, P24 to P27	$\begin{array}{l} \text{2.7 V} \leq V_{\text{DD}} \leq 5.5 \text{ V}, \\ \text{Iol2} = 400 \ \mu\text{A} \end{array}$			0.4	V

(T_A = -40 to +125°C, 2.7 V \leq V_DD \leq 5.5 V, V_SS = 0 V)

Caution P02, P10 to P12 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- **Notes 1.** Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, comparator, programmable gain amplifier, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: $2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}$ @1 MHz to 20 MHz
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is T_A = 25°C

(T_A = -40 to +125°C, 2.7 V \leq V_DD \leq 5.5 V, Vss = 0 V) (2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	DD2 ^{Note 2}	Note 2 HALT HS (high- f _{IH} = 16 MHz ^{Note 4}			V _{DD} = 5.0 V		0.50	2.0	mA
Current Note 1		mode	speed main) mode ^{Note 7}		V _{DD} = 3.0 V		0.50	2.0	mA
			HS (high-	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.40	2.2	mA
			speed main)	V _{DD} = 5.0 V	Resonator connection		0.50	2.3	mA
			mode	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.40	2.2	mA
				V _{DD} = 3.0 V	Resonator connection		0.50	2.3	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.24	1.22	mA
				V _{DD} = 5.0 V	Resonator connection		0.30	1.28	mA
			$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$ $V_{\text{DD}} = 3.0 \text{ V}$	Square wave input		0.24	1.22	mA	
				Resonator connection		0.30	1.28	mA	
		HS (high-	$f_{H} = 4 \text{ MHz}^{Note 4}$	V _{DD} = 5.0 V		0.95	3.7	mA	
		speed main) mode ^{Note 7}	f _{PLL} = 64 MHz, f _{CLK} = 16 MHz	V _{DD} = 3.0 V		0.95	3.7	mA	
		Subsystem clock operation	f _{SUB} = 32.768 kHz ^{Note 5} T _A = -40°C	Square wave input		0.28	0.70	μA	
				Resonator connection		0.47	0.89	μA	
			fsub = 32.768 kHz ^{Note 5} $T_A = +25^{\circ}C$ fsub = 32.768 kHz ^{Note 5} $T_A = +50^{\circ}C$	Square wave input		0.33	0.70	μA	
				Resonator connection		0.52	0.89	μA	
				Square wave input		0.41	1.90	μA	
				Resonator connection		0.60	2.09	μA	
				fsue = 32.768 kHz ^{Note 5}	Square wave input		0.54	2.80	μA
				T _A = +70°C	Resonator connection		0.73	2.99	μA
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		1.27	6.10	μA
				T _A = +85°C	Resonator connection		1.46	6.29	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		3.04	15.5	μA
				T _A = +105°C	Resonator connection		3.23	15.7	μA
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		7.20	45.2	μA
				T _A = +125°C	Resonator connection		7.53	45.5	μA
		STOP	$T_A = -40^{\circ}C$				0.18	0.50	μA
		mode Note 8	T _A = +25°C				0.23	0.50	μA
			$T_{A} = +50^{\circ}C$				0.27	1.70	μA
			T _A = +70°C	T _A = +70°C			0.44	2.60	μA
			T _A = +85°C				1.17	5.90	μA
			T _A = +105°C				2.94	15.3	μA
			T _A = +125°C				7.14	45.1	μA

(Notes and Remarks are listed on the next page.)

3.5.2 Serial interface IICA

(1) I^2C standard mode

$(T_A = -40 \text{ to } +125^{\circ}\text{C}, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Standard mode: $f_{CLK} \ge 1 \text{ MHz}$	0	100	kHz
Setup time of restart condition	tsu:sta		4.7		μS
Hold time ^{Note 1}	thd:sta		4.0		μS
Hold time when SCLA0 = "L"	t LOW		4.7		μS
Hold time when SCLA0 = "H"	t high		4.0		μS
Data setup time (reception)	tsu:dat		250		ns
Data hold time (transmission) ^{Note 2}	thd:dat		0	3.45	μS
Setup time of stop condition	tsu:sto		4.0		μS
Bus-free time	t BUF		4.7		μS

- **Notes 1.** The first clock pulse is generated after this period when the start/restart condition is detected.
 - 2. The maximum value (MAX.) of the is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: C_b = 400 pF, R_b = 2.7 k Ω

(2) I²C fast mode

$(T_A = -40 \text{ to } +125^{\circ}C, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
SCLA0 clock frequency	fscl	fast mode: $f_{CLK} \ge 3.5 \text{ MHz}$	0	400	kHz
Setup time of restart condition	tsu:sta		0.6		μS
Hold time ^{Note 1}	thd:sta		0.6		μS
Hold time when SCLA0 = "L"	t LOW		1.3		μS
Hold time when SCLA0 = "H"	t high		0.6		μS
Data setup time (reception)	tsu:dat		100		ns
Data hold time (transmission) ^{Note 2}	thd:dat		0	0.9	μS
Setup time of stop condition	tsu:sto		0.6		μS
Bus-free time	t BUF		1.3		μs

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

- 2. The maximum value (MAX.) of the:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

fast mode:

 C_b = 320 pF, R_b = 1.1 k Ω

IICA serial transfer timing

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

	Reference Voltage								
	Reference voltage (+) = AV _{REFP} Reference voltage (-) =	Reference voltage (+) = VDD	Reference voltage (+) = V _{BGR} Reference voltage (-) =						
Input channel	AVREFM	Reference voltage (-) = Vss	AVREFM						
ANI0 to ANI2, ANI4 to ANI7	See 3.6.1 (1) .	See 3.6.1 (3).	See 3.6.1 (4) .						
ANI16 to ANI19	See 3.6.1 (2) .								
Internal reference voltage Temperature sensor output voltage	See 3.6.1 (1).		_						

3.6.3 Programmable gain amplifier

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Input offset voltage	VIOPGA				±5	±10	mV	
Input voltage range	VIPGA				0		0.9Vpd/	V
							gain	
Gain error ^{Note 1}		4, 8 times					±1	%
		16 times					±1.5	%
	32 times						±2	%
Slew rate ^{Note 1}	SRrpga	Rising edge	$4.0~V \le V_{\text{DD}} \le 5.5~V$	4, 8 times	4			V/µs
				16, 32 times	1.4			V/µs
			$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}$	4, 8 times	1.8			V/µs
				16, 32 times	0.5			V/µs
	SRFPGA	Falling	$\begin{array}{c c} \textbf{g} & 4.0 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V} \end{array}$	4, 8 times	3.2			V/µs
		edge		16, 32 times	1.4			V/µs
			$2.7~V \leq V_{\text{DD}} < 4.0~V$	4, 8 times	1.2			V/µs
				16, 32 times	0.5			V/µs
Operation stabilization wait time ^{Note 2}	t PGA	4, 8 times			5			μS
		16, 32 times						μS

(TA = -40 to +125°C, 2.7 V \leq AVREFP = VDD \leq 5.5 V, Vss = AVREFM = 0 V)

Notes 1. When $V_{IPGA} = 0.1V_{DD}/gain$ to $0.9V_{DD}/gain$.

2. Time required until a state is entered where the DC and AC specifications of the PGA are satisfied after the PGA operation has been enabled (PGAEN = 1).

Remark These characteristics apply when AVREFM is selected as GND of the PGA by using the CVRVS1 bit.

3.8 Flash Memory Programming Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fclk	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1		32	MHz
Number of code flash rewrites ^{Notes 1, 2, 3}	Cerwr	Retained for 20 years, $T_A = 85^{\circ}C^{Note 3, 4}$	1,000			Times
Number of data flash		Retained for 1 year, $T_A = 25^{\circ}C^{Note 3, 4}$		1,000,000		
rewrites ^{Notes 1, 2, 3}		Retained for 5 years, $T_A = 85^{\circ}C^{Note 3, 4}$	100,000			
		Retained for 20 years, $T_A = 85^{\circ}C^{Note 3, 4}$	10,000			

(TA = -40 to +105°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V)

- **Notes 1.** 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.
 - 2. When using flash memory programmer and Renesas Electronics self programming library
 - **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.
 - 4. These are the average temperature of during the retainment.

3.9 Dedicated Flash Memory Programmer Communication (UART)

$T_A = -40$ to +105°C, 2.7 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115.2 k		1 M	bps

