

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 11x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	30-LSSOP (0.240", 6.10mm Width)
Supplier Device Package	30-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f107acmsp-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current,	Iol1	Per pin for P02, P03, P05, P06,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			8.5 ^{Note 2}	mA
low ^{Note 1}		P10 to P12, P30, P31, P40, P75 to P77, P120, P147, P200 to P206	$2.7~V \leq V_{\text{DD}} < 4.0~V$			1.5 ^{Note 2}	mA
		Total of P02, P03, P40, P120 (When duty $\leq 70\%^{\text{Note 3}}$)	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			40.0	mA
			$2.7~V \leq V_{\text{DD}} < 4.0~V$			7.5	mA
		Total of P05, P06, P10 to P12, P30,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			40.0	mA
		P31, P75 to P77, P147, P200 to P206 (When duty $\leq 70\%^{\text{Note 3}}$)	$2.7~V \leq V_{\text{DD}} < 4.0~V$			17.5	mA
		Total of all pins (When duty $\leq 70\%^{\text{Note 3}}$)	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			80.0	mA
			$2.7~V \leq V_{\text{DD}} < 4.0~V$			25.0	mA
	lol2	Per pin for P20 to P22, P24 to P27	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$			0.4 ^{Note 2}	mA
		Total of all pins (When duty $\leq 70\%^{Note 3}$)	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$			2.8	mA

(T_A = -40 to +105°C, 2.7 V \leq V_DD \leq 5.5 V, V_SS = 0 V)

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.

- 2. However, do not exceed the total current value.
- **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = $(I_{OL} \times 0.7)/(n \times 0.01)$
- <Example> Where n = 80% and IoL = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P02, P03, P05, P06, P10 to P12, P20 to P22, P24 to P27, P30, P31, P40, P75 to P77, P120 to P124, P137, P147, P200 to P206, EXCLK, EXCLKS, RESET	Normal input buffer	0.8Vdd		Vdd	V
	VIH2	P03, P10, P11	TTL input buffer $4.0 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$	2.1		Vdd	V
			TTL input buffer $3.3~V \leq V_{\text{DD}} < 4.0~V$	2.0		Vdd	V
			TTL input buffer $2.7~V \leq V_{\text{DD}} < 3.3~V$	1.5		Vdd	V
Input voltage, low	VIL1	P02, P03, P05, P06, P10 to P12, P20 to P22, P24 to P27, P30, P31, P40, P75 to P77, P120 to P124, P137, P147, P200 to P206, EXCLK, EXCLKS, RESET	Normal input buffer	0		0.2V _{DD}	V
	VIL2	P03, P10, P11	TTL input buffer $4.0 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$	0		0.8	V
			TTL input buffer $3.3 \text{ V} \leq V_{\text{DD}} < 4.0 \text{ V}$	0		0.5	V
			TTL input buffer $2.7 \text{ V} \leq V_{\text{DD}} < 3.3 \text{ V}$	0		0.32	V

(T_A = -40 to +105°C, 2.7 V \leq V_DD \leq 5.5 V, V_SS = 0 V)

Caution The maximum value of VIH of pins P02, P10 to P12 is VDD, even in the N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol		С	Conditions		MIN.	TYP.	MAX.	Unit
Low-speed on- chip oscillator operating current	IFIL Note 1								μA
RTC operating current	IRTC Notes 1, 2, 3								μA
12-bit interval timer operating current	IT Notes 1, 2, 4								μA
Watchdog timer operating current	WDT Notes 1, 2, 5	fı∟ = 15 kHz					0.22		μA
A/D converter operating current	IADC Notes 1, 6	When conversion maximum speed	n at Norn Low	nal mode, voltage m	$AV_{REFP} = V_{DD} = 5.0 V$ ode, $AV_{REFP} = V_{DD} = 3.0 V$		1.3 0.5	1.7 0.7	mA mA
A/D converter reference voltage current	IADREF ^{Note 1}						75.0		μA
Temperature sensor operating current	ITMPS ^{Note 1}						75.0		μA
LVD operating current	Notes 1, 7								μA
Self- programming operating current	IFSP ^{Notes 1, 8}						2.50	12.2	mA
Programmable gain amplifier operating current	IPGA ^{Note 9}				$AV_{REFP} = V_{DD} = 5.0 V$ $AV_{REFP} = V_{DD} = 3.0 V$		0.21 0.18	0.31 0.29	mA mA
Comparator	ICMP ^{Note 10}	When one comp	arator chani	nel is	AV _{REFP} = V _{DD} = 5.0 V		41.4	62	μA
operating current		operating			AV _{REFP} = V _{DD} = 3.0 V		37.2	59	μA
	IVREF	When one intern	al reference	e voltage	AV _{REFP} = V _{DD} = 5.0 V		14.8	26	μA
		circuit is operatir	ng		AV _{REFP} = V _{DD} = 3.0 V		8.9	20	μA
Programmable	IREF ^{Note 11}				AV _{REFP} = V _{DD} = 5.0 V		3.2	5.1	μA
gain amplifier/ comparator reference current source			$AV_{REFP} = V_{DD} = 3.0 V$				2.9	4.9	μA
BGO operating current	IBGO ^{Note 12}				·		2.50	12.2	mA
SNOOZE	ISNOZ ^{Note 1}	ADC operation	DC operation The mode is performed ^{Note 13}				0.50	1.1	mA
operating current			The A/D conversion operation Standard mode, AVREFP = V				2.0	3.04	mA
		CSI/UART opera	ation				0.70	1.54	mA

(Notes and Remarks are listed on the next page.)

Minimum Instruction Execution Time during Main System Clock Operation

Supply voltage VDD [V]

TCY VS VDD (LS (low-speed main) mode)

When the high-speed on-chip oscillator clock is selected

During self programming
 When high-speed system clock is selected

2.5 Peripheral Functions Characteristics

AC Timing Test Points

2.5.1 Serial array unit 0, 4 (UART0, UART1, CSI00, DALI/UART4)

(1) During communication at same potential (UART mode) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.7 \text{ V} \le V_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-s Mo	peed main) ode	LS (low-sp Mo	oeed main) ode	Unit
				MIN.	MAX.	MIN.	MAX.	
Transfer rate ^{Note 1}		$2.7~V{\leq}~V_{\text{DD}}{\leq}~5.5~V$			fмск/6		f мск/6	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		5.3		1.3	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are: HS (high-speed main) mode: 32 MHz (2.7 V ≤ VDD ≤ 5.5 V)
LS (low-speed main) mode: 8 MHz (2.7 V ≤ VDD ≤ 5.5 V), TA = -40 to +85°C

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. q: UART number (q = 0, 1), g: PIM and POM number (g = 0, 1)

2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03))

R01DS0171EJ0310 Rev.3.10 Oct 31, 2016 RENESAS

(5) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) $(T_A = -40 \text{ to } +105^{\circ}\text{C}^{\text{Note 3}}, 2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol		Conditions	HS (high main) M	-speed ⁄lode	LS (low-s main) N	speed lode	Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	$t_{KCY1} \ge 2/f_{CLK}$	$ \begin{array}{l} 4.0 \; V \leq V_{\text{DD}} \leq 5.5 \; V, \; 2.7 \; V \leq V_{\text{b}} \leq 4.0 \; V, \\ C_{\text{b}} = 30 \; pF, \; R_{\text{b}} = 1.4 \; k\Omega \end{array} $	200		1150		ns
			$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 30 \ p\text{F}, \ R_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	300		1150		ns
SCKp high-level width	t кн1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq \\ C_b = 30 \ pF, \ F \end{array}$	$\begin{array}{l} 5.5 \ V, \ 2.7 \ V \leq V_{b} \leq 4.0 \ V, \\ R_{b} = 1.4 \ k\Omega \end{array}$	tксү1/2 – 50		tксү1/2 – 75		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < \\ C_b = 30 \ pF, \ F \end{array}$: 4.0 V, 2.3 V \leq V_b \leq 2.7 V, R_b = 2.7 k\Omega	tксү1/2 – 120		tксү1/2 – 170		ns
SCKp low-level width	t KL1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq \\ C_{b} = 30 \ pF, \ F \end{array}$	$\lesssim 5.5$ V, 2.7 V \leq V_b \leq 4.0 V, R_b = 1.4 k\Omega	tксү1/2 – 7		tксү1/2 – 50		ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < C_{\text{b}} = 30 \text{ pF}, \text{ F}$: 4.0 V, 2.3 V \leq V _b \leq 2.7 V, R _b = 2.7 kΩ	tксү1/2 – 10		tксү1/2 – 50		ns
Slp setup time (to SCKp↑) ^{Note 1}	tsik1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq \\ C_b \ \ = \ \ 30 \ \ pF, \ F \end{array}$	$\label{eq:2.5} \begin{array}{l} 5.5 \mbox{ V, } 2.7 \mbox{ V} \leq V_b \leq 4.0 \mbox{ V,} \\ R_b = 1.4 k\Omega \end{array}$	81		479		ns
		$2.7 V \le V_{DD} < C_b = 30 pF, F$	$4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ R _b = 2.7 kΩ	177		479		ns
SIp hold time (from SCKp↑) ^{Note}	tksi1	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq \\ C_{\text{b}} = 30 \ \text{pF}, \ \text{F} \end{array}$	$\lesssim 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V},$ R_{b} = 1.4 k Ω	10		19		ns
1		$2.7 V \le V_{DD} < C_b = 30 pF, F$	$ 4.0 V, 2.3 V \le V_b \le 2.7 V, $ R _b = 2.7 kΩ	10		19		ns
Delay time from SCKp↓ to SOp	tkso1	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq C_{\text{b}}$ = 30 pF, F	$\lesssim 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V},$ R _b = 1.4 kΩ		60		100	ns
output ^{Note 1}		$\begin{array}{l} 2.7 \ V \leq V_{DD} < \\ C_b = 30 \ pF, \ F \end{array}$	$ 4.0 V, 2.3 V \le V_b \le 2.7 V, $ R _b = 2.7 kΩ		130		195	ns
SIp setup time (to SCKp↓) ^{Note 2}	tsik1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq \\ C_{b} = 30 \ pF, \ F \end{array} \end{array} \label{eq:VDD}$	5.5 V, 2.7 V \leq Vb \leq 4.0 V, Rb = 1.4 k\Omega	44		110		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < \\ C_b = 30 \ pF, \ F \end{array}$: 4.0 V, 2.3 V \leq V_b \leq 2.7 V, R_b = 2.7 k\Omega	44		110		ns
SIp hold time (from SCKp↓) ^{Note}	t KSI1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq \\ C_{b} = 30 \ pF, \ F \end{array} \end{array} \label{eq:VDD}$	5.5 V, 2.7 V \leq Vb \leq 4.0 V, Rb = 1.4 k\Omega	10		19		ns
2		$2.7 V \le V_{DD} \le C_b = 30 pF, F$: 4.0 V, 2.3 V \leq V _b \leq 2.7 V, R _b = 2.7 kΩ	10		19		ns
Delay time from SCKp↑ to	tkso1	$4.0 V \le V_{DD} \le C_b = 30 \text{ pF, F}$	$\label{eq:2.1} \begin{array}{l} 5.5 \mbox{ V, } 2.7 \mbox{ V} \leq V_b \leq 4.0 \mbox{ V,} \\ R_b = 1.4 k\Omega \end{array}$		10		25	ns
SOp output ^{Note 2}		$2.7 V \le V_{DD} < C_b = 30 \text{ pF}, \text{ F}$	$(4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ R _b = 2.7 kΩ		10		25	ns

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

- 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 3. Operating conditions of LS (low-speed main) mode is T_A = -40 to +85 °C.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_H and V_L, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R_b[Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 1)

(6) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) $(T_A = -40 \text{ to } +105^{\circ}\text{C}^{\text{Note 3}}, 2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol		Conditions	HS (high-spee	d main) Mode	LS (low-speed	d main) Mode	Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tксү1 ≥ 4/fc∟к	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{array}$	300		1150		ns
			$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	500		1150		ns
SCKp high-level width	t кн1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \\ C_b = 30 \ pF, \end{array}$	≤ 5.5 V, 2.7 V $\leq V_b \leq 4.0$ V, R_b = 1.4 k\Omega	tксү1/2 – 75		tксү1/2 – 75		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} \\ C_b = 30 \ pF, \end{array}$	< 4.0 V, 2.3 V \leq Vb \leq 2.7 V, Rb = 2.7 k\Omega	tксү1/2 – 170		tксү1/2 – 170		ns
SCKp low-level width	tĸ∟ı	$\begin{array}{l} 4.0 \ V \leq V_{DD} \\ C_b = 30 \ pF, \end{array}$	≤ 5.5 V, 2.7 V $\leq V_b \leq 4.0$ V, R_b = 1.4 k\Omega	tксү1/2 – 12		tксү1/2 – 50		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} \\ C_b = 30 \ pF, \end{array}$	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V, R _b = 2.7 kΩ	tксү1/2 – 18		tксү1/2 – 50		ns
SIp setup time (to SCKp↑) Note 1	tsik1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \\ C_b = 30 \ pF, \end{array}$	$\leq 5.5 \text{ V}, 2.7 \text{ V} \leq V_b \leq 4.0 \text{ V},$ R _b = 1.4 kΩ	81		479		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} \\ C_b = 30 \ pF, \end{array}$	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V, R _b = 2.7 k Ω	177		479		ns
SIp hold time (from SCKp↑) Note 1	tksi1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \\ C_b = 30 \ pF, \end{array}$	\leq 5.5 V, 2.7 V \leq V _b \leq 4.0 V, R _b = 1.4 kΩ	19		19		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} \\ C_b = 30 \ pF, \end{array}$	< 4.0 V, 2.3 V \leq Vb \leq 2.7 V, Rb = 2.7 k\Omega	19		19		ns
Delay time from SCKp↓ to	tkso1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \\ C_b = 30 \ pF, \end{array}$	≤ 5.5 V, 2.7 V $\leq V_b \leq 4.0$ V, R_b = 1.4 k\Omega		100		100	ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} \\ C_b = 30 \ pF, \end{array}$	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V, R _b = 2.7 kΩ		195		195	ns
SIp setup time (to SCKp↓) ^{Note 2}	tsik1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \\ C_b = 30 \ pF, \end{array}$	≤ 5.5 V, 2.7 V $\leq V_b \leq 4.0$ V, R_b = 1.4 k\Omega	44		110		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} \\ C_b = 30 \ pF, \end{array}$	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V, R _b = 2.7 kΩ	44		110		ns
SIp hold time (from SCKp↓) Note 2	tksi1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \\ Cb = 30 \ pF, \end{array}$	≤ 5.5 V, 2.7 V $\leq V_b \leq 4.0$ V, Rb = 1.4 k\Omega	19		19		ns
		$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \\ \text{Cb} = 30 \ \text{pF}, \end{array}$	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V, Rb = 2.7 kΩ	19		19		ns
Delay time from SCKp↑ to	tkso1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \\ Cb = 30 \ pF, \end{array}$	\leq 5.5 V, 2.7 V \leq V _b \leq 4.0 V, Rb = 1.4 kΩ		25		25	ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} \\ Cb \ \ = \ \ 30 \ pF, \end{array}$	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V, Rb = 2.7 kΩ		25		25	ns

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

3. Operating conditions of LS (low-speed main) mode is $T_A = -40$ to +85 °C.

(Caution and Remarks are listed on the next page.)

(1) When reference voltage (+)= AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin: ANI2, ANI4 to ANI7, internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.7 \text{ V} \le \text{AV}_{REFP} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{REFP}, \text{Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$

Parameter	Symbol	Condition	IS	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}			1.2	±3.5	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V_{\text{DD}} \leq 5.5~V$	2.125		39	μS
		Target pin: ANI2, ANI4 to ANI7	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	3.1875		39	μS
		10-bit resolution	$3.6~V \leq V_{\text{DD}} \leq 5.5~V$	2.375		39	μS
		Target pin: Internal reference voltage, and temperature	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	3.5625		39	μs
		sensor output voltage (HS (high-speed main) mode)					
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}				±0.25	%FSR
Full-scale error ^{Notes 1, 2}	Efs	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}				±0.25	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}				±2.5	LSB
Differential linearity error	DLE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}				±1.5	LSB
Analog input voltage	VAIN	ANI2, ANI4 to ANI7		0		AVREFP	V
		Internal reference voltage (HS (high-speed main) mode)			VBGR ^{Note 4}		V
		Temperature sensor output v (HS (high-speed main) mode	oltage)	V _{TMPS25} ^{Note 4}			V

Notes 1. Excludes quantization error (±1/2 LSB).

- **2.** This value is indicated as a ratio (%FSR) to the full-scale value.
- **3.** When AV_{REFP} < V_{DD}, the MAX. values are as follows.

Overall error: Add ± 1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

Zero-scale error/Full-scale error: Add $\pm 0.05\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/Differential linearity error: Add ± 0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.

4. See 2.6.2 Temperature sensor/internal reference voltage characteristics.

2.6.3 Programmable gain amplifier

Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Input offset voltage	VIOPGA					±5	±10	mV
Input voltage range	Vipga				0		0.9VDD/	V
							gain	
Gain error ^{Note 1}		4, 8 times					±1	%
		16 time	S				±1.5	%
		32 time:	S				±2	%
Slew rate ^{Note 1}	SRRPGA Rising edge	Rising	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	4, 8 times	4			V/μs
		edge $2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}$		16, 32 times	1.4			V/μs
			$2.7~V \leq V_{\text{DD}} < 4.0~V$	4, 8 times	1.8			V/μs
				16, 32 times	0.5			V/μs
	SRfpga	Falling	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	4, 8 times	3.2			V/μs
		edge		16, 32 times	1.4			V/μs
			$2.7~V \leq V_{\text{DD}} < 4.0~V$	4, 8 times	1.2			V/μs
				16, 32 times	0.5			V/μs
Operation stabilization wait time ^{Note 2}	t pga	4, 8 tim	es	5			μS	
		16, 32 t	imes		10			μS

(TA = -40 to +105°C, 2.7 V \leq AVREFP = VDD \leq 5.5 V, Vss = AVREFM = 0 V)

Notes 1. When $V_{IPGA} = 0.1V_{DD}/gain$ to $0.9V_{DD}/gain$.

2. Time required until a state is entered where the DC and AC specifications of the PGA are satisfied after the PGA operation has been enabled (PGAEN = 1).

Remark These characteristics apply when AVREFM is selected as GND of the PGA by using the CVRVS1 bit.

3.2 Oscillator Characteristics

3.2.1 X1, XT1 oscillator characteristics

(T_A = -40 to +125°C, 2.7 V \leq V_DD \leq 5.5 V, V_SS = 0 V)

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock frequency (fx) ^{Note}	Ceramic resonator/ crystal resonator		1.0		20.0	MHz
XT1 clock frequency (fx⊤) ^{Note}	Crystal resonator		32	32.768	35	kHz

- **Note** Indicates only permissible oscillator frequency ranges. See **AC Characteristics** for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.
- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.
- **Remark** When using the X1 oscillator and XT1 oscillator, see 5.4 System Clock Oscillator in the RL78/I1A User's Manual.

Items	Symbol	Condition	s		MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	P02, P03, P05, P06, P10 to P12, P20 to P22, P24 to P27, P30, P31, P40, P75 to P77, P120, P137, P147, P200 to P206, RESET	Vi = VDD				1	μA
	Ілн2	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VDD	In input port or external clock input			1	μA
				In resonator connection			10	μA
Input leakage current, low	ILIL1	P02, P03, P05, P06, P10 to P12, P20 to P22, P24 to P27, P30, P31, P40, P75 to P77, P120, P137, P147, P200 to P206, RESET	VI = VSS				-1	μA
	Ilil2	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VSS	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
On-chip pull-up resistance	Ru	P02, P03, P05, P06, P10 to P12, P30, P31, P40, P75 to P77, P120, P147, P200 to P206	Vı = Vss, Ir	n input port	10	20	100	kΩ

(T_A = -40 to +125°C, 2.7 V \leq V_DD \leq 5.5 V, Vss = 0 V)

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

3.3.2 Supply current characteristics

Parameter	Symbol			MIN.	TYP.	MAX.	Unit				
Supply	IDD1	Operating	HS (high-	f⊮ = 16 MHz ^{Note 3}	V _{DD} = 5.0 V		2.9	4.8	mA		
Current Note 1		mode	speed main) mode ^{Note 5}		V _{DD} = 3.0 V		2.9	4.8	mA		
			HS (high-	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Square wave input		3.2	5.6	mA		
			speed main)	speed main) $V_{DD} = 5.0 V$	Resonator connection		3.3	5.7	mA		
			mode	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Square wave input		3.2	5.6	mA		
				V _{DD} = 3.0 V	Resonator connection		3.3	5.7	mA		
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Square wave input		2.0	3.3	mA		
				V _{DD} = 5.0 V	Resonator connection		2.0	3.3	mA		
	HS (high- speed main mode ^{Note 5}					$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Square wave input		2.0	3.3	mA
			V _{DD} = 3.0 V	Resonator connection		2.0	3.3	mA			
		HS (high- $f_{iH} = 4 \text{ MHz}^{Note 3}$		V _{DD} = 5.0 V		3.3	6.5	mA			
		speed main) mode ^{Note 5}	fpll = 64 MHz, fclk = 16 MHz	V _{DD} = 3.0 V		3.3	6.5	mA			
			Subsystem $f_{SUB} = 32.768 \text{ kHz}^{Note 4}$ clock $T_A = -40^{\circ}C$	Square wave input		4.2	6.0	μA			
				lock $T_A = -40^{\circ}C$	Resonator connection		4.4	6.2	μA		
			operation	fsue = 32.768 kHz ^{Note 4}	Square wave input		4.2	6.0	μA		
				T _A = +25°C	Resonator connection		4.4	6.2	μA		
				fsue = 32.768 kHz ^{Note 4}	Square wave input		4.3	7.2	μA		
				T _A = +50°C	Resonator connection		4.5	7.4	μA		
				fsue = 32.768 kHz ^{Note 4}	Square wave input		4.4	8.1	μA		
				T _A = +70°C	Resonator connection		4.6	8.3	μA		
				fsue = 32.768 kHz ^{Note 4}	Square wave input		5.2	11.4	μA		
			T _A = +85°C	Resonator connection		5.4	11.6	μA			
		fsue = 32.768 kHz ^{Note 4}	Square wave input		6.9	20.8	μA				
	T _A = +105°C	I _A = +105°C	Resonator connection		7.1	21.0	μA				
			fsue = 32.768 kHz ^{Note 4}	Square wave input		11.1	51.2	μA			
			T _A = +125°C				11.3	51.4	μA		

(TA = -40 to +125°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V) (1/2)

(Notes and Remarks are listed on the next page.)

- **Notes 1.** Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, comparator, programmable gain amplifier, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: $2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}$ @1 MHz to 20 MHz
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is T_A = 25°C

(T_A = -40 to +125°C, 2.7 V \leq V_DD \leq 5.5 V, Vss = 0 V) (2/2)

Parameter	Symbol				MIN.	TYP.	MAX.	Unit	
Supply	DD2 ^{Note 2}	HALT	HS (high-	f _{IH} = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		0.50	2.0	mA
Current Note 1		mode	speed main) mode ^{Note 7}		V _{DD} = 3.0 V		0.50	2.0	mA
			HS (high-	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.40	2.2	mA
			speed main)	V _{DD} = 5.0 V	Resonator connection		0.50	2.3	mA
			mode	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.40	2.2	mA
				V _{DD} = 3.0 V	Resonator connection		0.50	2.3	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.24	1.22	mA
				V _{DD} = 5.0 V	Resonator connection		0.30	1.28	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.24	1.22	mA
				V _{DD} = 3.0 V	Resonator connection		0.30	1.28	mA
			HS (high-	$f_{H} = 4 \text{ MHz}^{Note 4}$	V _{DD} = 5.0 V		0.95	3.7	mA
			speed main) mode ^{Note 7} Subsystem clock	fpll = 64 MHz, fclк = 16 MHz	V _{DD} = 3.0 V		0.95	3.7	mA
				f _{SUB} = 32.768 kHz ^{Note 5} T _A = -40°C	Square wave input		0.28	0.70	μA
	clock operation				Resonator connection		0.47	0.89	μA
		operation	f _{SUB} = 32.768 kHz ^{Note 5} T _A = +25°C	Square wave input		0.33	0.70	μA	
				Resonator connection		0.52	0.89	μA	
				$f_{SUB} = 32.768 \text{ kHz}^{Note 5}$ $T_A = +50^{\circ}\text{C}$ $f_{SUB} = 32.768 \text{ kHz}^{Note 5}$	Square wave input		0.41	1.90	μA
					Resonator connection		0.60	2.09	μA
					Square wave input		0.54	2.80	μA
				T _A = +70°C	Resonator connection		0.73	2.99	μA
				f _{SUB} = 32.768 kHz ^{Note 5} T _A = +85°C	Square wave input		1.27	6.10	μA
					Resonator connection		1.46	6.29	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		3.04	15.5	μA
				T _A = +105°C	Resonator connection		3.23	15.7	μA
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		7.20	45.2	μA
				T _A = +125°C	Resonator connection		7.53	45.5	μA
		STOP	T _A = -40°C				0.18	0.50	μA
		mode Note 8	T _A = +25°C				0.23	0.50	μA
		NULE 5	T _A = +50°C				0.27	1.70	μA
			T _A = +70°C				0.44	2.60	μA
			T _A = +85°C				1.17	5.90	μA
			T _A = +105°C				2.94	15.3	μA
			T _A = +125°C				7.14	45.1	μA

(Notes and Remarks are listed on the next page.)

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin: ANI0, ANI2, ANI4 to ANI7, ANI16 to ANI19

(T_A = -40 to +125°C, 2.7 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, Reference voltage (+) = V_{BGR}^{Note 3}, Reference voltage (-) = AV_{REFM}^{Note 4} = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		bit
Conversion time	t CONV	8-bit resolution	17		39	μS
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution			±2.0	LSB
Differential linearity error ^{Note 1}	DLE	8-bit resolution			±1.0	LSB
Analog input voltage	VAIN		0		VBGR Note 3	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

3. See 3.6.2 Temperature sensor/internal reference voltage characteristics.

4. When reference voltage (–) = Vss, the MAX. values are as follows.

Zero-scale error: Add ±0.35%FSR to the MAX. value when reference voltage (-) = AVREFM.

Integral linearity error: Add ±0.5 LSB to the MAX. value when reference voltage (-) = AVREFM.

Differential linearity error: Add ± 0.2 LSB to the MAX. value when reference voltage (–) = AV_{REFM}.

3.6.2 Temperature sensor/internal reference voltage characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, T _A = +25°C		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	Fvtmps	Temperature sensor that depends on the temperature		-3.6		mV/C
Operation stabilization wait time	tamp		5			μS

(TA = -40 to +125°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V, HS (high-speed main) mode)

3.6.5 POR circuit characteristics

(T_A = -40 to +125°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.45	1.51	1.62	V
	VPDR	Power supply fall time	1.44	1.50	1.61	V
Minimum pulse width ^{Note}	TPW		300			μS

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

3.6.6 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode (TA = -40 to +125°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	V _{LVD0}	Power supply rise time	3.97	4.06	4.25	V
voltage			Power supply fall time	3.89	3.98	4.15	V
		VLVD1	Power supply rise time	3.67	3.75	3.93	V
			Power supply fall time	3.59	3.67	3.83	V
		VLVD2	Power supply rise time	3.06	3.13	3.28	V
			Power supply fall time	2.99	3.06	3.20	V
		VLVD3	Power supply rise time	2.95	3.02	3.17	V
			Power supply fall time	2.89	2.96	3.09	V
		VLVD4	Power supply rise time	2.85	2.92	3.07	V
			Power supply fall time	2.79	2.86	2.99	V
		VLVD5	Power supply rise time	2.75	2.81	2.95	V
			Power supply fall time	2.70	2.75	2.88	V
Minimum pulse width t		t∟w		300			μS
Detection delay time						300	μS

LVD Detection Voltage of Interrupt & Reset Mode (T_A = -40 to +125°C, V_{PDR} \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Parameter	Symbol		Conc	MIN.	TYP.	MAX.	Unit	
Interrupt and reset VLVD0 VPOC2,		DC2, VPOC1, VPOC0 = 0, 1, 1, falling reset voltage: 2.7 V			2.75	2.88	V	
mode	VLVD1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.85	2.92	3.07	V
				Falling interrupt voltage	2.79	2.86	2.99	V
	VLVD2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.95	3.02	3.17	V
				Falling interrupt voltage	2.89	2.96	3.09	V
	VLVD3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.97	4.06	4.25	V
				Falling interrupt voltage	3.89	3.98	4.15	V

3.6.7 Supply voltage rise inclination characteristics

(T_A = -40 to +125°C, V_{SS} = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply voltage rise	SVDD				54	V/ms

Caution Keep the internal reset status by using the LVD circuit or an external reset signal until VDD rises to within the operating voltage range shown in 33.4 AC Characteristics.

3.7 RAM Data Retention Characteristics

(T_A = -40 to +125°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage ^{Note 2}	VDDDR		1.47 ^{Note 1}		5.5	V

- **Note** The value depends on the POR detection voltage. When the voltage drops, the RAM data is retained before a POR reset is effected, but RAM data is not retained when a POR reset is effected.
- Caution When CPU is operated at the voltage of out of the operation voltage range, RAM data is not retained. Therefore, set STOP mode before the supplied voltage is below the operation voltage range.

4.2 30-pin Products

R5F107ACGSP#V0, R5F107AEGSP#V0, R5F107ACGSP#X0, R5F107AEGSP#X0, R5F107ACMSP#V0, R5F107AEMSP#V0, R5F107ACMSP#X0, R5F107AEMSP#X0

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP30-0300-0.65	PLSP0030JB-B	S30MC-65-5A4-3	0.18

© 2012 Renesas Electronics Corporation. All rights reserved.

U

0.6±0.15

4.3 38-pin Products

R5F107DEGSP#V0, R5F107DEGSP#X0, R5F107DEMSP#V0, R5F107DEMSP#X0

NOTE

Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.

A	12.30±0.10
В	0.30
С	0.65 (T.P.)
D	$0.32\substack{+0.08\\-0.07}$
E	0.125±0.075
F	2.00 MAX.
G	1.70±0.10
Н	8.10±0.20
I	6.10±0.10
J	1.00±0.20
К	$0.17\substack{+0.08 \\ -0.07}$
L	0.50
М	0.10
Ν	0.10
Р	$3^{\circ}^{+7^{\circ}}_{-3^{\circ}}$
Т	0.25(T.P.)
U	0.60±0.15
V	0.25 MAX.
W	0.15 MAX.

O 2012 Renesas Electronics Corporation. All rights reserved.

