

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

·XFI

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 11x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	30-LSSOP (0.240", 6.10mm Width)
Supplier Device Package	30-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f107aegsp-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 List of Part Numbers

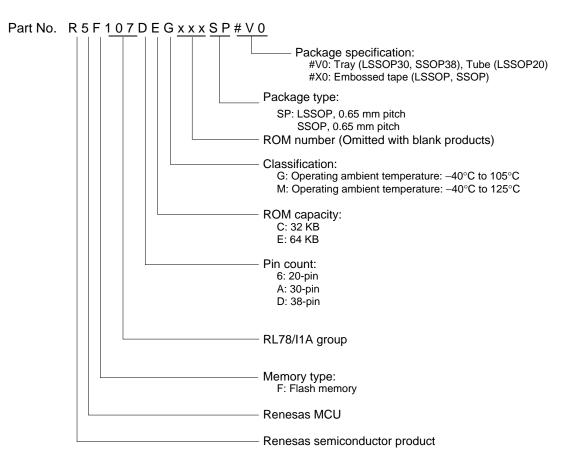


Figure 1-1. Part Number, Memory Size, and Package of RL78/I1A

Pin count	Package	Operating Ambient Temperature	Part Number
20 pin	20-pin plastic LSSOP	TA = -40 to +105°C	R5F1076CGSP#V0, R5F1076CGSP#X0
	(4.4 × 6.5)	TA = -40 to +125°C	R5F1076CMSP#V0, R5F1076CMSP#X0
30 pin	30-pin plastic LSSOP (7.62 mm (300))	TA = -40 to +105°C	R5F107ACGSP#V0, R5F107AEGSP#V0, R5F107ACGSP#X0, R5F107AEGSP#X0
		TA = -40 to +125°C	R5F107ACMSP#V0, R5F107AEMSP#V0, R5F107ACMSP#X0, R5F107AEMSP#X0
38 pin	38-pin plastic SSOP	TA = -40 to +105°C	R5F107DEGSP#V0, R5F107DEGSP#X0
	(7.62 mm (300))	TA = -40 to +125°C	R5F107DEMSP#V0, R5F107DEMSP#X0

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.6 Outline of Functions

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR1) is set to 00H.

		1	Γ		(1/3)			
	Item	20-pin	30-	pin	38-pin			
		R5F1076C	R5F107AC	R5F107AE	R5F107DE			
Code flash m	emory (KB)	32	32	64	64			
Data flash me	emory (KB)	4	4	4	4			
RAM (KB)		2	2	4 ^{Note 1}	4 ^{Note 1}			
Address spac	e	1 MB						
Main system clock	High-speed system clock	HS (High-speed main)	cillation, external main sy mode: 1 to 20 MHz (V_{DD} node: 1 to 8 MHz (V_{DD} =	,				
	High-speed on-chip oscillator		mode: 1 to 32 MHz (V_{DD} node: 1 to 8 MHz (V_{DD} =	,				
Clock for 16-b and KC0	bit timers KB0 to KB2,	64 MHz (TYP.)						
Subsystem cl only)	ock (38-pin products	XT1 (crystal) oscillation 32.768 kHz	, external subsystem cloo	ck input (EXCLKS)				
Low-speed or	n-chip oscillator	15 kHz (TYP.)						
General-purp	ose register	(8-bit register \times 8) \times 4 b	anks					
Minimum inst	ruction execution time	0.03125 μ s (High-speed on-chip oscillator: f _{IH} = 32 MHz operation)						
		0.05 μs (High-speed sy	stem clock: f _{MX} = 20 MHz	operation)				
		30.5 μ s (Subsystem clo	ck: fsuв = 32.768 kHz оре	eration) (38-pin products o	nly)			
Instruction se	t	 8-bit operation, 16-bit Multiplication (8 bits > Bit manipulation (Set, 		operation), etc.				
I/O port	Total	16	2	26	34			
	CMOS I/O	13	2	23	29			
	CMOS input	3		3	5			
	CMOS output	-		-	_			
Timer	16-bit timer TAU	8 channels (no timer output)	8 channels (timer output	t: 1, PWM output: 1 ^{Note 2})	8 channels (timer outputs: 3, PWM outputs: 3 ^{Note 2})			
	16-bit timer KB	2 channels (PWM outputs: 4)	3	channels (PWM outputs: 6)			
	16-bit timer KC	1 channel (PWM outputs: 3)	1	channel (PWM outputs: 6)				

Notes 1. This is about 3 KB when the self-programming function and data flash function are used. (For details, see CHAPTER 3 in the RL78/I1A User's Manual.)

The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see 6.9.3 Operation as multiple PWM output function in the RL78/I1A User's Manual).

2. ELECTRICAL SPECIFICATIONS (G: Industrial applications, $T_A = -40$ to +105°C)

In this chapter, shows the electrical spesificatons of the target products. Target products (G: Industrial applications): $T_A = -40$ to $+105^{\circ}C$ R5F107xxGxx

- Cautions 1. The RL78/I1A has an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. The pins mounted depend on the product. See 2.1 Port Function to 2.2.1 Functions for each product in the RL78/I1A User's Manual.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high		P02, P03, P05, P06, P10 to P12, P30, P31, P40, P75 to P77, P120, P147,	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -3.0 \ mA \end{array} \label{eq:DD}$	$V_{\text{DD}}-0.7$			V
V _{OH2}		$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}, \\ \text{I}_{\text{OH1}} = -1.0 \ \text{mA} \end{array}$	Vdd - 0.5			V	
	Voh2	P20 to P22, P24 to P27	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Ioh2 = -100 μ A	$V_{\text{DD}} - 0.5$			V
Output voltage, low	Vol1	P02, P03, P05, P06, P10 to P12, P30, P31, P40, P75 to P77, P120, P147,	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 8.5 \ mA \end{array} \label{eq:DD}$			0.7	V
		P200 to P206	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 4.0 \ mA \end{array} \end{array} \label{eq:eq:VDD}$			0.4	V
		$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 1.5 \ mA \end{array} \end{array} \label{eq:DD}$			0.4	V	
	Vol2	P20 to P22, P24 to P27	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Iol2 = 400 μ A			0.4	V

(T_A = -40 to +105°C, 2.7 V \leq V_DD \leq 5.5 V, V_SS = 0 V)

Caution P02, P10 to P12 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- **Notes 1.** Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, comparator, programmable gain amplifier, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: 2.7 V \leq V_DD \leq 5.5 V@1 MHz to 32 MHz
 - LS (low-speed main) mode: 2.7 V \leq V_DD \leq 5.5 V@1 MHz to 8 MHz
- **Remarks 1.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fil: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - **4.** Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

Notes 1. Current flowing to the VDD.

- 2. When the high-speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed onchip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the XT1 oscillator and fiL operating current). The current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode.
- 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.
- 6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- **7.** Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- 8. Current flowing during self-programming operation.
- **9.** Current flowing only to the programmable gain amplifier. The supply current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3, and IPGA, when the programmable gain amplifier is operating in operating mode or in HALT mode.
- **10.** Current flowing only to the comparator. The supply current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3, and ICMP, when the comparator is operating.
- **11.** This is the current required to flow to V_{DD} pin of the current circuit that is used as the programmable gain amplifier and the comparator.
- 12. Current flowing only during data flash rewrite.
- 13. See 21.3.3 SNOOZE mode in the RL78/I1A User's Manual for shift time to the SNOOZE mode .

Remarks 1. fil: Low-speed on-chip oscillator clock frequency

- **2.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 3. fclk: CPU/peripheral hardware clock frequency
- 4. Temperature condition of the TYP. value is T_A = 25°C
- **5.** Example of calculating current value when using programmable gain amplifier and comparator.
 - Examples 1) TYP. operating current value when three comparator channels, one internal reference voltage generator, and PGA are operating (when AV_{REFP} = V_{DD} = 5.0 V)

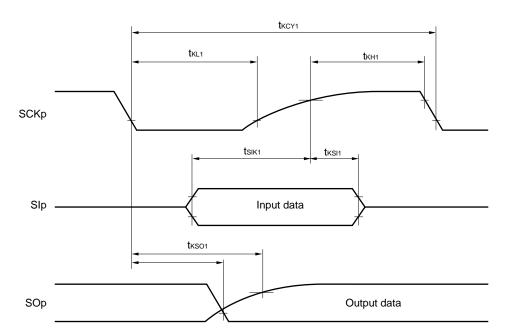
$$\begin{split} & \mathsf{ICMP} \times 3 + \mathsf{IVREF} + \mathsf{IPGA} + \mathsf{IREF} \\ &= 41.4 \ [\mu \mathsf{A}] \times 3 + 14.8 \ [\mu \mathsf{A}] \times 1 + 210 \ [\mu \mathsf{A}] + 3.2 \ [\mu \mathsf{A}] \\ &= 352.2 \ [\mu \mathsf{A}] \end{split}$$

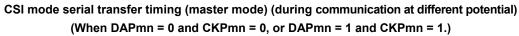
Examples 2) TYP. operating current value when using two comparator channels, without using internal reference voltage generator (when AV_{REFP} = V_{DD} = 5.0 V)

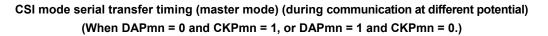
ICMP × 2 + IIREF = 41.4 [μA] × 2 + 3.2 [μA] = 86.0 [μA]

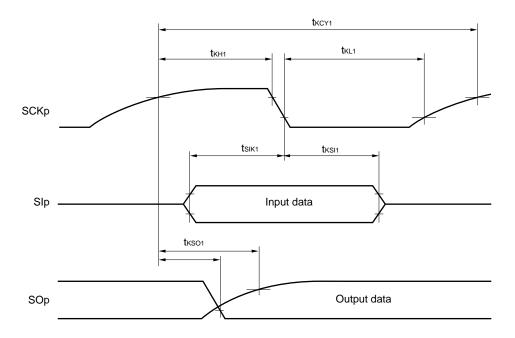
R01DS0171EJ0310 Rev.3.10 Oct 31, 2016

2.4 AC Characteristics


 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$


Items	Symbol		Conditio	ons		MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсү	Main system clock (fmain)	HS (high-spe	eed i	main) mode	0.03125		1	μS
instruction execution time)	ruction execution time)		LS (low-spee main) mode		T _A = -40 to +85°C	0.125		1	μS
		Subsystem clo	ck (fsuв) op	erat	ion	28.5	30.5	31.3	μS
		In the self	HS (high-spe	eed i	main) mode	0.03125		1	μS
		programming mode	LS (low-spee main) mode		$T_A = -40$ to +85°C	0.125		1	μS
External system clock frequency	fex					1.0		20.0	MHz
	fexs					32		35	kHz
External system clock input high-	texн, texL					24			ns
level width, low-level width	texhs, texls					13.7			μS
TI03, TI05, TI06, TI07 input high- level width, low-level width	tтн, tт⊫					2/fмск+10			ns
TO03, TO05, TO06, TKBO00,	fто	HS (high-spee	d main)	4.($V \leq V_{\text{DD}} \leq 5.5 \text{ V}$			8	MHz
TKBO01, TKBO10, TKBO11, TKBO20, TKBO21, TKCO00 to		mode		2.7	$7 \text{ V} \le \text{V}_{\text{DD}}$ < 4.0 V			4	MHz
TKCO05 output frequency (When duty = 50%)		LS (low-speed		4.($V \leq V_{\text{DD}} \leq 5.5 \text{ V}$			4	MHz
		mode, $T_A = -4$	0 to +85°C	2.7	$7 \text{ V} \le \text{V}_{\text{DD}}$ < 4.0 V			2	MHz
Interrupt input high-level width, low-level width	tınth, tınt∟	INTP0, INTP3, INTP20 to INT	· · ·	TP9	to INTP11,	1			μS
RESET low-level width	trsl					10			μS


Remark fmck: Timer array unit operation clock frequency


(Operation clock to be set by the CKS0n bit of timer mode register 0n (TMR0n). n: Channel number (n = 0 to 7))

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 1)

(7) DALI/UART4 mode

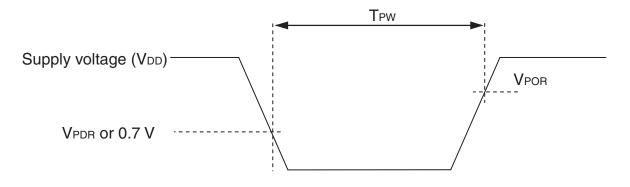
(TA = -40 to +105°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions		peed main) ode	LS (low-sp Mo	,	Unit
			MIN.	MAX.	MIN.	MAX.	
Transfer rate				fмск/12		fмск/12	bps
		Maximum transfer rate theoretical value HS: fcLκ = 32 MHz, fмcκ = fcLκ LS: fcLκ = 8 MHz, fмcκ = fcLκ		2.6		0.6	Mbps

Remark fmck: Operation clock frequency of DALI/UART.

(Operation clock to be set by the serial clock select register mn (SPS4).)

Caution Operating conditions of LS (low-speed main) mode is $T_A = -40$ to +85 °C.



2.6.5 POR circuit characteristics

(T_A = -40 to +105°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.45	1.51	1.57	V
	VPDR	Power supply fall time	1.44	1.50	1.56	V
Minimum pulse width ^{Note}	TPW		300			μS

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

2.6.6 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode (TA = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVD0	Power supply rise time	3.97	4.06	4.14	V
voltage			Power supply fall time	3.89	3.98	4.06	V
		VLVD1	Power supply rise time	3.67	3.75	3.82	V
			Power supply fall time	3.59	3.67	3.74	V
		VLVD2	Power supply rise time	3.06	3.13	3.19	V
			Power supply fall time	2.99	3.06	3.12	V
		VLVD3	Power supply rise time	2.95	3.02	3.08	V
			Power supply fall time	2.89	2.96	3.02	V
		VLVD4	Power supply rise time	2.85	2.92	2.97	V
			Power supply fall time	2.79	2.86	2.91	V
		VLVD5	Power supply rise time	2.75	2.81	2.87	V
			Power supply fall time	2.70	2.75	2.81	V
Minimum pul	se width	t∟w		300			μS
Detection de	lay time					300	μs

LVD Detection Voltage of Interrupt & Reset Mode

(TA = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Cond	ditions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	VLVD0	VPOC2, VPOC1, VPOC0 = 0, 1, 1,	falling reset voltage: 2.7 V	2.70	2.75	2.81	V
mode	VLVD1	LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.85	2.92	2.97	V
			Falling interrupt voltage	2.79	2.86	2.91	V
	VLVD2	LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.95	3.02	3.08	V
			Falling interrupt voltage	2.89	2.96	3.02	V
	VLVD3	LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.97	4.06	4.14	V
			Falling interrupt voltage	3.89	3.98	4.06	V

2.6.7 Supply voltage rise inclination characteristics

(T_A = -40 to +105°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply voltage rise	SVDD				54	V/ms

Caution Keep the internal reset status by using the LVD circuit or an external reset signal until VDD rises to within the operating voltage range shown in 32.4 AC Characteristics.

2.8 Flash Memory Programming Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C})$	$2.7 V \le V_{DD} \le 5.5 V, V_{SS} = 0 V$
17 4010 100 0	, 2 • = • = • = • • • • , • • • • • • • •

· ·						
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fclĸ	$2.7~V \leq V_{DD} \leq 5.5~V$	1		32	MHz
Number of code flash rewrites ^{Notes 1, 2, 3}	Cerwr	Retained for 20 years, $T_A = 85^{\circ}C^{Note 3}$	1,000			Times
Number of data flash		Retained for 1 year, $T_A = 25^{\circ}C^{Note 3}$		1,000,000		
rewrites ^{Notes 1, 2, 3}		Retained for 5 years, $T_A = 85^{\circ}C^{Note 3}$	100,000			
		Retained for 20 years, $T_A = 85^{\circ}C^{Note 3}$	10,000			

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library
- **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.
- 2.9 Dedicated Flash Memory Programmer Communication (UART)

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115.2 k		1 M	bps

3.1 Absolute Maximum Ratings

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	VDD		–0.5 to +6.5	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to V_{DD} +0.3 $^{\text{Note 1}}$	V
Input voltage	VI1	P02, P03, P05, P06, P10 to P12, P20 to P22, P24 to P27, P30, P31, P40, P75 to P77, P120 to P124, P137, P147, P200 to P206, EXCLK, EXCLKS, RESET	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Output voltage	V ₀₁	P02, P03, P05, P06, P10 to P12, P20 to P22, P24 to P27, P30, P31, P40, P75 to P77, P120, P147, P200 to P206	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Analog input voltage	Vaii	ANI0 to ANI2, ANI4 to ANI7, ANI16 to ANI19	-0.3 to V _{DD} +0.3 and -0.3 to AV _{REF(+)} +0.3 ^{Notes 2, 3}	V

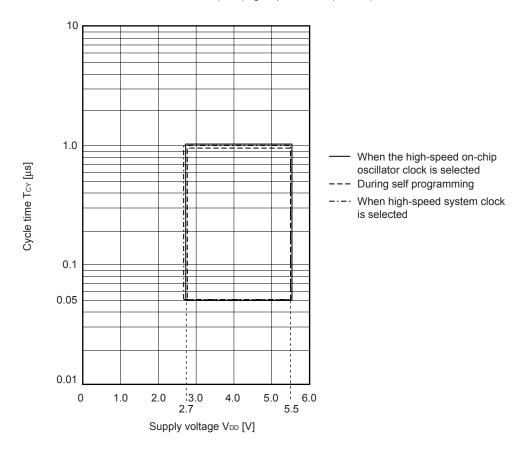
Absolute Maximum Ratings (T_A = 25°C) (1/2)

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - 2. Must be 6.5 V or lower.
 - 3. Do not exceed $AV_{REF(+)}$ + 0.3 V in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** $AV_{REF(+)}$: + side reference voltage of the A/D converter.
 - **3.** Vss : Reference voltage

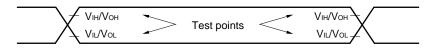
Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P02, P03, P05, P06, P10 to P12, P30, P31, P40, P75 to P77, P120, P147, P200 to P206	-40	mA
		Total of all pins	P02, P03, P40, P120	-70	mA
		–170 mA	P05, P06, P10 to P12, P30, P31, P75 to P77, P147, P200 to P206	-100	mA
	Іон2	Per pin	P20 to P22, P24 to P27	-0.5	mA
		Total of all pins		-2	mA
Output current, low	lol1	Per pin	P02, P03, P05, P06, P10 to P12, P30, P31, P40, P75 to P77, P120, P147, P200 to P206	40	mA
		Total of all pins 170 mA	P02, P03, P40, P120	70	mA
			P05, P06, P10 to P12, P30, P31, P75 to P77, P147, P200 to P206	100	mA
	IOL2	Per pin	P20 to P22, P24 to P27	1	mA
		Total of all pins	Total of all pins		mA
Operating ambient	TA	In normal operation	In normal operation mode		°C
temperature		In flash memory p	In flash memory programming mode		
Storage temperature	Tstg			-65 to +150	°C

Absolute Maximum Ratings (T_A = 25°C) (2/2)

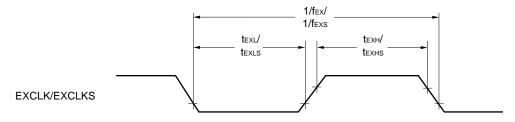
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.



- **Notes 1.** Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, comparator, programmable gain amplifier, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - **2.** During HALT instruction execution by flash memory.
 - **3.** When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - **7.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: 2.7 V \leq V_{DD} \leq 5.5 V@1 MHz to 20 MHz
 - 8. Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $T_A = 25^{\circ}C$



Minimum Instruction Execution Time during Main System Clock Operation

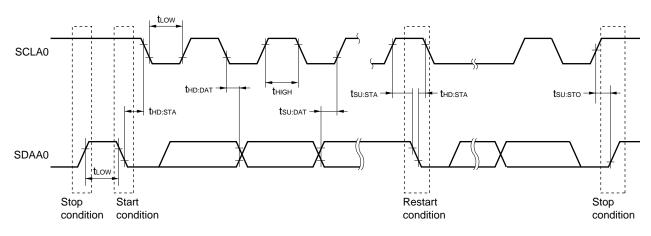

TCY vs VDD (HS (high-speed main) mode)

AC Timing Test Points

External System Clock Timing

(2) I²C fast mode

$(T_A = -40 \text{ to } +125^{\circ}C, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$


Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
SCLA0 clock frequency	fsc∟	fast mode: fclk≥ 3.5 MHz	0	400	kHz
Setup time of restart condition	tsu:sta		0.6		μS
Hold time ^{Note 1}	thd:sta		0.6		μS
Hold time when SCLA0 = "L"	t LOW		1.3		μS
Hold time when SCLA0 = "H"	t HIGH		0.6		μS
Data setup time (reception)	tsu:dat		100		ns
Data hold time (transmission) ^{Note 2}	thd:dat		0	0.9	μS
Setup time of stop condition	tsu:sto		0.6		μS
Bus-free time	t BUF		1.3		μS

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

- 2. The maximum value (MAX.) of the:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

fast mode:

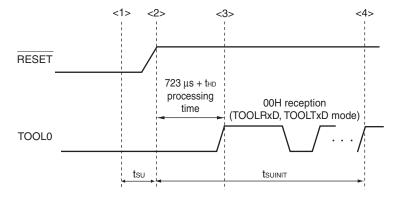
 C_b = 320 pF, R_b = 1.1 k Ω

IICA serial transfer timing

(3) When reference voltage (+) = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = V_{SS} (ADREFM = 0), target pin: ANI0 to ANI2, ANI4 to ANI7, ANI16 to ANI19, internal reference voltage, and temperature sensor output voltage

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution			1.2	±7.0	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V_{\text{DD}} \leq 5.5~V$	2.125		39	μS
		Target pin: ANI0 to ANI2, ANI4 to ANI7, ANI16 to ANI19	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	3.4		39	μS
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V_{\text{DD}} \leq 5.5~V$	2.375		39	μS
		Target pin: Internal reference voltage, and	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	3.8		39	μS
		temperature sensor output voltage (HS (high-speed main) mode)					
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution				±0.60	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution				±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution				±4.0	LSB
Differential linearity error ^{Note} 1	DLE	10-bit resolution				±2.0	LSB
Analog input voltage	VAIN	ANI0 to ANI2, ANI4 to ANI7	,	0		Vdd	V
		ANI16 to ANI19		0		Vdd	V
		Internal reference voltage (HS (high-speed main) mode) Temperature sensor output voltage (HS (high-speed main) mode)		VBGR Note 3			V
				١	/TMPS25 Note	3	V

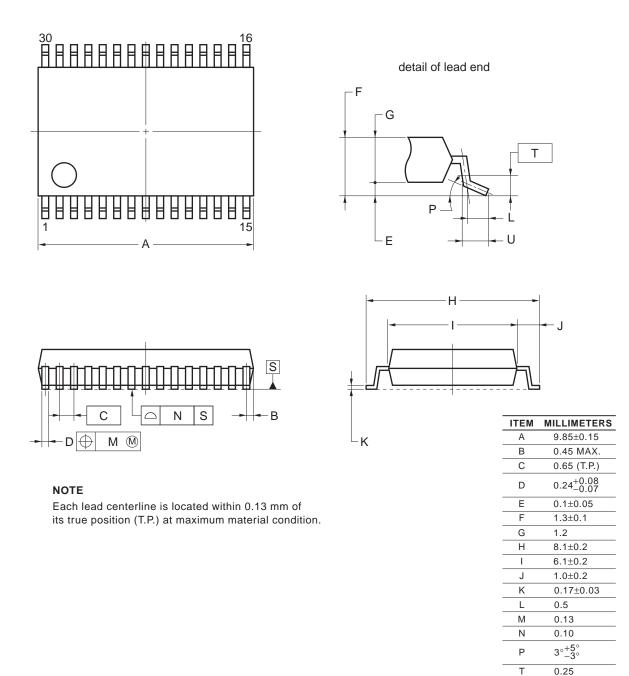
Notes 1. Excludes quantization error ($\pm 1/2$ LSB).


- **2.** This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. See 3.6.2 Temperature sensor/internal reference voltage characteristics.

3.10 Timing of Entry to Flash Memory Programming Modes

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the initial communication settings are specified	tsuinit	POR and LVD reset must end before the external reset ends.			100	ms
How long from when the TOOL0 pin is placed at the low level until an external reset ends	ts∪	POR and LVD reset must end before the external reset ends.	10			μS
How long the TOOL0 pin must be kept at the low level after a reset ends (except soft processing time)	tнd	POR and LVD reset must end before the external reset ends.	1			ms

$T_A = -40 \text{ to } +125^{\circ}\text{C}, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$


- <1> The low level is input to the TOOL0 pin.
- <2> The external reset ends (POR and LVD reset must end before the pin reset ends.).
- <3> The TOOL0 pin is set to the high level.
- <4> Complete the baud rate setting by UART reception.
- **Remark** tsuinit: The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the resets end.
 - $t_{\text{SU:}}$ How long from when the TOOL0 pin is placed at the low level until an external reset ends
 - thd: How long to keep the TOOL0 pin at the low level from when the external and internal resets end (except soft processing time)

4.2 30-pin Products

R5F107ACGSP#V0, R5F107AEGSP#V0, R5F107ACGSP#X0, R5F107AEGSP#X0, R5F107ACMSP#V0, R5F107AEMSP#V0, R5F107ACMSP#X0, R5F107AEMSP#X0

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP30-0300-0.65	PLSP0030JB-B	S30MC-65-5A4-3	0.18

© 2012 Renesas Electronics Corporation. All rights reserved.

U

0.6±0.15

