

#### Welcome to E-XFL.COM

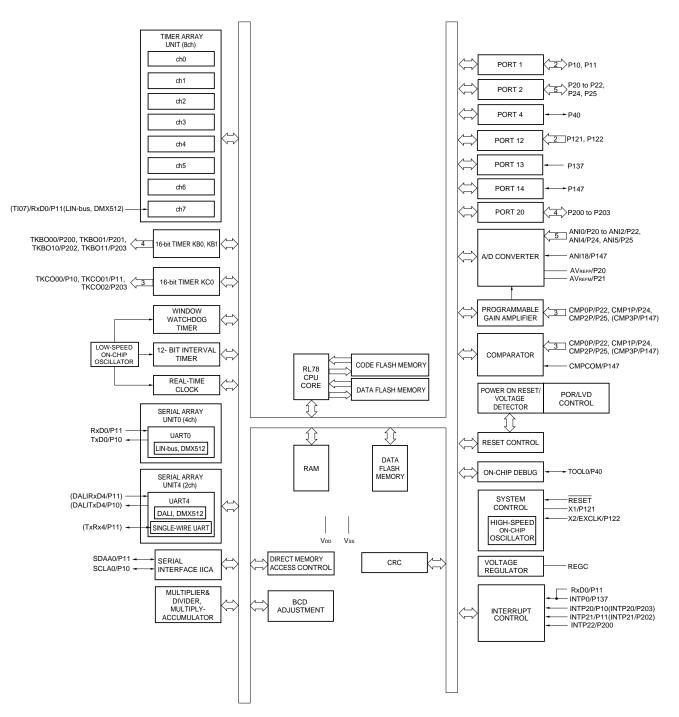
#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                          |
|----------------------------|---------------------------------------------------------------------------------|
| Core Processor             | RL78                                                                            |
| Core Size                  | 16-Bit                                                                          |
| Speed                      | 32MHz                                                                           |
| Connectivity               | I <sup>2</sup> C, LINbus, UART/USART                                            |
| Peripherals                | DMA, LVD, POR, PWM, WDT                                                         |
| Number of I/O              | 23                                                                              |
| Program Memory Size        | 64KB (64K x 8)                                                                  |
| Program Memory Type        | FLASH                                                                           |
| EEPROM Size                | · · · · · · · · · · · · · · · · · · ·                                           |
| RAM Size                   | 4K x 8                                                                          |
| Voltage - Supply (Vcc/Vdd) | 2.7V ~ 5.5V                                                                     |
| Data Converters            | A/D 11x8/10b                                                                    |
| Oscillator Type            | Internal                                                                        |
| Operating Temperature      | -40°C ~ 105°C (TA)                                                              |
| Mounting Type              | Surface Mount                                                                   |
| Package / Case             | 30-LSSOP (0.240", 6.10mm Width)                                                 |
| Supplier Device Package    | 30-LSSOP                                                                        |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f107aegsp-x0 |
|                            |                                                                                 |

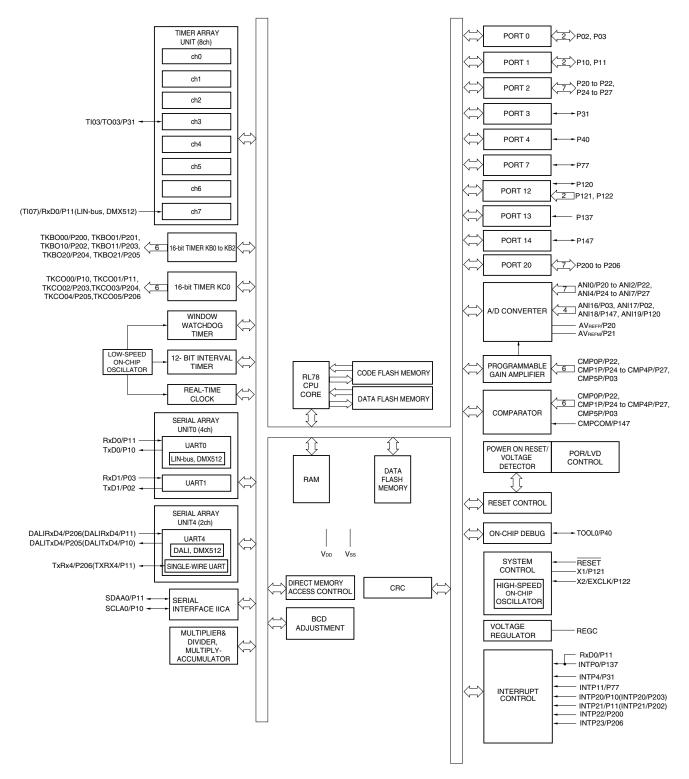

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RL78/I1A

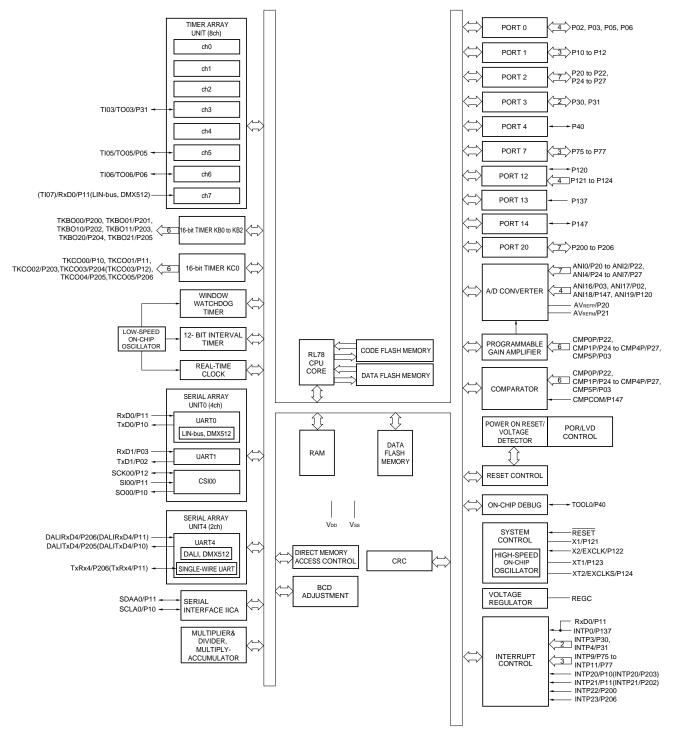
## 1.5 Block Diagram

## 1.5.1 20-pin products




- Remarks 1. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR1) or the input switch control register (ISC). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR1) and Figure 15-20 Format of Input Switch Control Register (ISC) in the RL78/I1A User's Manual.
  - **2.** The shared function CMP3P can be assigned to P147 by setting the CMPSEL0 bit in the comparator input switch control register (CMPSEL).




RL78/I1A

## 1.5.2 30-pin products



Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR1) or the input switch control register (ISC). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR1) and Figure 15-20 Format of Input Switch Control Register (ISC) in the RL78/I1A User's Manual.

## 1.5.3 38-pin products



Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR1) or the input switch control register (ISC). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR1) and Figure 15-20 Format of Input Switch Control Register (ISC) in the RL78/I1A User's Manual.



## 1.6 Outline of Functions

## Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR1) is set to 00H.

|                           |                                  | 1                                                                                                                | Γ                                                                                            |                                         | (1/3)                                                                  |  |  |  |
|---------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------|--|--|--|
|                           | Item                             | 20-pin                                                                                                           | 30-                                                                                          | pin                                     | 38-pin                                                                 |  |  |  |
|                           |                                  | R5F1076C                                                                                                         | R5F107AC                                                                                     | R5F107AE                                | R5F107DE                                                               |  |  |  |
| Code flash m              | emory (KB)                       | 32                                                                                                               | 32                                                                                           | 64                                      | 64                                                                     |  |  |  |
| Data flash me             | emory (KB)                       | 4                                                                                                                | 4                                                                                            | 4                                       | 4                                                                      |  |  |  |
| RAM (KB)                  |                                  | 2                                                                                                                | 2                                                                                            | 4 <sup>Note 1</sup>                     | 4 <sup>Note 1</sup>                                                    |  |  |  |
| Address spac              | e                                | 1 MB                                                                                                             |                                                                                              |                                         |                                                                        |  |  |  |
| Main system<br>clock      | High-speed system<br>clock       | HS (High-speed main)                                                                                             | cillation, external main sy<br>mode: 1 to 20 MHz ( $V_{DD}$<br>node: 1 to 8 MHz ( $V_{DD}$ = | ,                                       |                                                                        |  |  |  |
|                           | High-speed on-chip<br>oscillator |                                                                                                                  | mode: 1 to 32 MHz ( $V_{DD}$<br>node: 1 to 8 MHz ( $V_{DD}$ =                                | ,                                       |                                                                        |  |  |  |
| Clock for 16-b<br>and KC0 | bit timers KB0 to KB2,           | 64 MHz (TYP.)                                                                                                    |                                                                                              |                                         |                                                                        |  |  |  |
| Subsystem cl<br>only)     | ock (38-pin products             | XT1 (crystal) oscillation, external subsystem clock input (EXCLKS) 32.768 kHz                                    |                                                                                              |                                         |                                                                        |  |  |  |
| Low-speed or              | n-chip oscillator                | 15 kHz (TYP.)                                                                                                    |                                                                                              |                                         |                                                                        |  |  |  |
| General-purp              | ose register                     | (8-bit register $\times$ 8) $\times$ 4 banks                                                                     |                                                                                              |                                         |                                                                        |  |  |  |
| Minimum inst              | ruction execution time           | 0.03125 $\mu$ s (High-speed on-chip oscillator: f <sub>IH</sub> = 32 MHz operation)                              |                                                                                              |                                         |                                                                        |  |  |  |
|                           |                                  | 0.05 μs (High-speed sy                                                                                           | stem clock: f <sub>MX</sub> = 20 MHz                                                         | operation)                              |                                                                        |  |  |  |
|                           |                                  | 30.5 $\mu$ s (Subsystem clo                                                                                      | ck: fsuв = 32.768 kHz оре                                                                    | eration) (38-pin products o             | nly)                                                                   |  |  |  |
| Instruction se            | t                                | <ul> <li>8-bit operation, 16-bit</li> <li>Multiplication (8 bits &gt;</li> <li>Bit manipulation (Set,</li> </ul> |                                                                                              | operation), etc.                        |                                                                        |  |  |  |
| I/O port                  | Total                            | 16                                                                                                               | 2                                                                                            | 26                                      | 34                                                                     |  |  |  |
|                           | CMOS I/O                         | 13                                                                                                               | 2                                                                                            | 23                                      | 29                                                                     |  |  |  |
|                           | CMOS input                       | 3                                                                                                                |                                                                                              | 3                                       | 5                                                                      |  |  |  |
|                           | CMOS output                      | -                                                                                                                |                                                                                              | -                                       | _                                                                      |  |  |  |
| Timer                     | 16-bit timer TAU                 | 8 channels (no timer<br>output)                                                                                  | 8 channels (timer output                                                                     | t: 1, PWM output: 1 <sup>Note 2</sup> ) | 8 channels (timer<br>outputs: 3, PWM<br>outputs: 3 <sup>Note 2</sup> ) |  |  |  |
| 16-bit timer KB           |                                  | 2 channels (PWM 3 channels (PWM outputs: 6) outputs: 4)                                                          |                                                                                              |                                         |                                                                        |  |  |  |
|                           | 16-bit timer KC                  | 1 channel (PWM outputs: 3)                                                                                       | 1 channel (PWM outputs: 6)                                                                   |                                         |                                                                        |  |  |  |

Notes 1. This is about 3 KB when the self-programming function and data flash function are used. (For details, see CHAPTER 3 in the RL78/I1A User's Manual.)

The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see 6.9.3 Operation as multiple PWM output function in the RL78/I1A User's Manual).



| Items                 | Symbol | Conditions                                                                   |                                       | MIN. | TYP. | MAX.                  | Unit |
|-----------------------|--------|------------------------------------------------------------------------------|---------------------------------------|------|------|-----------------------|------|
| Output current,       | Iol1   | Per pin for P02, P03, P05, P06,                                              | $4.0~V \leq V_{\text{DD}} \leq 5.5~V$ |      |      | 8.5 <sup>Note 2</sup> | mA   |
| low <sup>Note 1</sup> |        | P10 to P12, P30, P31, P40,<br>P75 to P77, P120, P147, P200 to P206           | $2.7~V \leq V_{\text{DD}} < 4.0~V$    |      |      | 1.5 <sup>Note 2</sup> | mA   |
|                       |        | Total of P02, P03, P40, P120                                                 | $4.0~V \leq V_{\text{DD}} \leq 5.5~V$ |      |      | 40.0                  | mA   |
|                       |        | (When duty $\leq 70\%^{\text{Note 3}}$ )                                     | $2.7~V \leq V_{\text{DD}} < 4.0~V$    |      |      | 7.5                   | mA   |
|                       |        | Total of P05, P06, P10 to P12, P30,                                          | $4.0~V \leq V_{\text{DD}} \leq 5.5~V$ |      |      | 40.0                  | mA   |
|                       |        | P31, P75 to P77, P147, P200 to P206 (When duty $\leq 70\%^{\text{Note 3}}$ ) | $2.7~V \leq V_{\text{DD}} < 4.0~V$    |      |      | 17.5                  | mA   |
|                       |        | Total of all pins                                                            | $4.0~V \leq V_{\text{DD}} \leq 5.5~V$ |      |      | 80.0                  | mA   |
|                       |        | (When duty $\leq 70\%^{\text{Note 3}}$ )                                     | $2.7~V \leq V_{\text{DD}} < 4.0~V$    |      |      | 25.0                  | mA   |
|                       | IOL2   | Per pin for P20 to P22, P24 to P27                                           | $2.7~V \leq V_{\text{DD}} \leq 5.5~V$ |      |      | 0.4 <sup>Note 2</sup> | mA   |
|                       |        | Total of all pins (When duty $\leq 70\%^{\text{Note 3}}$ )                   | $2.7~V \leq V_{\text{DD}} \leq 5.5~V$ |      |      | 2.8                   | mA   |

#### (T\_A = -40 to +105°C, 2.7 V $\leq$ V\_DD $\leq$ 5.5 V, V\_SS = 0 V)

**Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.

- 2. However, do not exceed the total current value.
- **3.** Specification under conditions where the duty factor  $\leq$  70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins =  $(I_{OL} \times 0.7)/(n \times 0.01)$
- <Example> Where n = 80% and IoL = -10.0 mA

Total output current of pins =  $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$  mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

**Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.



| Items                  | Symbol | Conditions                                                                                                                                                  |                                                                               | MIN.   | TYP. | MAX.               | Unit |
|------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------|------|--------------------|------|
| Input voltage,<br>high | VIH1   | P02, P03, P05, P06, P10 to P12,<br>P20 to P22, P24 to P27, P30, P31,<br>P40, P75 to P77, P120 to P124, P137,<br>P147, P200 to P206, EXCLK,<br>EXCLKS, RESET | Normal input buffer                                                           | 0.8Vdd |      | Vdd                | V    |
|                        | VIH2   | P03, P10, P11                                                                                                                                               | TTL input buffer $4.0 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$        | 2.1    |      | Vdd                | V    |
|                        |        |                                                                                                                                                             | TTL input buffer $3.3 \ V \leq V_{\text{DD}} < 4.0 \ V$                       | 2.0    |      | Vdd                | V    |
|                        |        |                                                                                                                                                             | TTL input buffer $2.7 \ V \leq V_{\text{DD}} < 3.3 \ V$                       | 1.5    |      | Vdd                | V    |
| Input voltage, low     | VIL1   | P02, P03, P05, P06, P10 to P12,<br>P20 to P22, P24 to P27, P30, P31,<br>P40, P75 to P77, P120 to P124, P137,<br>P147, P200 to P206, EXCLK,<br>EXCLKS, RESET | Normal input buffer                                                           | 0      |      | 0.2V <sub>DD</sub> | V    |
|                        | VIL2   | P03, P10, P11                                                                                                                                               | TTL input buffer $4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$ | 0      |      | 0.8                | V    |
|                        |        |                                                                                                                                                             | TTL input buffer $3.3~V \leq V_{\text{DD}} < 4.0~V$                           | 0      |      | 0.5                | V    |
|                        |        |                                                                                                                                                             | TTL input buffer $2.7~V \leq V_{\text{DD}} < 3.3~V$                           | 0      |      | 0.32               | V    |

#### (T\_A = -40 to +105°C, 2.7 V $\leq$ V\_DD $\leq$ 5.5 V, V\_SS = 0 V)

#### Caution The maximum value of VIH of pins P02, P10 to P12 is VDD, even in the N-ch open-drain mode.

**Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.



| Items                          | Symbol                                                                                                                                                    | Condition                                                                                                                            | ns                      |                                             | MIN. | TYP. | MAX. | Unit |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------|------|------|------|------|
| Input leakage<br>current, high | ILIH1 P02, P03, P05, P06, P10 to P12, Vi = VDD<br>P20 to P22, P24 to P27, P30,<br>P31, P40, P75 to P77, P120,<br>P137, P147, P200 to P206,<br>RESET RESET |                                                                                                                                      |                         |                                             |      | 1    | μA   |      |
|                                | Ilih2                                                                                                                                                     | P121 to P124<br>(X1, X2, XT1, XT2, EXCLK,<br>EXCLKS)                                                                                 | VI = VDD                | In input port or<br>external clock<br>input |      |      | 1    | μA   |
|                                |                                                                                                                                                           |                                                                                                                                      |                         | In resonator connection                     |      |      | 10   | μA   |
| Input leakage<br>current, low  | ILIL1                                                                                                                                                     | P02, P03, P05, P06, P10 to P12,<br>P20 to P22, P24 to P27, P30,<br>P31, P40, P75 to P77, P120,<br>P137, P147, P200 to P206,<br>RESET | VI = VSS                |                                             |      |      | -1   | μA   |
|                                | Ilil2                                                                                                                                                     | P121 to P124<br>(X1, X2, XT1, XT2, EXCLK,<br>EXCLKS)                                                                                 | VI = VSS                | In input port or<br>external clock<br>input |      |      | -1   | μA   |
|                                |                                                                                                                                                           |                                                                                                                                      |                         | In resonator connection                     |      |      | -10  | μA   |
| On-chip pull-up<br>resistance  | Ru                                                                                                                                                        | P02, P03, P05, P06, P10 to P12,<br>P30, P31, P40, P75 to P77,<br>P120, P147, P200 to P206                                            | Vı = Vss, In input port |                                             | 10   | 20   | 100  | kΩ   |

## (T\_A = -40 to +105°C, 2.7 V $\leq$ V\_DD $\leq$ 5.5 V, V\_SS = 0 V)

**Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.



## 2.3.2 Supply current characteristics

| $(T_{A} = -40 \text{ to})$ | +105°C.  | 2.7 V < \ | /DD < 5.5 V. | Vss = 0 V) (1/2 | 2) |
|----------------------------|----------|-----------|--------------|-----------------|----|
| 117 4010                   | · 100 0, |           |              |                 | -, |

| Parameter         | Symbol |                                       |                                                    | Conditions                                                     |                         | MIN. | TYP. | MAX. | Unit |
|-------------------|--------|---------------------------------------|----------------------------------------------------|----------------------------------------------------------------|-------------------------|------|------|------|------|
| Supply            | IDD1   | Operating                             | HS (high-                                          | fi⊢ = 32 MHz <sup>Note 3</sup>                                 | V <sub>DD</sub> = 5.0 V |      | 5.0  | 7.5  | mA   |
| CURRENT<br>Note 1 |        | mode                                  | speed main)<br>mode <sup>Note 5</sup>              |                                                                | V <sub>DD</sub> = 3.0 V |      | 5.0  | 7.5  | mA   |
|                   |        |                                       | mode                                               | f <sub>IH</sub> = 24 MHz <sup>Note 3</sup>                     | V <sub>DD</sub> = 5.0 V |      | 3.9  | 5.8  | mA   |
|                   |        |                                       |                                                    |                                                                | V <sub>DD</sub> = 3.0 V |      | 3.9  | 5.8  | mA   |
|                   |        |                                       |                                                    | f⊮ = 16 MHz <sup>Note 3</sup>                                  | V <sub>DD</sub> = 5.0 V |      | 2.9  | 4.2  | mA   |
|                   |        |                                       |                                                    |                                                                | V <sub>DD</sub> = 3.0 V |      | 2.9  | 4.2  | mA   |
|                   |        |                                       | LS (low-<br>speed main)<br>mode <sup>Note 5</sup>  | $f_{H} = 8 \text{ MHz}^{\text{Note 3}},$<br>TA = -40 to + 85°C | V <sub>DD</sub> = 3.0 V |      | 1.3  | 2.0  | mA   |
|                   |        |                                       | HS (high-                                          | f <sub>MX</sub> = 20 MHz <sup>Note 2</sup> ,                   | Square wave input       |      | 3.2  | 4.9  | mA   |
|                   |        |                                       | speed main)<br>mode <sup>Note 5</sup>              | V <sub>DD</sub> = 5.0 V                                        | Resonator connection    |      | 3.3  | 5.0  | mA   |
|                   |        |                                       | mode                                               | f <sub>MX</sub> = 20 MHz <sup>Note 2</sup> ,                   | Square wave input       |      | 3.2  | 4.9  | mA   |
|                   |        |                                       |                                                    | V <sub>DD</sub> = 3.0 V                                        | Resonator connection    |      | 3.3  | 5.0  | mA   |
|                   |        |                                       |                                                    | f <sub>MX</sub> = 10 MHz <sup>Note 2</sup> ,                   | Square wave input       |      | 2.0  | 2.9  | mA   |
|                   |        |                                       |                                                    | V <sub>DD</sub> = 5.0 V                                        | Resonator connection    |      | 2.0  | 2.9  | mA   |
|                   |        |                                       |                                                    | f <sub>MX</sub> = 10 MHz <sup>Note 2</sup> ,                   | Square wave input       |      | 2.0  | 2.9  | mA   |
|                   |        |                                       | V <sub>DD</sub> = 3.0 V                            | Resonator connection                                           |                         | 2.0  | 2.9  | mA   |      |
|                   |        | LS (low-                              | $f_{MX} = 8 \text{ MHz}^{\text{Note 2}},$          | Square wave input                                              |                         | 1.2  | 1.8  | mA   |      |
|                   |        | speed main)<br>mode <sup>Note 5</sup> | V <sub>DD</sub> = 3.0 V,<br>TA = -40 to + 85°C     | Resonator connection                                           |                         | 1.2  | 1.8  | mA   |      |
|                   |        |                                       | HS (high-<br>speed main)<br>mode <sup>Note 5</sup> | f <sub>IH</sub> = 4 MHz <sup>Note 3</sup>                      | V <sub>DD</sub> = 5.0 V |      | 5.4  | 8.5  | mA   |
|                   |        |                                       |                                                    | fpll = 64 MHz, fclк = 32 MHz                                   | V <sub>DD</sub> = 3.0 V |      | 5.4  | 8.5  | mA   |
|                   |        |                                       |                                                    | f <sub>IH</sub> = 4 MHz <sup>Note 3</sup>                      | V <sub>DD</sub> = 5.0 V |      | 3.3  | 5.7  | mA   |
|                   |        |                                       |                                                    | fpll = 64 MHz, fclк = 16 MHz                                   | V <sub>DD</sub> = 3.0 V |      | 3.3  | 5.7  | mA   |
|                   |        |                                       | Subsystem                                          | fsue = 32.768 kHz <sup>Note 4</sup>                            | Square wave input       |      | 4.2  | 6.0  | μA   |
|                   |        |                                       | clock<br>operation                                 | T <sub>A</sub> = -40°C                                         | Resonator connection    |      | 4.4  | 6.2  | μA   |
|                   |        |                                       | operation                                          | fsue = 32.768 kHz <sup>Note 4</sup>                            | Square wave input       |      | 4.2  | 6.0  | μA   |
|                   |        |                                       |                                                    | T <sub>A</sub> = +25°C                                         | Resonator connection    |      | 4.4  | 6.2  | μA   |
|                   |        |                                       |                                                    | fsue = 32.768 kHz <sup>Note 4</sup>                            | Square wave input       |      | 4.3  | 7.2  | μA   |
|                   |        |                                       |                                                    | T <sub>A</sub> = +50°C                                         | Resonator connection    |      | 4.5  | 7.4  | μA   |
|                   |        |                                       |                                                    | fsue = 32.768 kHz <sup>Note 4</sup>                            | Square wave input       |      | 4.4  | 8.1  | μA   |
|                   |        |                                       |                                                    | T <sub>A</sub> = +70°C                                         | Resonator connection    |      | 4.6  | 8.3  | μA   |
|                   |        |                                       |                                                    | fsue = 32.768 kHz <sup>Note 4</sup>                            | Square wave input       |      | 5.2  | 11.4 | μA   |
|                   |        |                                       | T <sub>A</sub> = +85°C                             | Resonator connection                                           |                         | 5.4  | 11.6 | μA   |      |
|                   |        | f:                                    | f <sub>SUB</sub> = 32.768 kHz <sup>Note 4</sup>    | Square wave input                                              |                         | 6.9  | 20.8 | μA   |      |
|                   |        | T <sub>A</sub> = +105°C               | Resonator connection                               |                                                                | 7.1                     | 21.0 | μA   |      |      |

(Notes and Remarks are listed on the next page.)



#### **Notes 1.** Current flowing to the VDD.

- 2. When the high-speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed onchip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the XT1 oscillator and fiL operating current). The current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode.
- 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.
- 6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- **7.** Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- 8. Current flowing during self-programming operation.
- **9.** Current flowing only to the programmable gain amplifier. The supply current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3, and IPGA, when the programmable gain amplifier is operating in operating mode or in HALT mode.
- **10.** Current flowing only to the comparator. The supply current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3, and ICMP, when the comparator is operating.
- **11.** This is the current required to flow to V<sub>DD</sub> pin of the current circuit that is used as the programmable gain amplifier and the comparator.
- 12. Current flowing only during data flash rewrite.
- 13. See 21.3.3 SNOOZE mode in the RL78/I1A User's Manual for shift time to the SNOOZE mode .

#### Remarks 1. fil: Low-speed on-chip oscillator clock frequency

- **2.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 3. fclk: CPU/peripheral hardware clock frequency
- 4. Temperature condition of the TYP. value is T<sub>A</sub> = 25°C
- **5.** Example of calculating current value when using programmable gain amplifier and comparator.
  - Examples 1) TYP. operating current value when three comparator channels, one internal reference voltage generator, and PGA are operating (when AV<sub>REFP</sub> = V<sub>DD</sub> = 5.0 V)

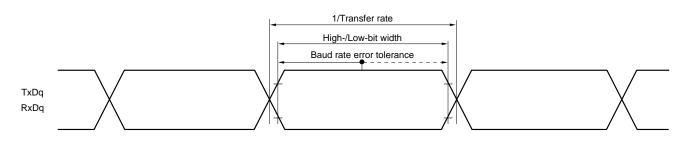
$$\begin{split} & \mathsf{ICMP} \times 3 + \mathsf{IVREF} + \mathsf{IPGA} + \mathsf{IREF} \\ &= 41.4 \ [\mu \mathsf{A}] \times 3 + 14.8 \ [\mu \mathsf{A}] \times 1 + 210 \ [\mu \mathsf{A}] + 3.2 \ [\mu \mathsf{A}] \\ &= 352.2 \ [\mu \mathsf{A}] \end{split}$$

Examples 2) TYP. operating current value when using two comparator channels, without using internal reference voltage generator (when AV<sub>REFP</sub> = V<sub>DD</sub> = 5.0 V)

ICMP × 2 + IIREF = 41.4 [μA] × 2 + 3.2 [μA] = 86.0 [μA]

R01DS0171EJ0310 Rev.3.10 Oct 31, 2016




(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)  $(T_A = -40 \text{ to } +105^{\circ}\text{C}^{\text{Note 6}}, 2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$ 

| Parameter                                                   | Symbo<br>I    | Conditions                            |                    |           | HS (high-speed main)<br>Mode |           | d main) Mode                | Unit |
|-------------------------------------------------------------|---------------|---------------------------------------|--------------------|-----------|------------------------------|-----------|-----------------------------|------|
|                                                             |               |                                       |                    | MIN.      | MAX.                         | MIN.      | MAX.                        |      |
| SCKp cycle time                                             | <b>t</b> ксү2 | $4.0~V \leq V_{\text{DD}} \leq 5.5~V$ | 20 MHz < fмск      | 8/fмск    |                              | -         |                             | ns   |
| Note 5                                                      |               |                                       | fмск ≤ 20 MHz      | 6/fмск    |                              | 6/fмск    |                             | ns   |
|                                                             |               | $2.7~V \leq V_{\text{DD}} \leq 5.5~V$ | 16 MHz < fмск      | 8/fмск    |                              | _         |                             | ns   |
|                                                             |               |                                       | fмск $\leq$ 16 MHz | 6/fмск    |                              | 6/fмск    |                             | ns   |
| SCKp high-/low-<br>level width                              | tкн2,<br>tкL2 |                                       |                    | tксү2/2   |                              | tксү2/2   |                             | ns   |
| SIp setup time<br>(to SCKp↑) <sup>Note 1</sup>              | tsık2         |                                       |                    | 1/fмск+20 |                              | 1/fмск+30 |                             | ns   |
| SIp hold time<br>(from SCKp↑) <sup>Note 2</sup>             | tksi2         |                                       |                    | 1/fмск+31 |                              | 1/fмск+31 |                             | ns   |
| Delay time from<br>SCKp↓ to SOp<br>output <sup>Note 3</sup> | tĸso2         | C = 30 pF <sup>Note 4</sup>           |                    |           | 2/f <sub>мск</sub> +<br>44   |           | 2/f <sub>мск</sub> +<br>110 | ns   |

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
  - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
  - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp<sup>↑</sup>" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
  - 4. C is the load capacitance of the SOp output lines.
  - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
  - **6.** Operating conditions of LS (low-speed main) mode is  $T_A = -40$  to +85 °C.

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 1)
  - 2. fMCK: Serial array unit operation clock frequency
    - (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
    - n: Channel number (mn = 00))





# (4) Communication at different potential (2.5 V, 3 V) (UART mode) (2/2) $(T_A = -40 \text{ to } +105^{\circ}\text{C}^{\text{Note 5}}, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

| Parameter     | Symbol |              | Conditions |                                                                                             |      | h-speed<br>Mode       | · ·  | peed main)<br>ode     | Unit |
|---------------|--------|--------------|------------|---------------------------------------------------------------------------------------------|------|-----------------------|------|-----------------------|------|
|               |        |              |            |                                                                                             | MIN. | MAX.                  | MIN. | MAX.                  |      |
| Transfer rate |        | Transmission | 4.0 V      | $\leq V_{\text{DD}} \leq 5.5~\text{V},~2.7~\text{V} \leq V_{\text{b}} \leq 4.0~\text{V}$    |      | Note 1                |      | Note 1                | bps  |
|               |        |              |            | Theoretical value of the maximum transfer rate $C_b$ = 50 pF, $R_b$ = 1.4 kΩ, $V_b$ = 2.7 V |      | 2.8 <sup>Note 2</sup> |      | 2.8 <sup>Note 2</sup> | Mbps |
|               |        |              | 2.7 V      | $\leq V_{\text{DD}}$ < 4.0 V, 2.3 V $\leq V_{\text{b}} \leq$ 2.7 V                          |      | Note 3                |      | Note 3                | bps  |
|               |        |              |            | Theoretical value of the maximum transfer rate $C_b$ = 50 pF, $R_b$ = 2.7 kΩ, $V_b$ = 2.3 V |      | 1.2 <sup>Note 4</sup> |      | 1.2 <sup>Note 4</sup> | Mbps |

**Notes 1.** The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V  $\leq$  V\_DD  $\leq$  5.5 V and 2.7 V  $\leq$  Vb  $\leq$  4.0 V

Maximum transfer rate = 
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) = 
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

\* This value is the theoretical value of the relative difference between the transmission and reception sides.

- This value as an example is calculated when the conditions described in the "Conditions" column are met. See Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- **3.** The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V  $\leq$  V\_DD < 4.0 V and 2.3 V  $\leq$  V\_b  $\leq$  2.7 V

Maximum transfer rate = 
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =  $\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \text{ [%]}$ 

\* This value is the theoretical value of the relative difference between the transmission and reception sides.

- **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. See **Note 3** above to calculate the maximum transfer rate under conditions of the customer.
- 5. Operating conditions of LS (low-speed main) mode is T<sub>A</sub> = -40 to +85 °C.

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (V<sub>DD</sub> tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V<sub>H</sub> and V<sub>L</sub>, see the DC characteristics with TTL input buffer selected.

**Remarks 1.**  $R_b[\Omega]$ : Communication line (TxDq) pull-up resistance,

 $C_{b}[F]: \mbox{ Communication line (TxDq) load capacitance, V_{b}[V]: \mbox{ Communication line voltage}$ 

- **2.** q: UART number (q = 0, 1), g: PIM and POM number (g = 0, 1)
- 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00 to 03))



(3) When reference voltage (+) = V<sub>DD</sub> (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = V<sub>SS</sub> (ADREFM = 0), target pin: ANI0 to ANI2, ANI4 to ANI7, ANI16 to ANI19, internal reference voltage, and temperature sensor output voltage

| Parameter                                  | Symbol        | Conditio                                                                                                              | ns                                    | MIN.                      | TYP. | MAX.  | Unit |
|--------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------|------|-------|------|
| Resolution                                 | RES           |                                                                                                                       |                                       | 8                         |      | 10    | bit  |
| Overall error <sup>Note 1</sup>            | AINL          | 10-bit resolution                                                                                                     |                                       |                           | 1.2  | ±7.0  | LSB  |
| Conversion time                            | <b>t</b> CONV | 10-bit resolution                                                                                                     | $3.6~V \leq V_{\text{DD}} \leq 5.5~V$ | 2.125                     |      | 39    | μS   |
|                                            |               | Target pin: ANI0 to ANI2,<br>ANI4 to ANI7, ANI16 to<br>ANI19                                                          | $2.7~V \leq V_{\text{DD}} \leq 5.5~V$ | 3.1875                    |      | 39    | μS   |
| Conversion time                            | <b>t</b> CONV | 10-bit resolution                                                                                                     | $3.6~V \leq V_{\text{DD}} \leq 5.5~V$ | 2.375                     |      | 39    | μS   |
|                                            |               | Target pin: Internal<br>reference voltage, and<br>temperature sensor output<br>voltage (HS (high-speed<br>main) mode) | $2.7~V \leq V_{\text{DD}} \leq 5.5~V$ | 3.5625                    |      | 39    | μS   |
| Zero-scale error <sup>Notes 1, 2</sup>     | Ezs           | 10-bit resolution                                                                                                     |                                       |                           |      | ±0.60 | %FSR |
| Full-scale error <sup>Notes 1, 2</sup>     | Efs           | 10-bit resolution                                                                                                     |                                       |                           |      | ±0.60 | %FSR |
| Integral linearity error <sup>Note 1</sup> | ILE           | 10-bit resolution                                                                                                     |                                       |                           |      | ±4.0  | LSB  |
| Differential linearity error Note 1        | DLE           | 10-bit resolution                                                                                                     |                                       |                           |      | ±2.0  | LSB  |
| Analog input voltage                       | VAIN          | ANI0 to ANI2, ANI4 to ANI7                                                                                            | 7                                     | 0                         |      | VDD   | V    |
|                                            |               | ANI16 to ANI19                                                                                                        |                                       | 0                         |      | VDD   | V    |
|                                            |               | Internal reference voltage<br>(HS (high-speed main) mode)                                                             |                                       | VBGR <sup>Note 3</sup>    |      |       | V    |
|                                            |               | Temperature sensor output<br>(HS (high-speed main) mod                                                                | •                                     | VTMPS25 <sup>Note 3</sup> |      | 3     | V    |

| $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_S$ | $s_{S} = 0 V$ Reference voltage (+) = V_{DD} | Reference voltage (_) = Vss) |
|--------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------|
| $(1A = -40 \ (0 + 103 \ C, 2.7 \ V \le VDD \le 5.5 \ V, V \le VDD \le 5.5 \ V)$                              | ss - 0 v, Reference voltage (+) - vol,       | Reference vollage (-) - vss) |

Notes 1. Excludes quantization error ( $\pm 1/2$  LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. See 2.6.2 Temperature sensor/internal reference voltage characteristics.



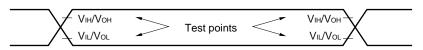
| Parameter            | Symbols |                              | Conditions                                                                                | Ratings     | Unit |
|----------------------|---------|------------------------------|-------------------------------------------------------------------------------------------|-------------|------|
| Output current, high | Іон1    | Per pin                      | P02, P03, P05, P06, P10 to P12,<br>P30, P31, P40, P75 to P77, P120,<br>P147, P200 to P206 | -40         | mA   |
|                      |         | Total of all pins<br>–170 mA | P02, P03, P40, P120                                                                       | -70         | mA   |
|                      |         |                              | P05, P06, P10 to P12, P30, P31,<br>P75 to P77, P147, P200 to P206                         | -100        | mA   |
|                      | Іон2    | Per pin                      | P20 to P22, P24 to P27                                                                    | -0.5        | mA   |
|                      |         | Total of all pins            |                                                                                           | -2          | mA   |
| Output current, low  | lol1    | Per pin                      | P02, P03, P05, P06, P10 to P12,<br>P30, P31, P40, P75 to P77, P120,<br>P147, P200 to P206 | 40          | mA   |
|                      |         | Total of all pins<br>170 mA  | P02, P03, P40, P120                                                                       | 70          | mA   |
|                      |         |                              | P05, P06, P10 to P12, P30, P31,<br>P75 to P77, P147, P200 to P206                         | 100         | mA   |
|                      | IOL2    | Per pin                      | P20 to P22, P24 to P27                                                                    | 1           | mA   |
|                      |         | Total of all pins            |                                                                                           | 5           | mA   |
| Operating ambient    | TA      | In normal operation          | on mode                                                                                   | -40 to +125 | °C   |
| temperature          |         | In flash memory p            | programming mode                                                                          | -40 to +105 |      |
| Storage temperature  | Tstg    |                              |                                                                                           | -65 to +150 | °C   |

## Absolute Maximum Ratings (T<sub>A</sub> = 25°C) (2/2)

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.



- **Notes 1.** Total current flowing into V<sub>DD</sub>, including the input leakage current flowing when the level of the input pin is fixed to V<sub>DD</sub> or V<sub>SS</sub>. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, comparator, programmable gain amplifier, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
  - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
  - 3. When high-speed system clock and subsystem clock are stopped.
  - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
  - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
    - HS (high-speed main) mode:  $2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}$ @1 MHz to 20 MHz
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
  - 2. fin: High-speed on-chip oscillator clock frequency
  - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
  - 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C




- **Notes 1.** Total current flowing into V<sub>DD</sub>, including the input leakage current flowing when the level of the input pin is fixed to V<sub>DD</sub> or V<sub>SS</sub>. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, comparator, programmable gain amplifier, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
  - **2.** During HALT instruction execution by flash memory.
  - **3.** When high-speed on-chip oscillator and subsystem clock are stopped.
  - 4. When high-speed system clock and subsystem clock are stopped.
  - When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
  - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
  - **7.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
    - HS (high-speed main) mode: 2.7 V  $\leq$  V\_{DD}  $\leq$  5.5 V@1 MHz to 20 MHz
  - 8. Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
  - 2. fin: High-speed on-chip oscillator clock frequency
  - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
  - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is  $T_A = 25^{\circ}C$



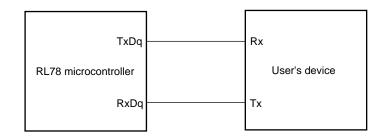
## 3.5 Peripheral Functions Characteristics

### AC Timing Test Points

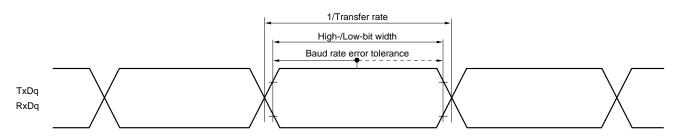


## 3.5.1 Serial array unit 0, 4 (UART0, UART1, CSI00, DALI/UART4)

## (1) During communication at same potential (UART mode)


(TA = -40 to +125°C, 2.7 V  $\leq$  VDD  $\leq$  5.5 V, Vss = 0 V)

| Parameter                       | Symbol |  | Conditions                                                                  |      | HS (high-speed main)<br>Mode |      |
|---------------------------------|--------|--|-----------------------------------------------------------------------------|------|------------------------------|------|
|                                 |        |  |                                                                             | MIN. | MAX.                         |      |
| Transfer rate <sup>Note 1</sup> |        |  |                                                                             |      | fмск/6                       | bps  |
|                                 |        |  | Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$ |      | 3.3                          | Mbps |


**Notes 1.** Transfer rate in the SNOOZE mode is 4800 bps only.

- 2. The operating frequencies of the CPU/peripheral hardware clock (fcLK) are:
  - HS (high-speed main) mode: 20 MHz (2.7 V  $\leq$  V\_{DD}  $\leq$  5.5 V)

### UART mode connection diagram (during communication at same potential)



#### UART mode bit width (during communication at same potential) (reference)



Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

**Remarks 1.** q: UART number (q = 0, 1), g: PIM and POM number (g = 0, 1)

2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03))

#### (2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) ( $T_A = -40$ to +125°C, 2.7 V $\leq V_{DD} \leq 5.5$ V, Vss = 0 V)

| Parameter                                                 | Symbol        | Conditions                                            |                                       |              | HS (high-speed main)<br>Mode |    |
|-----------------------------------------------------------|---------------|-------------------------------------------------------|---------------------------------------|--------------|------------------------------|----|
|                                                           |               |                                                       |                                       | MIN.         | MAX.                         |    |
| SCKp cycle time                                           | tkCY1         | $t_{\text{KCY1}} \ge 4/f_{\text{CLK}}$                | $4.0~V \leq V_{\text{DD}} \leq 5.5~V$ | 250          |                              | ns |
|                                                           |               |                                                       | $2.7~V \leq V_{\text{DD}} \leq 5.5~V$ | 500          |                              | ns |
| SCKp high-/low-level width                                | <b>t</b> кн1, | $4.0~V \leq V_{\text{DD}} \leq 5.5~V$                 |                                       | tксү1/2 – 20 |                              | ns |
|                                                           | tĸ∟1          | $2.7 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$ |                                       | tkcy1/2 - 40 |                              | ns |
| SIp setup time (to SCKp↑) <sup>Note 1</sup>               | tsiĸ1         | $4.0~V \leq V_{\text{DD}} \leq 5.5~V$                 |                                       | 80           |                              | ns |
|                                                           |               | $2.7~V \leq V_{\text{DD}} \leq 5.5~V$                 |                                       | 80           |                              | ns |
| SIp hold time (from SCKp <sup>↑</sup> ) <sup>Note 2</sup> | tksi1         |                                                       |                                       | 40           |                              | ns |
| Delay time from SCKp↓ to<br>SOp output <sup>Note 3</sup>  | tkso1         | C = 30 pF <sup>Note 4</sup>                           |                                       |              | 80                           | ns |

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

- 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp<sup>↑</sup>" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

**Remarks 1.** p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 1)

2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

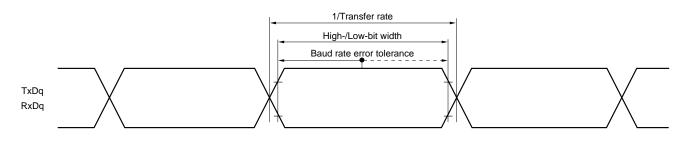
n: Channel number (mn = 00))



#### (3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) ( $T_A = -40$ to +125°C, 2.7 V $\leq$ V<sub>DD</sub> $\leq$ 5.5 V, V<sub>SS</sub> = 0 V)

| Parameter                                                         | Symbol        | Conditions                            |               |           | HS (high-speed main)<br>Mode |    |
|-------------------------------------------------------------------|---------------|---------------------------------------|---------------|-----------|------------------------------|----|
|                                                                   |               |                                       |               | MIN.      | MAX.                         |    |
| SCKp cycle time <sup>Note 5</sup>                                 | <b>t</b> ксү2 | $4.0~V \leq V_{\text{DD}} \leq 5.5~V$ | fмск ≤ 20 MHz | 6/fмск    |                              | ns |
|                                                                   |               | $2.7~V \leq V_{\text{DD}} \leq 5.5~V$ | 16 MHz < fмск | 8/fмск    |                              | ns |
|                                                                   |               |                                       | fмск ≤ 16 MHz | 6/fмск    |                              | ns |
| SCKp high-/low-level width                                        | tкн2,<br>tкL2 |                                       |               | tксү2/2   |                              | ns |
| SIp setup time<br>(to SCKp↑) <sup>Note 1</sup>                    | tsık2         |                                       |               | 1/fмск+40 |                              | ns |
| SIp hold time<br>(from SCKp↑) <sup>Note 2</sup>                   | tksi2         |                                       |               | 1/fмск+60 |                              | ns |
| Delay time from SCKp $\downarrow$ to SOp output <sup>Note 3</sup> | tkso2         | C = 30 pF <sup>Note 4</sup>           |               |           | 2/fмск+80                    | ns |

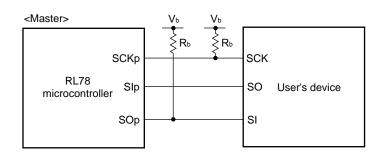
- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
  - When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
  - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
  - 4. C is the load capacitance of the SOp output lines.
  - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps


## Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

**Remarks 1.** p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 1)

2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,


n: Channel number (mn = 00))





Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V<sub>DD</sub> tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V<sub>IH</sub> and V<sub>IL</sub>, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)



- **Remarks 1.** R<sub>b</sub>[Ω]: Communication line (SCKp, SOp) pull-up resistance, C<sub>b</sub>[F]: Communication line (SCKp, SOp) load capacitance, V<sub>b</sub>[V]: Communication line voltage
  - 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 1)



(3) When reference voltage (+) = V<sub>DD</sub> (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = V<sub>SS</sub> (ADREFM = 0), target pin: ANI0 to ANI2, ANI4 to ANI7, ANI16 to ANI19, internal reference voltage, and temperature sensor output voltage

| Parameter                                         | Symbol        | Conditio                                                            | MIN.                                  | TYP.                    | MAX.         | Unit  |      |
|---------------------------------------------------|---------------|---------------------------------------------------------------------|---------------------------------------|-------------------------|--------------|-------|------|
| Resolution                                        | RES           |                                                                     |                                       | 8                       |              | 10    | bit  |
| Overall error <sup>Note 1</sup>                   | AINL          | 10-bit resolution                                                   |                                       |                         | 1.2          | ±7.0  | LSB  |
| Conversion time tconv                             | <b>t</b> CONV | 10-bit resolution                                                   | $3.6~V \leq V_{\text{DD}} \leq 5.5~V$ | 2.125                   |              | 39    | μS   |
|                                                   |               | Target pin: ANI0 to ANI2,<br>ANI4 to ANI7, ANI16 to<br>ANI19        | $2.7~V \leq V_{\text{DD}} \leq 5.5~V$ | 3.4                     |              | 39    | μS   |
| Conversion time                                   | <b>t</b> CONV | 10-bit resolution                                                   | $3.6~V \leq V_{\text{DD}} \leq 5.5~V$ | 2.375                   |              | 39    | μS   |
|                                                   |               | Target pin: Internal<br>reference voltage, and                      | $2.7~V \leq V_{\text{DD}} \leq 5.5~V$ | 3.8                     |              | 39    | μS   |
|                                                   | voltage (     | temperature sensor output<br>voltage (HS (high-speed<br>main) mode) |                                       |                         |              |       |      |
| Zero-scale error <sup>Notes 1, 2</sup>            | Ezs           | 10-bit resolution                                                   |                                       |                         |              | ±0.60 | %FSR |
| Full-scale error <sup>Notes 1, 2</sup>            | Ers           | 10-bit resolution                                                   |                                       |                         |              | ±0.60 | %FSR |
| Integral linearity error <sup>Note 1</sup>        | ILE           | 10-bit resolution                                                   |                                       |                         |              | ±4.0  | LSB  |
| Differential linearity error <sup>Note</sup><br>1 | DLE           | 10-bit resolution                                                   |                                       |                         |              | ±2.0  | LSB  |
| Analog input voltage V/                           | VAIN          | ANI0 to ANI2, ANI4 to ANI7                                          | ,                                     | 0                       |              | Vdd   | V    |
|                                                   |               | ANI16 to ANI19                                                      | 0                                     |                         | Vdd          | V     |      |
|                                                   |               | Internal reference voltage<br>(HS (high-speed main) mode)           |                                       | V <sub>BGR</sub> Note 3 |              |       | V    |
|                                                   |               | Temperature sensor output<br>(HS (high-speed main) mod              | ١                                     | /TMPS25 Note            | MPS25 Note 3 |       |      |

**Notes 1.** Excludes quantization error ( $\pm 1/2$  LSB).

- **2.** This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. See 3.6.2 Temperature sensor/internal reference voltage characteristics.

