

Welcome to E-XFL.COM

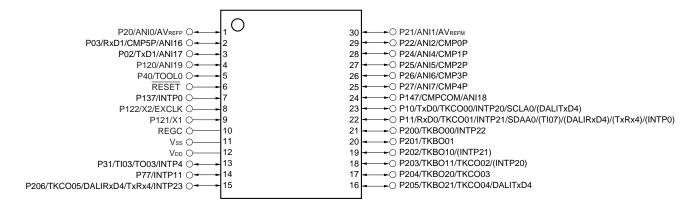
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI


Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	29
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 11x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	38-SSOP (0.240", 6.10mm Width)
Supplier Device Package	38-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f107degsp-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3.2 30-pin products

• 30-pin plastic LSSOP (7.62 mm (300))

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR1) or the input switch control register (ISC). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR1) and Figure 15-20 Format of Input Switch Control Register (ISC) in the RL78/I1A User's Manual.

Items	Symbol	Condition	ns		MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	P02, P03, P05, P06, P10 to P12, P20 to P22, P24 to P27, P30, P31, P40, P75 to P77, P120, P137, P147, P200 to P206, RESET	VI = VDD				1	μA
	Ilih2	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VDD	In input port or external clock input			1	μA
				In resonator connection			10	μA
Input leakage current, low	ILIL1	P02, P03, P05, P06, P10 to P12, P20 to P22, P24 to P27, P30, P31, P40, P75 to P77, P120, P137, P147, P200 to P206, RESET	VI = VSS				-1	μA
	Ilil2	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VSS	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
On-chip pull-up resistance	Ru	P02, P03, P05, P06, P10 to P12, P30, P31, P40, P75 to P77, P120, P147, P200 to P206	Vı = Vss, In	input port	10	20	100	kΩ

(T_A = -40 to +105°C, 2.7 V \leq V_DD \leq 5.5 V, V_SS = 0 V)

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

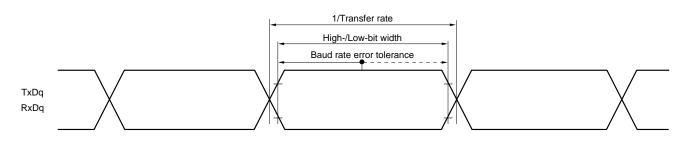
2.3.2 Supply current characteristics

$(T_{A} = -40 \text{ to})$	+105°C.	2.7 V < \	/DD < 5.5 V.	Vss = 0 V) (1/2	2)
117 4010	· 100 0,				-,

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operating	HS (high-	fi⊢ = 32 MHz ^{Note 3}	V _{DD} = 5.0 V		5.0	7.5	mA
CURRENT Note 1		mode	speed main) mode ^{Note 5}		V _{DD} = 3.0 V		5.0	7.5	mA
			mode	f _{IH} = 24 MHz ^{Note 3}	V _{DD} = 5.0 V		3.9	5.8	mA
					V _{DD} = 3.0 V		3.9	5.8	mA
				f⊮ = 16 MHz ^{Note 3}	V _{DD} = 5.0 V		2.9	4.2	mA
					V _{DD} = 3.0 V		2.9	4.2	mA
		LS (low- speed main) mode ^{Note 5}	$f_{H} = 8 \text{ MHz}^{\text{Note 3}},$ TA = -40 to + 85°C	V _{DD} = 3.0 V		1.3	2.0	mA	
			HS (high-	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Square wave input		3.2	4.9	mA
			speed main) mode ^{Note 5}	V _{DD} = 5.0 V	Resonator connection		3.3	5.0	mA
			$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Square wave input		3.2	4.9	mA	
				V _{DD} = 3.0 V	Resonator connection		3.3	5.0	mA
				f _{MX} = 10 MHz ^{Note 2} ,	Square wave input		2.0	2.9	mA
		V _{DD} = 5.0 V	Resonator connection		2.0	2.9	mA		
			f _{MX} = 10 MHz ^{Note 2} ,	Square wave input		2.0	2.9	mA	
				V _{DD} = 3.0 V	Resonator connection		2.0	2.9	mA
			LS (low- speed main) mode ^{Note 5}	$f_{MX} = 8 \text{ MHz}^{\text{Note 2}},$	Square wave input		1.2	1.8	mA
				V _{DD} = 3.0 V, TA = -40 to + 85°C	Resonator connection		1.2	1.8	mA
			speed main) fPLL = 64 MHz, fcLK = 32 MHz	f _{IH} = 4 MHz ^{Note 3}	V _{DD} = 5.0 V		5.4	8.5	mA
				V _{DD} = 3.0 V		5.4	8.5	mA	
			mode	f _{IH} = 4 MHz ^{Note 3}	V _{DD} = 5.0 V		3.3	5.7	mA
				fpll = 64 MHz, fclк = 16 MHz	V _{DD} = 3.0 V		3.3	5.7	mA
			Subsystem	fsue = 32.768 kHz ^{Note 4}	Square wave input		4.2	6.0	μA
			clock operation	T _A = -40°C	Resonator connection		4.4	6.2	μA
			operation	fsue = 32.768 kHz ^{Note 4}	Square wave input		4.2	6.0	μA
				T _A = +25°C	Resonator connection		4.4	6.2	μA
				fsue = 32.768 kHz ^{Note 4}	Square wave input		4.3	7.2	μA
				T _A = +50°C	Resonator connection		4.5	7.4	μA
				fsue = 32.768 kHz ^{Note 4}	Square wave input		4.4	8.1	μA
			T _A = +70°C	Resonator connection		4.6	8.3	μA	
			fsue = 32.768 kHz ^{Note 4}	Square wave input		5.2	11.4	μA	
			T _A = +85°C	Resonator connection		5.4	11.6	μA	
				f _{SUB} = 32.768 kHz ^{Note 4}	Square wave input		6.9	20.8	μA
				T _A = +105°C	Resonator connection		7.1	21.0	μA

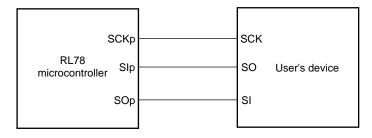
(Notes and Remarks are listed on the next page.)

- **Notes 1.** Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, comparator, programmable gain amplifier, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: 2.7 V \leq V_DD \leq 5.5 V@1 MHz to 32 MHz
 - LS (low-speed main) mode: 2.7 V \leq V_DD \leq 5.5 V@1 MHz to 8 MHz
- **Remarks 1.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fil: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - **4.** Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

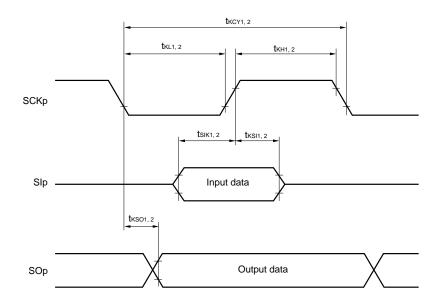

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +105^{\circ}\text{C}^{\text{Note 6}}, 2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$

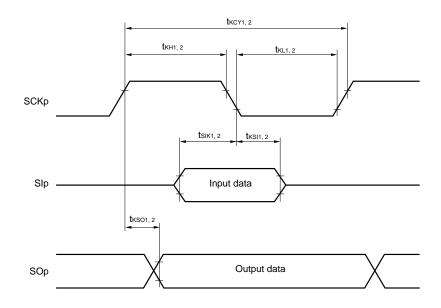
Parameter	Symbo I	Condit	Conditions		peed main) ode	LS (low-spee	d main) Mode	Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t ксү2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	20 MHz < fмск	8/fмск		-		ns
Note 5			fмск ≤ 20 MHz	6/fмск		6/fмск		ns
		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	16 MHz < fмск	8/fмск		_		ns
			fмск \leq 16 MHz	6/fмск		6/fмск		ns
SCKp high-/low- level width	tкн2, tкL2			tксү2/2		tксү2/2		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsık2			1/fмск+20		1/fмск+30		ns
SIp hold time (from SCKp↑) ^{Note 2}	tksi2			1/fмск+31		1/fмск+31		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tĸso2	C = 30 pF ^{Note 4}			2/f _{мск} + 44		2/f _{мск} + 110	ns

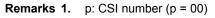
- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
 - **6.** Operating conditions of LS (low-speed main) mode is $T_A = -40$ to +85 °C.


Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 1)
 - 2. fMCK: Serial array unit operation clock frequency
 - (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
 - n: Channel number (mn = 00))

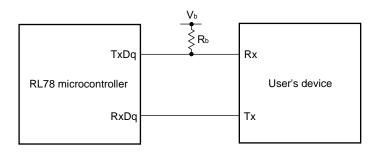


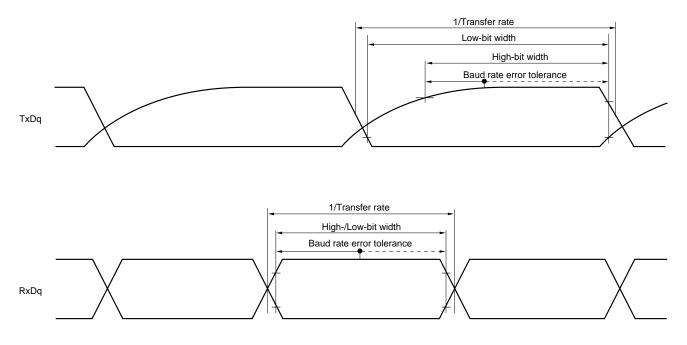

CSI mode connection diagram (during communication at same potential)



CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)




2. m: Unit number, n: Channel number (mn = 00)

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (V_{DD} tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. R_b[Ω]: Communication line (TxDq) pull-up resistance, V_b[V]: Communication line voltage
2. q: UART number (q = 0, 1), g: PIM and POM number (g = 0, 1)

(5) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) $(T_A = -40 \text{ to } +105^{\circ}\text{C}^{\text{Note 3}}, 2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

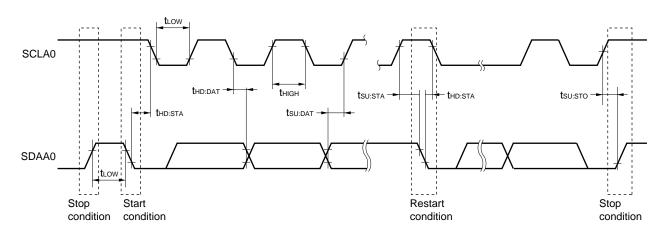
Parameter	Symbol		Conditions	HS (high main) M	•	LS (low-s main) M	•	Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tксү1 \geq 2/fclк		200		1150		ns
			$\label{eq:VDD} \begin{array}{l} 2.7 \; V \leq V_{\text{DD}} < 4.0 \; \text{V}, 2.3 \; \text{V} \leq V_{\text{b}} \leq 2.7 \; \text{V}, \\ C_{\text{b}} = 30 \; \text{pF}, \; \text{R}_{\text{b}} = 2.7 \; \text{k}\Omega \end{array}$	300		1150		ns
SCKp high-level width	t ĸнı	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq \\ C_{\text{b}} = 30 \ \text{pF}, \ \text{F} \end{array}$	$\label{eq:2.1} \begin{array}{l} 5.5 \mbox{ V, } 2.7 \mbox{ V} \leq V_b \leq 4.0 \mbox{ V,} \\ R_b = 1.4 k\Omega \end{array}$	tксү1/2 – 50		tkcy1/2 - 75		ns
		$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < \\ C_{\text{b}} = 30 \ \text{pF}, \ \text{F} \end{array}$: 4.0 V, 2.3 V \leq V_b \leq 2.7 V, R_b = 2.7 k\Omega	tксү1/2 – 120		tксү1/2 – 170		ns
SCKp low-level width	t KL1	$4.0 V \le V_{DD} \le C_b = 30 \text{ pF}, \text{ F}$	$15.5 \text{ V}, 2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V},$ Rb = 1.4 kΩ	tксү1/2 – 7		tkcy1/2 – 50		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < C_{\text{b}} = 30 \text{ pF}, \text{ F}$: 4.0 V, 2.3 V \leq V_b \leq 2.7 V, R_b = 2.7 k\Omega	tксү1/2 – 10		tkcy1/2 - 50		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsik1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq \\ C_b = 30 \ pF, \ F \end{array}$	$\label{eq:2.5} \begin{array}{l} 5.5 \mbox{ V, } 2.7 \mbox{ V} \leq V_b \leq 4.0 \mbox{ V,} \\ R_b = 1.4 k\Omega \end{array}$	81		479		ns
		$2.7 V \le V_{DD} < C_b = 30 pF, F$	$ 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V}, $ R _b = 2.7 kΩ	177		479		ns
SIp hold time (from SCKp↑) ^{Note}	tksi1		$ 5.5 \text{ V}, 2.7 \text{ V} \leq V_b \leq 4.0 \text{ V}, $	10		19		ns
1		$2.7 V \le V_{DD} < C_b = 30 pF, F$	$ 4.0 V, 2.3 V \le V_b \le 2.7 V, $ R _b = 2.7 kΩ	10		19		ns
Delay time from SCKp↓ to SOp	t KSO1	$4.0 V \le V_{DD} \le C_b = 30 \text{ pF}, \text{ F}$	$\lesssim 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V},$ R _b = 1.4 kΩ		60		100	ns
output ^{Note 1}		$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < \\ C_{\text{b}} = 30 \ \text{pF}, \end{array}$	$ 4.0 V, 2.3 V \le V_b \le 2.7 V, $ R _b = 2.7 kΩ		130		195	ns
SIp setup time (to SCKp↓) ^{Note 2}	tsik1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq \\ C_b = 30 \ pF, \ F \end{array}$	$\label{eq:2.5} \begin{array}{l} 5.5 \mbox{ V, } 2.7 \mbox{ V} \leq V_b \leq 4.0 \mbox{ V,} \\ R_b = 1.4 k\Omega \end{array}$	44		110		ns
		$2.7 V \le V_{DD} < C_b = 30 pF, F$	$ 4.0 V, 2.3 V \le V_b \le 2.7 V, $ R _b = 2.7 kΩ	44		110		ns
SIp hold time (from SCKp↓) ^{Note}	tksi1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq \\ C_b = 30 \ pF, \ F \end{array}$	$\label{eq:2.1} \begin{array}{l} 5.5 \mbox{ V, } 2.7 \mbox{ V} \leq V_b \leq 4.0 \mbox{ V,} \\ R_b = 1.4 k\Omega \end{array}$	10		19		ns
2		$\begin{array}{l} 2.7 \ V \leq V_{DD} < \\ C_b = 30 \ pF, \ F \end{array}$	$ 4.0 V, 2.3 V \le V_b \le 2.7 V, $ R _b = 2.7 kΩ	10		19		ns
Delay time from SCKp↑ to	tkso1	$4.0 V \le V_{DD} \le C_b = 30 \text{ pF}, \text{ F}$	$ 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V}, $ R _b = 1.4 kΩ		10		25	ns
SOp output ^{Note 2}		$2.7 \text{ V} \le \text{V}_{\text{DD}} < C_{\text{b}} = 30 \text{ pF}, \text{ F}$	$\begin{array}{l} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ R_b = 2.7 \ k\Omega \end{array}$		10		25	ns

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

- 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 3. Operating conditions of LS (low-speed main) mode is T_A = -40 to +85 °C.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_H and V_L, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R_b[Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 1)

(2) I²C fast mode

$(T_A = -40 \text{ to } +105^{\circ}\text{C}^{\text{Note 3}}, 2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$


Parameter	Symbol	Conditions		h-speed Mode		/-speed Mode	Unit
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	fast mode: fcLK \ge 3.5 MHz	0	400	0	400	kHz
Setup time of restart condition	tsu:sta		0.6		0.6		μS
Hold time ^{Note 1}	thd:sta		0.6		0.6		μS
Hold time when SCLA0 = "L"	t LOW		1.3		1.3		μS
Hold time when SCLA0 = "H"	t HIGH		0.6		0.6		μS
Data setup time (reception)	tsu:dat		100		100		ns
Data hold time (transmission) ^{Note 2}	thd:dat		0	0.9	0	0.9	μS
Setup time of stop condition	tsu:sto		0.6		0.6		μS
Bus-free time	t BUF		1.3		1.3		μS

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

- 2. The maximum value (MAX.) of the during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
- 3. Operating conditions of LS (low-speed main) mode is $T_A = -40$ to +85 °C.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

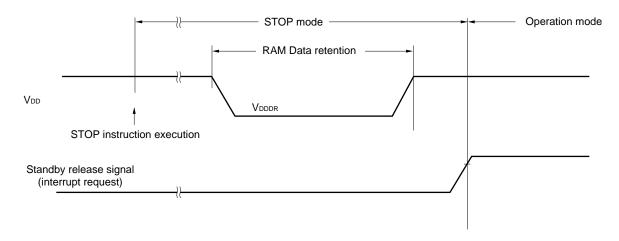
Fast mode: $C_b = 320 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

IICA serial transfer timing

2.6.2 Temperature sensor/internal reference voltage characteristics

-						
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, T_A = +25°C		1.05		V
Internal reference voltage	VBGRT	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	Fvtmps	Temperature sensor that depends on the temperature		-3.6		mV/C
Operation stabilization wait time	tamp		5			μS

(T_A = -40 to +105°C, 2.7 V \leq V_DD \leq 5.5 V, Vss = 0 V, HS (high-speed main) mode)



2.7 RAM Data Retention Characteristics

(T_A = -40 to +105°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage ^{Note 2}	VDDDR		1.44 ^{Note 1}		5.5	V

- **Note** The value depends on the POR detection voltage. When the voltage drops, the RAM data is retained before a POR reset is effected, but RAM data is not retained when a POR reset is effected.
- Caution When CPU is operated at the voltage of out of the operation voltage range, RAM data is not retained. Therefore, set STOP mode before the supplied voltage is below the operation voltage range.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current,	IOL1	Per pin for P02, P03, P05, P06,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			8.5 ^{Note 2}	mA
IOW ^{Note 1}	Note 1	P10 to P12, P30, P31, P40, P75 to P77, P120, P147, P200 to P206	$2.7~\text{V} \leq \text{V}_\text{DD} < 4.0~\text{V}$			1.5 ^{Note 2}	mA
		Total of P02, P03, P40, P120	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			20.0	mA
		(When duty $\leq 70\%^{\text{Note 3}}$)	$2.7~V \leq V_{\text{DD}} < 4.0~V$			5.0	mA
		Total of P05, P06, P10 to P12, P30, P31,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			20.0	mA
		P75 to P77, P147, P200 to P206 (When duty $\le 70\%^{Note 3}$)	$2.7~V \leq V_{\text{DD}} < 4.0~V$			10.0	mA
		Total of all pins	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			40.0	mA
		(When duty $\leq 70\%^{\text{Note 3}}$)	$2.7~V \leq V_{\text{DD}} < 4.0~V$			15.0	mA
	Iol2	Per pin for P20 to P22, P24 to P27	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$			0.4 ^{Note 2}	mA
		Total of all pins (When duty $\leq 70\%^{\text{Note 3}}$)	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$			1.6	mA

$(T_A = -40 \text{ to } +125^{\circ}C, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.

- 2. However, do not exceed the total current value.
- **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = $(I_{OL} \times 0.7)/(n \times 0.01)$
- <Example> Where n = 80% and I_{OL} = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \cong -8.7 \text{ mA}$

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

3.3.2 Supply current characteristics

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operating	HS (high-	f⊪ = 16 MHz ^{Note 3}	V _{DD} = 5.0 V		2.9	4.8	mA
Current Note 1		mode	speed main) mode ^{Note 5}		V _{DD} = 3.0 V		2.9	4.8	mA
			HS (high-	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Square wave input		3.2	5.6	mA
			speed main) mode ^{Note 5}	Note 5	Resonator connection		3.3	5.7	mA
			mode	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Square wave input		3.2	5.6	mA
				V _{DD} = 3.0 V	Resonator connection		3.3	5.7	mA
				$f_{MX} = 10 \text{ MHz}^{Note 2},$	Square wave input		2.0	3.3	mA
				V _{DD} = 5.0 V	Resonator connection		2.0	3.3	mA
				$f_{MX} = 10 \text{ MHz}^{Note 2},$	Square wave input		2.0	3.3	mA
			V _{DD} = 3.0 V	Resonator connection		2.0	3.3	mA	
		speed main) mode ^{Note 5}	$f_{H} = 4 \text{ MHz}^{Note 3}$ $f_{PLL} = 64 \text{ MHz}, f_{CLK} = 16 \text{ MHz}$	V _{DD} = 5.0 V		3.3	6.5	mA	
				V _{DD} = 3.0 V		3.3	6.5	mA	
			Subsystem	T _A = -40°C	Square wave input		4.2	6.0	μA
			clock operation		Resonator connection		4.4	6.2	μA
			operation		Square wave input		4.2	6.0	μA
					Resonator connection		4.4	6.2	μA
				f _{SUB} = 32.768 kHz ^{Note 4}	Square wave input		4.3	7.2	μA
				T _A = +50°C	Resonator connection		4.5	7.4	μA
				fsub = 32.768 kHz ^{Note 4}	Square wave input		4.4	8.1	μA
				T _A = +70°C	Resonator connection		4.6	8.3	μA
				f _{SUB} = 32.768 kHz ^{Note 4}	Square wave input		5.2	11.4	μA
				T _A = +85°C	Resonator connection		5.4	11.6	μA
				f _{SUB} = 32.768 kHz ^{Note 4}	Square wave input		6.9	20.8	μA
				T _A = +105°C	Resonator connection		7.1	21.0	μA
			f _{SUB} = 32.768 kHz ^{Note 4}	Square wave input		11.1	51.2	μA	
				T _A = +125°C	Resonator connection		11.3	51.4	μA

(TA = -40 to +125°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V) (1/2)

(Notes and Remarks are listed on the next page.)

- **Notes 1.** Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, comparator, programmable gain amplifier, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - **2.** During HALT instruction execution by flash memory.
 - **3.** When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - **7.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: 2.7 V \leq V_{DD} \leq 5.5 V@1 MHz to 20 MHz
 - 8. Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

		-						
Parameter	Symbol		Condition	IS	MIN.	TYP.	MAX.	Unit
Low-speed on- chip oscillator operating current	IFIL ^{Note 1}					0.20		μA
RTC operating current	IRTC Notes 1, 2, 3					0.02		μA
12-bit interval timer operating current	lı⊤ Notes 1, 2, 4					0.02		μA
Watchdog timer operating current	IWDT Notes 1, 2, 5	fı∟ = 15 kHz				0.22		μA
A/D converter operating current	IADC Notes 1, 6	When conversion maximum spee		e, AV _{REFP} = V_{DD} = 5.0 V		1.3	1.7	mA
A/D converter reference voltage current	IADREF ^{Note 1}					75.0		μA
Temperature sensor operating current	ITMPS ^{Note 1}					75.0		μA
LVD operating current	ILVD ^{Notes 1, 7}					0.08		μA
Self-programming operating current	IFSP Notes 1, 8					2.5	12.2	mA
Programmable	IPGA ^{Note 9}			$AV_{REFP} = V_{DD} = 5.0 V$		0.21	0.37	mA
gain amplifier operating current				$AV_{REFP} = V_{DD} = 3.0 V$		0.18	0.35	mA
Comparator	ICMP ^{Note 10}	When one com	parator channel is	$AV_{REFP} = V_{DD} = 5.0 V$		41.4	74	μA
operating current		operating		AV _{REFP} = V _{DD} = 3.0 V		37.2	71	μA
	IVREF		nal reference voltage	e AV _{REFP} = V _{DD} = 5.0 V		14.8	31	μA
		circuit is operati	ng	AV _{REFP} = V _{DD} = 3.0 V		8.9	24	μA
Programmable	IREF ^{Note 11}			$AV_{REFP} = V_{DD} = 5.0 V$		3.2	6.1	μA
gain amplifier/ comparator reference current source				$AV_{REFP} = V_{DD} = 3.0 V$		2.9	4.9	μA
BGO operating current	BGO ^{Note 12}					2.50	12.2	mA
SNOOZE	Isnoz ^{Note 1}	A/D converter	D converter The mode is performed ^{Note 13}			0.50	1.10	mA
operating current		operation	The A/D conversion Normal mode, AVR	n operations are performed, EFP = V_{DD} = 5.0 V		1.20	2.17	mA
		CSI/UART oper	ation			0.70	1.27	mA

(T_A = -40 to +125°C, 2.7 V \leq V_DD \leq 5.5 V, Vss = 0 V)

(Notes and $\ensuremath{\textit{Remarks}}$ are listed on the next page.)

3.4 AC Characteristics

 $(T_A = -40 \text{ to } +125^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$

Items	Symbol	Conditions			MIN.	TYP.	MAX.	Unit	
Instruction cycle (minimum T instruction execution time)	Тсү	Main system clock (f _{MAIN}) operation	HS (high-s	peed r	nain) mode	0.05		1	μs
		Subsystem clock (fsub) operation			28.5	30.5	31.3	μS	
		In the self programming mode	HS (high-s main) mod	•	T _A = -40 to +105°C	0.05		1	μs
External system clock frequency	fex		· · · ·		1.0		20.0	MHz	
	fexs					32		35	kHz
External system clock input high-	texн, texL					24			ns
level width, low-level width	texns, texls					13.7			μS
TI03, TI05, TI06, TI07 input high- level width, low-level width	tтıн, tтı∟					2/fмск+10			ns
T003, T005, T006, TKB000,	fто	HS (high-speed main) mode		4.0 \	$V \le V_{\text{DD}} \le 5.5 \text{ V}$			5	MHz
TKBO01, TKBO10, TKBO11, TKBO20, TKBO21, TKCO00 to TKCO05 output frequency (When duty = 50%)				2.7 \	$V \leq V_{DD} < 4.0 V$			4	MHz
Interrupt input high-level width, low-level width	tinth, tintl	INTP0, INTP3 INTP9 to INT INTP20 to IN	P11,	2.7 \	$V \le V_{DD} \le 5.5 V$	1			μS
RESET low-level width	trsl					10			μS

Remark fmck: Timer array unit operation clock frequency

(Operation clock to be set by the CKS0n bit of timer mode register 0n (TMR0n). n: Channel number (n = 0 to 7))

3.5.2 Serial interface IICA

(1) I^2C standard mode

$(T_A = -40 \text{ to } +125^{\circ}\text{C}, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

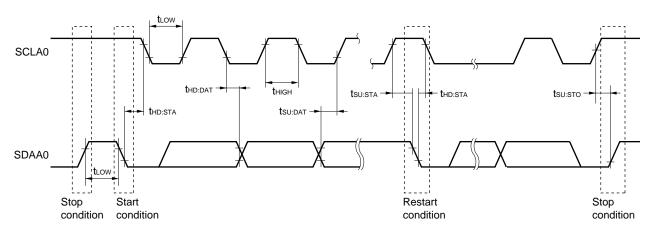
Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Standard mode: fcLK≥ 1 MHz	0	100	kHz
Setup time of restart condition	tsu:sta		4.7		μS
Hold time ^{Note 1}	thd:sta		4.0		μS
Hold time when SCLA0 = "L"	t∟ow		4.7		μS
Hold time when SCLA0 = "H"	t HIGH		4.0		μS
Data setup time (reception)	tsu:dat		250		ns
Data hold time (transmission) ^{Note 2}	thd:dat		0	3.45	μS
Setup time of stop condition	tsu:sto		4.0		μS
Bus-free time	t BUF		4.7		μS

- **Notes 1.** The first clock pulse is generated after this period when the start/restart condition is detected.
 - 2. The maximum value (MAX.) of the is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: C_b = 400 pF, R_b = 2.7 k Ω

(2) I²C fast mode

$(T_A = -40 \text{ to } +125^{\circ}C, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$


Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
SCLA0 clock frequency	fsc∟	fast mode: fcLK≥ 3.5 MHz	0	400	kHz
Setup time of restart condition	tsu:sta		0.6		μS
Hold time ^{Note 1}	thd:sta		0.6		μS
Hold time when SCLA0 = "L"	t LOW		1.3		μS
Hold time when SCLA0 = "H"	t HIGH		0.6		μS
Data setup time (reception)	tsu:dat		100		ns
Data hold time (transmission)Note 2	thd:dat		0	0.9	μS
Setup time of stop condition	tsu:sto		0.6		μS
Bus-free time	t BUF		1.3		μS

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

- 2. The maximum value (MAX.) of the:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

fast mode:

 C_b = 320 pF, R_b = 1.1 k Ω

IICA serial transfer timing

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin: ANI0, ANI2, ANI4 to ANI7, ANI16 to ANI19

(T_A = -40 to +125°C, 2.7 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, Reference voltage (+) = V_{BGR}^{Note 3}, Reference voltage (-) = AV_{REFM}^{Note 4} = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		bit
Conversion time	t CONV	8-bit resolution	17		39	μS
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution			±2.0	LSB
Differential linearity error ^{Note 1}	DLE	8-bit resolution			±1.0	LSB
Analog input voltage	VAIN		0		${\sf V}_{\sf BGR}{}^{\sf Note \; 3}$	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

3. See 3.6.2 Temperature sensor/internal reference voltage characteristics.

4. When reference voltage (–) = Vss, the MAX. values are as follows.

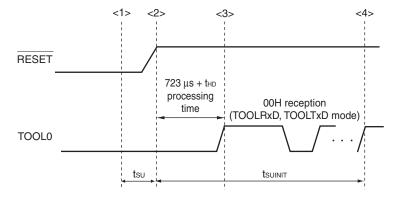
Zero-scale error: Add ±0.35%FSR to the MAX. value when reference voltage (-) = AVREFM.

Integral linearity error: Add ±0.5 LSB to the MAX. value when reference voltage (-) = AVREFM.

Differential linearity error: Add ± 0.2 LSB to the MAX. value when reference voltage (–) = AV_{REFM}.

3.6.2 Temperature sensor/internal reference voltage characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, T_A = +25°C		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	Fvtmps	Temperature sensor that depends on the temperature		-3.6		mV/C
Operation stabilization wait time	tамр		5			μs


(TA = -40 to +125°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V, HS (high-speed main) mode)

3.10 Timing of Entry to Flash Memory Programming Modes

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the initial communication settings are specified	tsuinit	POR and LVD reset must end before the external reset ends.			100	ms
How long from when the TOOL0 pin is placed at the low level until an external reset ends	ts∪	POR and LVD reset must end before the external reset ends.	10			μS
How long the TOOL0 pin must be kept at the low level after a reset ends (except soft processing time)	tнd	POR and LVD reset must end before the external reset ends.	1			ms

$T_A = -40 \text{ to } +125^{\circ}\text{C}, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset ends (POR and LVD reset must end before the pin reset ends.).
- <3> The TOOL0 pin is set to the high level.
- <4> Complete the baud rate setting by UART reception.
- **Remark** tsuinit: The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the resets end.
 - $t_{\text{SU:}}$ How long from when the TOOL0 pin is placed at the low level until an external reset ends
 - thd: How long to keep the TOOL0 pin at the low level from when the external and internal resets end (except soft processing time)

