

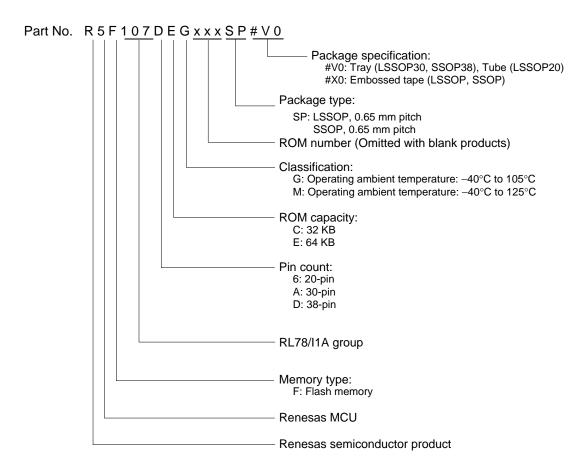
Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	29
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 11x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	38-SSOP (0.240", 6.10mm Width)
Supplier Device Package	38-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f107degsp-x0


Email: info@E-XFL.COM

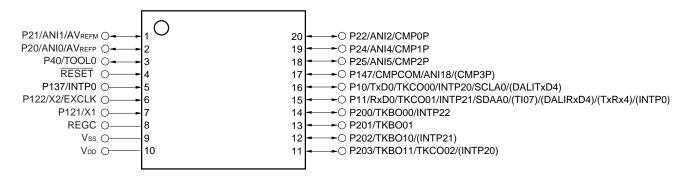
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RL78/I1A 1. OUTLINE

1.2 List of Part Numbers

Figure 1-1. Part Number, Memory Size, and Package of RL78/I1A

Pin count	Package	Operating Ambient Temperature	Part Number
20 pin	20-pin plastic LSSOP	Ta = -40 to +105°C	R5F1076CGSP#V0, R5F1076CGSP#X0
	(4.4 × 6.5)	Ta = -40 to +125°C	R5F1076CMSP#V0, R5F1076CMSP#X0
30 pin	30-pin plastic LSSOP (7.62 mm (300))	T _A = -40 to +105°C	R5F107ACGSP#V0, R5F107AEGSP#V0, R5F107ACGSP#X0, R5F107AEGSP#X0
		T _A = -40 to +125°C	R5F107ACMSP#V0, R5F107AEMSP#V0, R5F107ACMSP#X0, R5F107AEMSP#X0
38 pin	38-pin plastic SSOP	Ta = -40 to +105°C	R5F107DEGSP#V0, R5F107DEGSP#X0
	(7.62 mm (300))	Ta = -40 to +125°C	R5F107DEMSP#V0, R5F107DEMSP#X0

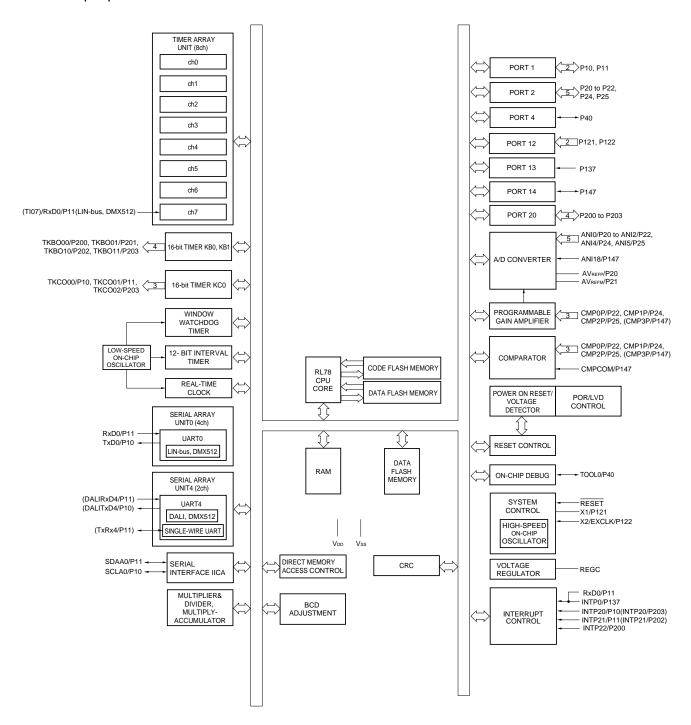

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

RL78/I1A 1. OUTLINE

1.3 Pin Configuration (Top View)

1.3.1 20-pin products

• 20-pin plastic LSSOP (4.4 x 6.5)


Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR1) or the input switch control register (ISC). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR1) and Figure 15-20 Format of Input Switch Control Register (ISC) in the RL78/I1A User's Manual.
 - **3.** The shared function CMP3P can be assigned to P147 by setting the CMPSEL0 bit in the comparator input switch control register (CMPSEL).

RL78/I1A 1. OUTLINE

1.5 Block Diagram

1.5.1 20-pin products

Remarks 1. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR1) or the input switch control register (ISC). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR1) and Figure 15-20 Format of Input Switch Control Register (ISC) in the RL78/I1A User's Manual.

2. The shared function CMP3P can be assigned to P147 by setting the CMPSEL0 bit in the comparator input switch control register (CMPSEL).

- Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, comparator, programmable gain amplifier, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - **3.** When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - **5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - **7.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V@1}$ MHz to 32 MHz LS (low-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V@1}$ MHz to 8 MHz

- 8. Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - **4.** Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

(Ta = -40 to +105°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Low-speed on- chip oscillator operating current	IFIL Note 1						0.20		μА
RTC operating current	IRTC Notes 1, 2, 3						0.02		μА
12-bit interval timer operating current	I _{IT} Notes 1, 2, 4						0.02		μA
Watchdog timer operating current	WDT Notes 1, 2, 5	f∟ = 15 kHz					0.22		μΑ
A/D converter operating current	ADC Notes 1, 6	When conversion maximum speed			$AV_{REFP} = V_{DD} = 5.0 \text{ V}$ node, $AV_{REFP} = V_{DD} = 3.0 \text{ V}$		1.3 0.5	1.7 0.7	mA mA
A/D converter reference voltage current	IADREF Note 1						75.0		μΑ
Temperature sensor operating current	ITMPS Note 1						75.0		μА
LVD operating current	I _{LVD} Notes 1, 7						0.08		μА
Self- programming operating current	IFSP Notes 1, 8						2.50	12.2	mA
Programmable gain amplifier operating current	IPGA Note 9				$AV_{REFP} = V_{DD} = 5.0 \text{ V}$ $AV_{REFP} = V_{DD} = 3.0 \text{ V}$		0.21	0.31	mA mA
Comparator	ICMP Note 10	When one comp	arator	channel is	AV _{REFP} = V _{DD} = 5.0 V		41.4	62	μА
operating current		operating			AV _{REFP} = V _{DD} = 3.0 V		37.2	59	μА
	IVREF	When one interr		erence voltage	AV _{REFP} = V _{DD} = 5.0 V		14.8	26	μA
		circuit is operati	ng		AV _{REFP} = V _{DD} = 3.0 V		8.9	20	μA
Programmable	IREF Note 11				AV _{REFP} = V _{DD} = 5.0 V		3.2	5.1	μА
gain amplifier/ comparator reference current source					AV _{REFP} = V _{DD} = 3.0 V		2.9	4.9	μA
BGO operating current	IBGO Note 12						2.50	12.2	mA
SNOOZE	Isnoz ^{Note 1}	ADC operation	The r	node is perform	ed ^{Note 13}		0.50	1.1	mA
operating current					operations are performed, $EFP = V_{DD} = 5.0 \text{ V}$		2.0	3.04	mA
		CSI/UART opera	ation				0.70	1.54	mA

(Notes and Remarks are listed on the next page.)

- Notes 1. Current flowing to the VDD.
 - 2. When the high-speed on-chip oscillator and high-speed system clock are stopped.
 - 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed onchip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
 - **4.** Current flowing only to the 12-bit interval timer (excluding the operating current of the XT1 oscillator and f_{IL} operating current). The current of the RL78 microcontrollers is the sum of the values of either I_{DD1} or I_{DD2}, and I_{IT}, when the 12-bit interval timer operates in operation mode or HALT mode.
 - **5.** Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.
 - **6.** Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
 - 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
 - **8.** Current flowing during self-programming operation.
 - **9.** Current flowing only to the programmable gain amplifier. The supply current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3, and IPGA, when the programmable gain amplifier is operating in operating mode or in HALT mode.
 - **10.** Current flowing only to the comparator. The supply current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3, and ICMP, when the comparator is operating.
 - **11.** This is the current required to flow to V_{DD} pin of the current circuit that is used as the programmable gain amplifier and the comparator.
 - 12. Current flowing only during data flash rewrite.
 - 13. See 21.3.3 SNOOZE mode in the RL78/I1A User's Manual for shift time to the SNOOZE mode .
- Remarks 1. fil: Low-speed on-chip oscillator clock frequency
 - 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 3. fclk: CPU/peripheral hardware clock frequency
 - **4.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$
 - 5. Example of calculating current value when using programmable gain amplifier and comparator.
 - Examples 1) TYP. operating current value when three comparator channels, one internal reference voltage generator, and PGA are operating (when AVREFP = VDD = 5.0 V)

```
ICMP × 3 + IVREF + IPGA + IREF
= 41.4 [\mu A] × 3 + 14.8 [\mu A] × 1 + 210 [\mu A] + 3.2 [\mu A]
= 352.2 [\mu A]
```

Examples 2) TYP. operating current value when using two comparator channels, without using internal reference voltage generator (when AVREFP = VDD = 5.0 V)

```
ICMP × 2 + IIREF
= 41.4 [\mu A] × 2 + 3.2 [\mu A]
= 86.0 [\mu A]
```

2.4 AC Characteristics

(TA = -40 to +105°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V)

Items	Symbol		Conditio	ns		MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсч	Main system	HS (high-spe	eed main) m	ode	0.03125		1	μS
instruction execution time)		clock (fmain) operation	LS (low-spee		40 to +85°C	0.125		1	μS
		Subsystem clock (fsub) operation		28.5	30.5	31.3	μS		
		In the self	HS (high-spe	eed main) m	ode	0.03125		1	μS
		programming mode	LS (low-spee		-40 to +85°C	0.125		1	μS
External system clock frequency	fex					1.0		20.0	MHz
	fexs					32		35	kHz
External system clock input high- evel width, low-level width	texh, texl					24			ns
	texhs, texhs					13.7			μS
TI03, TI05, TI06, TI07 input high-level width, low-level width	tтıн, tтı∟					2/fмск+10			ns
TO03, TO05, TO06, TKBO00,	f то	HS (high-spee	d main)	4.0 V ≤ V	/ _{DD} ≤ 5.5 V			8	MHz
TKBO01, TKBO10, TKBO11, TKBO20, TKBO21, TKCO00 to		mode		2.7 V ≤ V	/ _{DD} < 4.0 V			4	MHz
TKCO05 output frequency (When duty = 50%)		LS (low-speed	,	4.0 V ≤ V	/ _{DD} ≤ 5.5 V			4	MHz
(When duty = 50%)		mode, $T_A = -40$	0 to +85°C	2.7 V ≤ V	/ _{DD} < 4.0 V			2	MHz
Interrupt input high-level width, low-level width	tinth, tintl	, ,	INTP0, INTP3, INTP4, INTP9 to INTP11, INTP20 to INTP23		1			μS	
RESET low-level width	t RSL					10			μS

Remark fmck: Timer array unit operation clock frequency

(Operation clock to be set by the CKS0n bit of timer mode register 0n (TMR0n). n: Channel number (n = 0 to 7))

2.5.2 Serial interface IICA

(1) I²C standard mode

(Ta = -40 to +105°C $^{\text{Note 3}}$, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	HS (hig main)	h-speed Mode	,	/-speed Mode	Unit
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Standard mode: fclk≥ 1 MHz	0	100	0	100	kHz
Setup time of restart condition	tsu:sta		4.7		4.7		μS
Hold time ^{Note 1}	thd:STA		4.0		4.0		μS
Hold time when SCLA0 = "L"	tLOW		4.7		4.7		μS
Hold time when SCLA0 = "H"	t HIGH		4.0		4.0		μS
Data setup time (reception)	tsu:dat		250		250		ns
Data hold time (transmission) ^{Note 2}	thd:dat		0	3.45	0	3.45	μS
Setup time of stop condition	tsu:sto		4.0		4.0		μS
Bus-free time	t BUF		4.7		4.7		μS

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

- 2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
- 3. Operating conditions of LS (low-speed main) mode is $T_A = -40$ to +85 °C.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: $C_b = 400 \text{ pF}, R_b = 2.7 \text{ k}\Omega$

2.6.3 Programmable gain amplifier

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.7 \text{ V} \le AV_{REFP} = V_{DD} \le 5.5 \text{ V}, V_{SS} = AV_{REFM} = 0 \text{ V})$

Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Input offset voltage	VIOPGA					±5	±10	mV
Input voltage range	VIPGA				0		0.9V _{DD} /	V
							gain	
Gain error ^{Note 1}		4, 8 tim	es				±1	%
		16 time	S			±1.5	%	
		32 time	s				±2	%
Slew rate ^{Note 1}	SRRPGA	Rising edge	$4.0~V \leq V_{DD} \leq 5.5~V$	4, 8 times	4			V/μs
				16, 32 times	1.4			V/μs
			$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}$	4, 8 times	1.8			V/μs
				16, 32 times	0.5			V/μs
	SRFPGA	Falling	$4.0~V \leq V_{DD} \leq 5.5~V$	4, 8 times	3.2			V/μs
		edge		16, 32 times	1.4			V/μs
			$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}$	4, 8 times	1.2			V/μs
				16, 32 times	0.5			V/μs
Operation stabilization wait time ^{Note 2}	t PGA	4, 8 tim	4, 8 times					μS
		16, 32 t	imes		10			μS

Notes 1. When $V_{IPGA} = 0.1V_{DD}/gain$ to $0.9V_{DD}/gain$.

2. Time required until a state is entered where the DC and AC specifications of the PGA are satisfied after the PGA operation has been enabled (PGAEN = 1).

Remark These characteristics apply when AVREFM is selected as GND of the PGA by using the CVRVS1 bit.

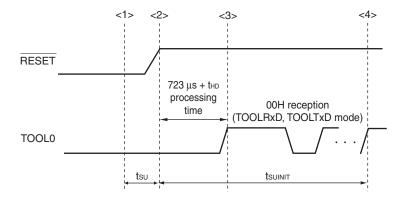
2.8 Flash Memory Programming Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fclk	$2.7~V \leq V_{DD} \leq 5.5~V$	1		32	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years, T _A = 85°C ^{Note 3}	1,000			Times
Number of data flash		Retained for 1 year, T _A = 25°C ^{Note 3}		1,000,000		
rewrites Notes 1, 2, 3		Retained for 5 years, T _A = 85°C ^{Note 3}	100,000			
		Retained for 20 years, T _A = 85°C ^{Note 3}	10,000			

- **Notes 1.** 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.
 - 2. When using flash memory programmer and Renesas Electronics self programming library
 - **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

2.9 Dedicated Flash Memory Programmer Communication (UART)


$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115.2 k		1 M	bps

2.10 Timing of Entry to Flash Memory Programming Modes

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the initial communication settings are specified	t suinit	POR and LVD reset must end before the external reset ends.			100	ms
How long from when the TOOL0 pin is placed at the low level until an external reset ends	tsu	POR and LVD reset must end before the external reset ends.	10			μs
How long the TOOL0 pin must be kept at the low level after a reset ends (except soft processing time)	tно	POR and LVD reset must end before the external reset ends.	1			ms

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset ends (POR and LVD reset must end before the pin reset ends.).
- <3> The TOOL0 pin is set to the high level.
- <4> Complete the baud rate setting by UART reception.

Remark tsuinit: The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the resets end.

tsu: How long from when the TOOL0 pin is placed at the low level until an external reset ends

thd: How long to keep the TOOL0 pin at the low level from when the external and internal resets end (except soft processing time)

3.3 DC Characteristics

3.3.1 Pin characteristics

(T_A = -40 to +125°C, 2.7 V \leq V_{DD} \leq 5.5 V, Vss = 0 V)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current,	І он1	Per pin for P02, P03, P05, P06, P10 to P12,	$4.0~V \leq V_{DD} \leq 5.5~V$			-3.0 ^{Note 2}	mA
high ^{Note 1}		P30, P31, P40, P75 to P77, P120, P147, P200 to P206	$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}$			-1.0	mA
		Total of P02, P03, P40, P120	$4.0~V \leq V_{DD} \leq 5.5~V$			-9.0	mA
	(When duty ≤ 70% ^{Note 3})	$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}$			-3.0	mA	
		Total of P05, P06, P10 to P12, P30, P31,	$4.0~V \leq V_{DD} \leq 5.5~V$			-21.0	mA
		P75 to P77, P147, P200 to P206 (When duty ≤ 70% ^{Note 3})	$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}$			-6.0	mA
		Total of all pins	$4.0~V \leq V_{DD} \leq 5.5~V$			-21.0	mA
		(When duty ≤ 70% ^{Note 3})	$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}$			-9.0	mA
	І он2	Per pin for P20 to P22, P24 to P27	$2.7~V \leq V_{DD} \leq 5.5~V$			-0.1 ^{Note 2}	mA
		Total of all pins (When duty $\le 70\%^{\text{Note 3}}$)	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$			-0.4	mA

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from the V_{DD} pin to an output pin.
 - 2. However, do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(IOH \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and I_{OH} = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \cong -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P02, P10 to P12 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(Ta = -40 to +125°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	V _{IH1}	P02, P03, P05, P06, P10 to P12, P20 to P22, P24 to P27, P30, P31, P40, P75 to P77, P120 to P124, P137, P147, P200 to P206, EXCLK, EXCLKS, RESET	Normal input buffer	0.8V _{DD}		V _{DD}	>
	V _{IH2}	P03, P10, P11	TTL input buffer $4.0 \text{ V} \le V_{DD} \le 5.5 \text{ V}$	2.1		V _{DD}	V
			TTL input buffer $3.3 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}$	2.0		V _{DD}	V
			TTL input buffer $2.7 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V}$	1.5		V _{DD}	V
Input voltage, low	V _{IL1}	P02, P03, P05, P06, P10 to P12, P20 to P22, P24 to P27, P30, P31, P40, P75 to P77, P120 to P124, P137, P147, P200 to P206, EXCLK, EXCLKS, RESET	Normal input buffer	0		0.2V _{DD}	V
	V _{IL2}	P03, P10, P11	TTL input buffer $4.0 \text{ V} \le V_{DD} \le 5.5 \text{ V}$	0		0.8	V
			TTL input buffer $3.3 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}$	0		0.5	V
			TTL input buffer $2.7 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V}$	0		0.32	V

Caution The maximum value of V_{IH} of pins P02, P10 to P12 is V_{DD}, even in the N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

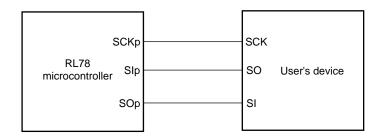
(Ta = -40 to +125°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V) (2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2 Note 2	HALT	HS (high-	f _{IH} = 16 MHz Note 4	V _{DD} = 5.0 V		0.50	2.0	mA
Current Note 1		mode	speed main) mode ^{Note 7}		V _{DD} = 3.0 V		0.50	2.0	mA
			HS (high-	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.40	2.2	mA
			speed main) mode ^{Note 7}	V _{DD} = 5.0 V	Resonator connection		0.50	2.3	mA
			mode	$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.40	2.2	mA
				V _{DD} = 3.0 V	Resonator connection		0.50	2.3	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.24	1.22	mA
				V _{DD} = 5.0 V	Resonator connection		0.30	1.28	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.24	1.22	mA
				V _{DD} = 3.0 V	Resonator connection		0.30	1.28	mA
			HS (high-	$f_{IH} = 4 \text{ MHz}^{\text{Note 4}}$	V _{DD} = 5.0 V		0.95	3.7	mA
			speed main) mode ^{Note 7}	fPLL = 64 MHz, fcLK = 16 MHz	V _{DD} = 3.0 V		0.95	3.7	mA
			Subsystem	f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.28	0.70	μА
			clock	T _A = -40°C	Resonator connection		0.47	0.89	μА
		operation	f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.33	0.70	μА	
				T _A = +25°C	Resonator connection		0.52	0.89	μΑ
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.41	1.90	μΑ
				T _A = +50°C	Resonator connection		0.60	2.09	μΑ
				f _{SUB} = 32.768 kHz ^{Note 5} T _A = +70°C	Square wave input		0.54	2.80	μΑ
					Resonator connection		0.73	2.99	μΑ
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		1.27	6.10	μΑ
				T _A = +85°C	Resonator connection		1.46	6.29	μΑ
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		3.04	15.5	μΑ
				T _A = +105°C	Resonator connection		3.23	15.7	μΑ
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		7.20	45.2	μΑ
				T _A = +125°C	Resonator connection		7.53	45.5	μΑ
	IDD3 ^{Note 6}		T _A = -40°C				0.18	0.50	μА
		mode Note 8	T _A = +25°C				0.23	0.50	μΑ
			T _A = +50°C				0.27	1.70	μА
		-	T _A = +70°C	T _A = +70°C				2.60	μА
			T _A = +85°C				1.17	5.90	μΑ
			T _A = +105°C	T _A = +105°C				15.3	μА
<u> </u>			T _A = +125°C				7.14	45.1	μA

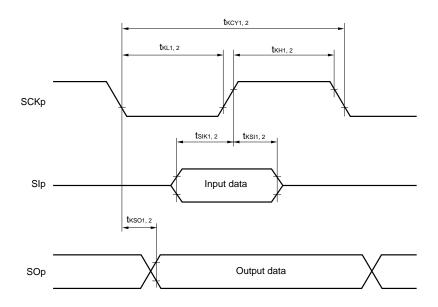
(Notes and Remarks are listed on the next page.)

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) $(T_A = -40 \text{ to } +125^{\circ}\text{C}, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

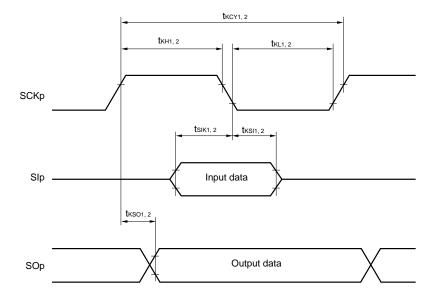
Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
SCKp cycle time	tkcy1	tkcy1 ≥ 4/fclk	tkcy1 \geq 4/fclk 4.0 V \leq Vdd \leq 5.5 V			ns
			$2.7~V \leq V_{DD} \leq 5.5~V$	500		ns
SCKp high-/low-level width	t кн1,	4.0 V ≤ V _{DD} ≤ 5.5 V		tkcy1/2 - 20		ns
	t _{KL1}	$2.7~V \leq V_{DD} \leq 5.5~V$		tkcy1/2 - 40		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsıĸı	$4.0~V \leq V_{DD} \leq 5.5~V$		80		ns
		$2.7~V \leq V_{DD} \leq 5.5~V$		80		ns
SIp hold time (from SCKp↑) ^{Note 2}	tksi1			40		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso1	C = 30 pF ^{Note 4}			80	ns


- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).


- **Remarks 1.** p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (q = 1)
 - 2. fmck: Serial array unit operation clock frequency

 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))


CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remarks 1. p: CSI number (p = 00)

2. m: Unit number, n: Channel number (mn = 00)

(1) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target ANI pin: ANI2, ANI4 to ANI7, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +125°C, 2.7 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}			1.2	±3.5	LSB
Conversion time	tconv	10-bit resolution Target pin: ANI2, ANI4 to ANI7	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μS
			$2.7~\text{V} \leq \text{Vdd} \leq 5.5~\text{V}$	3.4		39	μS
		10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μS
		Target pin: Internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	2.7 V ≤ VDD ≤ 5.5 V	3.8		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}				±0.25	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}				±0.25	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}				±2.5	LSB
Differential linearity error	DLE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}				±1.5	LSB
Analog input voltage	Vain	ANI2, ANI4 to ANI7		0		AVREFP	V
		Internal reference voltage (HS (high-speed main) mode	V _{BGR} Note 4			V	
		Temperature sensor output voltage (HS (high-speed main) mode)		V _{TMPS25} Note 4			V

Notes 1. Excludes quantization error (±1/2 LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- **3.** When $AV_{REFP} < V_{DD}$, the MAX. values are as follows.

Overall error: Add ± 1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

Zero-scale error/Full-scale error: Add ±0.05%FSR to the MAX. value when AVREFP = VDD.

Integral linearity error/Differential linearity error: Add ± 0.5 LSB to the MAX. value when AVREFP = VDD.

4. See 3.6.2 Temperature sensor/internal reference voltage characteristics.

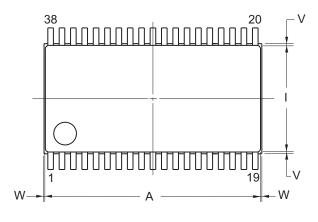
3.6.3 Programmable gain amplifier

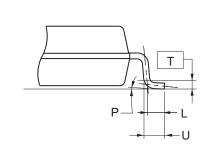
 $(T_A = -40 \text{ to } +125^{\circ}\text{C}, 2.7 \text{ V} \le AV_{REFP} = V_{DD} \le 5.5 \text{ V}, V_{SS} = AV_{REFM} = 0 \text{ V})$

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Input offset voltage	VIOPGA					±5	±10	mV
Input voltage range	VIPGA				0		0.9V _{DD} /	V
							gain	
Gain error ^{Note 1}		4, 8 times					±1	%
		16 time	s				±1.5	%
		32 time	32 times				±2	%
Slew rate ^{Note 1}		Rising edge	$4.0~V \leq V_{DD} \leq 5.5~V$	4, 8 times	4			V/μs
\$				16, 32 times	1.4			V/μs
			$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}$	4, 8 times	1.8			V/μs
				16, 32 times	0.5			V/μs
	SR _{FPGA} Falling edge	Falling	•	4, 8 times	3.2			V/μs
		edge		16, 32 times	1.4			V/μs
			$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}$	4, 8 times	1.2			V/μs
				16, 32 times	0.5			V/μs
Operation stabilization wait time ^{Note 2} t _{PGA}		4, 8 times			5			μS
		16, 32 times			10			μS

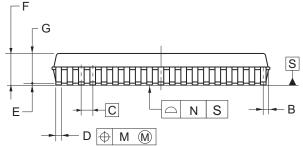
Notes 1. When VIPGA = 0.1VDD/gain to 0.9VDD/gain.

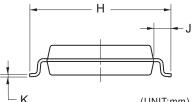
2. Time required until a state is entered where the DC and AC specifications of the PGA are satisfied after the PGA operation has been enabled (PGAEN = 1).


Remark These characteristics apply when AVREFM is selected as GND of the PGA by using the CVRVS1 bit.


4. PACKAGE DRAWINGS

4.1 20-pin Products

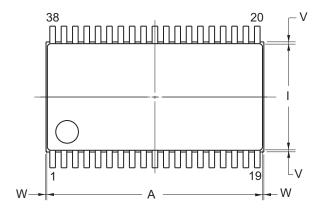

R5F1076CGSP#V0, R5F1076CGSP#X0, R5F1076CMSP#V0, R5F1076CMSP#X0

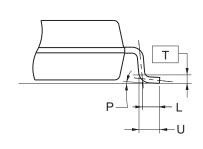

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-SSOP38-0300-0.65	PRSP0038JA-A	P38MC-65-2A4-2	0.3

detail of lead end

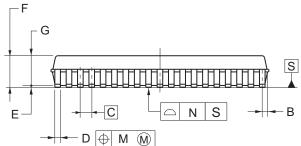
NOTE

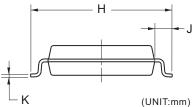
Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.


	(UNIT:mm)
ITEM	DIMENSIONS
Α	12.30±0.10
В	0.30
С	0.65 (T.P.)
D	$0.32^{+0.08}_{-0.07}$
E	0.125±0.075
F	2.00 MAX.
G	1.70±0.10
Н	8.10±0.20
- 1	6.10±0.10
J	1.00±0.20
K	$0.17^{+0.08}_{-0.07}$
L	0.50
М	0.10
N	0.10
Р	3°+7°
Т	0.25(T.P.)
U	0.60±0.15
V	0.25 MAX.
W	0.15 MAX.


 \bigcirc 2012 Renesas Electronics Corporation. All rights reserved.

4.3 38-pin Products


R5F107DEGSP#V0, R5F107DEGSP#X0, R5F107DEMSP#V0, R5F107DEMSP#X0


JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-SSOP38-0300-0.65	PRSP0038JA-A	P38MC-65-2A4-2	0.3

detail of lead end

NOTE

Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.

	(01411.111111)
ITEM	DIMENSIONS
Α	12.30±0.10
В	0.30
С	0.65 (T.P.)
D	$0.32^{+0.08}_{-0.07}$
Ε	0.125±0.075
F	2.00 MAX.
G	1.70±0.10
Н	8.10±0.20
I	6.10±0.10
J	1.00±0.20
K	$0.17^{+0.08}_{-0.07}$
L	0.50
М	0.10
Ν	0.10
Р	3°+7°
Т	0.25(T.P.)
U	0.60±0.15
V	0.25 MAX.
W	0.15 MAX.

©2012 Renesas Electronics Corporation. All rights reserved.