
Microchip Technology - AT91SAM9G35-CU Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing
chips designed to perform specific tasks within an
embedded system. Unlike general-purpose
microprocessors found in personal computers, embedded
microprocessors are tailored for dedicated functions within
larger systems, offering optimized performance, efficiency,
and reliability. These microprocessors are integral to the
operation of countless electronic devices, providing the
computational power necessary for controlling processes,
handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad
spectrum of applications, making them indispensable in
modern technology. In consumer electronics, they power
devices such as smartphones, tablets, and smart home
appliances, enabling advanced features and connectivity.
In the automotive industry, embedded microprocessors are
critical for engine control units (ECUs), infotainment
systems, and advanced driver-assistance systems (ADAS).
Industrial automation relies on these microprocessors for
controlling machinery, managing production lines, and
ensuring safety protocols. Medical devices, including
diagnostic equipment and patient monitoring systems,
depend on embedded microprocessors for accurate data
processing and reliable performance. Additionally,
embedded microprocessors are used in
telecommunications, aerospace, and defense applications,
where precision and dependability are paramount.

Common Subcategories of Embedded -
Microprocessors

Embedded microprocessors can be categorized into
several common subcategories based on their
architecture, performance, and intended application.
These include:

General-Purpose Microprocessors: Designed for
a wide range of applications, offering a balance of
performance and flexibility.

Application-Specific Integrated Circuits
(ASICs): Custom-designed for specific tasks,
providing optimal performance for particular
applications.

Digital Signal Processors (DSPs): Specialized for
real-time signal processing tasks, ideal for audio,
video, and communication systems.

System on Chip (SoC): Integrates the
microprocessor with other system components, such
as memory and peripherals, on a single chip for
compact and efficient designs.

Types of Embedded - Microprocessors

Details

Product Status Active

Core Processor ARM926EJ-S

Number of Cores/Bus Width 1 Core, 32-Bit

Speed 400MHz

Co-Processors/DSP -

RAM Controllers DDR2, SDRAM, SRAM

Graphics Acceleration No

Display & Interface Controllers LCD, Touchscreen

Ethernet 10/100Mbps

SATA -

USB USB 2.0 (3)

Voltage - I/O 1.8V, 3.3V

Operating Temperature -40°C ~ 85°C (TA)

Security Features -

Package / Case 217-LFBGA

Supplier Device Package 217-LFBGA (15x15)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/at91sam9g35-cu

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/at91sam9g35-cu-4467207
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors


Exception Modes and Handling

Exceptions arise whenever the normal flow of a program must be halted temporarily, for example, to service an
interrupt from a peripheral.

When handling an ARM exception, the ARM9EJ-S core performs the following operations:

1. Preserves the address of the next instruction in the appropriate Link Register that corresponds to the new 
mode that has been entered. When the exception entry is from:

̶ ARM and Jazelle states, the ARM9EJ-S copies the address of the next instruction into LR (current 
PC(r15) + 4 or PC + 8 depending on the exception).

̶ THUMB state, the ARM9EJ-S writes the value of the PC into LR, offset by a value (current PC + 2, PC 
+ 4 or PC + 8 depending on the exception) that causes the program to resume from the correct place 
on return.

2. Copies the CPSR into the appropriate SPSR.

3. Forces the CPSR mode bits to a value that depends on the exception.

4. Forces the PC to fetch the next instruction from the relevant exception vector.

The register r13 is also banked across exception modes to provide each exception handler with private stack
pointer.

The ARM9EJ-S can also set the interrupt disable flags to prevent otherwise unmanageable nesting of exceptions.

When an exception has completed, the exception handler must move both the return value in the banked LR
minus an offset to the PC and the SPSR to the CPSR. The offset value varies according to the type of exception.
This action restores both PC and the CPSR.

The fast interrupt mode has seven private registers r8 to r14 (banked registers) to reduce or remove the
requirement for register saving which minimizes the overhead of context switching.

The Prefetch Abort is one of the aborts that indicates that the current memory access cannot be completed. When
a Prefetch Abort occurs, the ARM9EJ-S marks the prefetched instruction as invalid, but does not take the
exception until the instruction reaches the Execute stage in the pipeline. If the instruction is not executed, for
example because a branch occurs while it is in the pipeline, the abort does not take place.

The breakpoint (BKPT) instruction is a new feature of ARM9EJ-S that is destined to solve the problem of the
Prefetch Abort. A breakpoint instruction operates as though the instruction caused a Prefetch Abort.
A breakpoint instruction does not cause the ARM9EJ-S to take the Prefetch Abort exception until the instruction
reaches the Execute stage of the pipeline. If the instruction is not executed, for example because a branch occurs
while it is in the pipeline, the breakpoint does not take place.

8.4.8 ARM Instruction Set Overview

The ARM instruction set is divided into:

 Branch instructions

 Data processing instructions

 Status register transfer instructions

 Load and Store instructions

 Coprocessor instructions

 Exception-generating instructions

ARM instructions can be executed conditionally. Every instruction contains a 4-bit condition code field (bits[31:28]). 

For further details, see the ARM Technical Reference Manual.
SAM9G35 [DATASHEET]
Atmel-11053F-ATARM-SAM9G35-Datasheet_31-Aug-15

32



8.4.9 New ARM Instruction Set

Notes: 1. A Thumb BLX contains two consecutive Thumb instructions, and takes four cycles.

8.4.10 Thumb Instruction Set Overview

The Thumb instruction set is a re-encoded subset of the ARM instruction set. 

The Thumb instruction set is divided into:

 Branch instructions

 Data processing instructions

 Load and Store instructions

 Load and Store multiple instructions

 Exception-generating instruction

For further details, see the ARM Technical Reference Manual.

Table 8-4 gives the Thumb instruction mnemonic list.

Table 8-3. New ARM Instruction Mnemonic List  

Mnemonic Operation Mnemonic Operation

BXJ
Branch and exchange to 
Java

MRRC
Move double from 
coprocessor

BLX (1) Branch, Link and exchange MCR2
Alternative move of ARM reg 
to coprocessor

SMLAxy
Signed Multiply Accumulate 
16 * 16 bit

MCRR Move double to coprocessor

SMLAL
Signed Multiply Accumulate 
Long

CDP2
Alternative Coprocessor 
Data Processing

SMLAWy
Signed Multiply Accumulate 
32 * 16 bit

BKPT Breakpoint

SMULxy Signed Multiply 16 * 16 bit PLD
Soft Preload, Memory 
prepare to load from address

SMULWy Signed Multiply 32 * 16 bit STRD Store Double

QADD Saturated Add STC2
Alternative Store from 
Coprocessor

QDADD Saturated Add with Double LDRD Load Double

QSUB Saturated subtract LDC2
 Alternative Load to 
Coprocessor

QDSUB
Saturated Subtract with 
double

CLZ Count Leading Zeroes
SAM9G35 [DATASHEET]
Atmel-11053F-ATARM-SAM9G35-Datasheet_31-Aug-15

34



10.5 SAM-BA Monitor

If no valid code has been found in NVM during the NVM bootloader sequence, the SAM-BA Monitor program is
launched.

The SAM-BA Monitor principle is to:

̶ Initialize DBGU and USB

̶ Check if USB Device enumeration has occurred

̶ Check if characters have been received on the DBGU

Once the communication interface is identified, the application runs in an infinite loop waiting for different
commands as listed in Table 10-5.

Figure 10-10. SAM-BA Monitor Diagram

10.5.1 Command List

Character(s) received
on DBGU ?

Run monitor
Wait for command 

on the USB link

Run monitor
Wait for command 
on the DBGU link

USB Enumeration 
Successful ?

Yes Yes

No

No

Init DBGU and USB

No valid code in NVM

Table 10-5. Commands Available Through the SAM-BA Monitor

Command Action Argument(s) Example

N set Normal mode No argument N# 

T set Terminal mode No argument T#

O write a byte Address, Value# O200001,CA#

o read a byte Address,# o200001,#

H write a half word Address, Value# H200002,CAFE#

h read a half word Address,# h200002,#

W write a word Address, Value# W200000,CAFEDECA#

w read a word Address,# w200000,#

S send a file Address,# S200000,#

R receive a file Address, NbOfBytes# R200000,1234#

G go Address# G200200#

V display version No argument V#
61SAM9G35 [DATASHEET]
Atmel-11053F-ATARM-SAM9G35-Datasheet_31-Aug-15



17.6 Functional Description

The Shutdown Controller manages the main power supply. To do so, it is supplied with VDDBU and manages
wake-up input pins and one output pin, SHDN. 

A typical application connects the pin SHDN to the shutdown input of the DC/DC Converter providing the main
power supplies of the system, and especially VDDCORE and/or VDDIO. The wake-up inputs (WKUP0) connect to
any push-buttons or signal that wake up the system.

The software is able to control the pin SHDN by writing the Shutdown Control Register (SHDW_CR) with the bit
SHDW at 1. The shutdown is taken into account only two slow clock cycles after the write of SHDW_CR. This
register is password-protected and so the value written should contain the correct key for the command to be
taken into account. As a result, the system should be powered down.

17.6.1 Wake-up Inputs

The Shutdown Controller can be programmed so as to activate the wake-up using the RTC alarm (the detection of
the rising edge of the RTC alarm is synchronized with SLCK). This is done by writing the SHDW_MR using the
RTCWKEN field. When enabled, the detection of RTC alarm is reported in the RTCWK bit of the SHDW_SR. They
are reset after the read of SHDW_SR. When using the RTC alarm to wake up the system, the user must ensure
that RTC alarm status flag is cleared before shutting down the system. Otherwise, no rising edge of the status
flags may be detected and the wake-up will fail.

A level change on WKUP0 is used as a wake-up. Wake-up is configured in the Shutdown Mode Register
(SHDW_MR). The transition detector can be programmed to detect either a positive or negative transition or any
level change on WKUP0. The detection can also be disabled. Programming is performed by defining WKMODE0

Moreover, a debouncing circuit can be programmed for WKUP0. The debouncing circuit filters pulses on WKUP0
shorter than the programmed number of 16 SLCK cycles in CPTWK0 of the SHDW_MR. If the programmed level
change is detected on a pin, a counter starts. When the counter reaches the value programmed in the
corresponding field, CPTWK0, the SHDN pin is released. If a new input change is detected before the counter
reaches the corresponding value, the counter is stopped and cleared. WAKEUP0 of the Status Register
(SHDW_SR) reports the detection of the programmed events on WKUP0 with a reset after the read of SHDW_SR.
151SAM9G35 [DATASHEET]
Atmel-11053F-ATARM-SAM9G35-Datasheet_31-Aug-15



22.6.19 PIO Multi-driver Disable Register

Name: PIO_MDDR

Address: 0xFFFFF454 (PIOA), 0xFFFFF654 (PIOB), 0xFFFFF854 (PIOC), 0xFFFFFA54 (PIOD)

Access: Write-only 

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

• P0–P31: Multi-drive Disable

0: No effect.

1: Disables multi-drive on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
SAM9G35 [DATASHEET]
Atmel-11053F-ATARM-SAM9G35-Datasheet_31-Aug-15

244



27.5.5 Error Location Status Register

Name: PMERRLOC_ELSR

Address: 0xFFFFE610

Access: Read-write

Reset: 0x00000000

• BUSY: Error Location Engine Busy

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – BUSY
375SAM9G35 [DATASHEET]
Atmel-11053F-ATARM-SAM9G35-Datasheet_31-Aug-15



29.7.12 DDRSDRC Write Protection Status Register 

Name: DDRSDRC_WPSR

Address: 0xFFFFE8E8

Access: Read-only

• WPVS: Write Protection Violation Status

0: No write protection violation has occurred since the last read of the DDRSDRC_WPSR.

1: A write protection violation has occurred since the last read of the DDRSDRC_WPSR. If this violation is an unauthorized 
attempt to write a protected register, the associated violation is reported into field WPVSRC.

• WPVSRC: Write Protection Violation Source

When WPVS is active, this field indicates the write-protected register (through address offset or code) in which a write 
access has been attempted.

Note: Reading DDRSDRC_WPSR automatically clears all fields.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

WPVSRC

15 14 13 12 11 10 9 8

WPVSRC

7 6 5 4 3 2 1 0

– – – – – – – WPVS
SAM9G35 [DATASHEET]
Atmel-11053F-ATARM-SAM9G35-Datasheet_31-Aug-15

468



30.6.2   Memory Peripherals

Figure 30-3 on page 474 shows the DMAC transfer hierarchy of the DMAC for a memory peripheral. There is no
handshaking interface with the DMAC, and therefore the memory peripheral can never be a flow controller. Once
the channel is enabled, the transfer proceeds immediately without waiting for a transaction request. The alternative
to not having a transaction-level handshaking interface is to allow the DMAC to attempt AMBA transfers to the
peripheral once the channel is enabled. If the peripheral slave cannot accept these AMBA transfers, it inserts wait
states onto the bus until it is ready; it is not recommended that more than 16 wait states be inserted onto the bus.
By using the handshaking interface, the peripheral can signal to the DMAC that it is ready to transmit/receive data,
and then the DMAC can access the peripheral without the peripheral inserting wait states onto the bus.

30.6.3   Handshaking Interface

Handshaking interfaces are used at the transaction level to control the flow of single or chunk transfers. The
operation of the handshaking interface is different and depends on whether the peripheral or the DMAC is the flow
controller.

The peripheral uses the handshaking interface to indicate to the DMAC that it is ready to transfer/accept data over
the AMBA bus. A non-memory peripheral can request a DMAC transfer through the DMAC using one of two
handshaking interfaces:

 Hardware handshaking

 Software handshaking

Software selects between the hardware or software handshaking interface on a per-channel basis. Software
handshaking is accomplished through memory-mapped registers, while hardware handshaking is accomplished
using a dedicated handshaking interface.

30.6.3.1  Software Handshaking

When the slave peripheral requires the DMAC to perform a DMAC transaction, it communicates this request by
sending an interrupt to the CPU or interrupt controller.

The interrupt service routine then uses the software registers to initiate and control a DMAC transaction. These
software registers are used to implement the software handshaking interface.

The SRC_H2SEL/DST_H2SEL bit in the Channel Configuration Register (DMAC_CFGx) must be cleared to
enable software handshaking. 

When the peripheral is not the flow controller, then the Software Last Transfer Flag Register (DMAC_LAST) is not
used, and the values in these registers are ignored.

Chunk Transactions

Writing a ‘1’ to the Software Chunk Transfer Request Register (DMAC_CREQ[2x]) starts a source chunk
transaction request, where x is the channel number. Writing a ‘1’ to the DMAC_CREQ[2x+1] register starts a
destination chunk transfer request, where x is the channel number.

Upon completion of the chunk transaction, the hardware clears the DMAC_CREQ[2x] or DMAC_CREQ[2x+1].

Single Transactions

Writing a ‘1’ to the Software Single Request Register (DMAC_SREQ[2x]) starts a source single transaction
request, where x is the channel number. Writing a ‘1’ to the DMAC_SREQ[2x+1] register starts a destination single
transfer request, where x is the channel number.

Upon completion of the chunk transaction, the hardware clears the DMAC_SREQ[x] or DMAC_SREQ[2x+1].

The software can poll  the relevant channel bi t  in the DMAC_CREQ[2x]/DMAC_CREQ[2x+1] and
DMAC_SREQ[x]/DMAC_SREQ[2x+1] registers. When both are 0, then either the requested chunk or single
transaction has completed.
SAM9G35 [DATASHEET]
Atmel-11053F-ATARM-SAM9G35-Datasheet_31-Aug-15

476



33.14.1   HSMCI Control Register

Name: HSMCI_CR

Address: 0xF0008000 (0), 0xF000C000 (1)

Access: Write-only

• MCIEN: Multi-Media Interface Enable

0: No effect.

1: Enables the Multi-Media Interface if MCDIS is 0.

• MCIDIS: Multi-Media Interface Disable

0: No effect.

1: Disables the Multi-Media Interface.

• PWSEN: Power Save Mode Enable

0: No effect.

1: Enables the Power Saving Mode if PWSDIS is 0.

Warning: Before enabling this mode, the user must set a value different from 0 in the PWSDIV field of the HSMCI_MR.

• PWSDIS: Power Save Mode Disable

0: No effect.

1: Disables the Power Saving Mode.

• SWRST: Software Reset

0: No effect.

1: Resets the HSMCI. A software triggered hardware reset of the HSMCI is performed.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

SWRST – – – PWSDIS PWSEN MCIDIS MCIEN
SAM9G35 [DATASHEET]
Atmel-11053F-ATARM-SAM9G35-Datasheet_31-Aug-15

636



• DCRCE: Data CRC Error (cleared on read)

0: No error.

1: A CRC16 error has been detected in the last data block.

• DTOE: Data Time-out Error (cleared on read)

0: No error.

1: The data time-out set by DTOCYC and DTOMUL in HSMCI_DTOR has been exceeded.

• CSTOE: Completion Signal Time-out Error (cleared on read)

0: No error.

1: The completion signal time-out set by CSTOCYC and CSTOMUL in HSMCI_CSTOR has been exceeded.

• BLKOVRE: DMA Block Overrun Error (cleared on read)

0: No error.

1: A new block of data is received and the DMA controller has not started to move the current pending block, a block over-
run is raised.

• DMADONE: DMA Transfer Done (cleared on read)

0: DMA buffer transfer has not completed since the last read of the HSMCI_SR.

1: DMA buffer transfer has completed since the last read of the HSMCI_SR.

• FIFOEMPTY: FIFO empty flag

0: FIFO contains at least one byte.

1: FIFO is empty.

• XFRDONE: Transfer Done flag

0: A transfer is in progress.

1: Command Register is ready to operate and the data bus is in the idle state.

• ACKRCV: Boot Operation Acknowledge Received  (cleared on read)

0: No Boot acknowledge received since the last read of the HSMCI_SR.

1: A Boot acknowledge signal has been received since the last read of HSMCI_SR.

• ACKRCVE: Boot Operation Acknowledge Error (cleared on read)

0: No boot operation error since the last read of HSMCI_SR

1: Corrupted Boot Acknowledge signal received since the last read of HSMCI_SR.

• OVRE: Overrun (if FERRCTRL = 1, cleared by writing in HSMCI_CMDR or cleared on read if FERRCTRL = 0)

0: No error.

1: At least one 8-bit received data has been lost (not read).

If FERRCTRL = 1 in HSMCI_CFG, OVRE is cleared on read.

If FERRCTRL = 0 in HSMCI_CFG, OVRE is cleared by writing HSMCI_CMDR.
651SAM9G35 [DATASHEET]
Atmel-11053F-ATARM-SAM9G35-Datasheet_31-Aug-15



35.7.4 TC Stepper Motor Mode Register

Name: TC_SMMRx [x=0..2] 

Address: 0xF8008008 (0)[0], 0xF8008048 (0)[1], 0xF8008088 (0)[2], 0xF800C008 (1)[0], 0xF800C048 (1)[1],
0xF800C088 (1)[2]

Access: Read/Write 

This register can only be written if the WPEN bit is cleared in the TC Write Protection Mode Register.

• GCEN: Gray Count Enable

0: TIOAx [x=0..2] and TIOBx [x=0..2] are driven by internal counter of channel x.

1: TIOAx [x=0..2] and TIOBx [x=0..2] are driven by a 2-bit gray counter.

• DOWN: Down Count

0: Up counter.

1: Down counter.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – DOWN GCEN
SAM9G35 [DATASHEET]
Atmel-11053F-ATARM-SAM9G35-Datasheet_31-Aug-15

722



38.2 Embedded Characteristics
 Programmable Baud Rate Generator

 5- to 9-bit Full-duplex Synchronous or Asynchronous Serial Communications

̶ 1, 1.5 or 2 Stop Bits in Asynchronous Mode or 1 or 2 Stop Bits in Synchronous Mode

̶ Parity Generation and Error Detection

̶ Framing Error Detection, Overrun Error Detection

̶ Digital Filter on Receive Line

̶ MSB- or LSB-first

̶ Optional Break Generation and Detection

̶ By 8 or by 16 Oversampling Receiver Frequency

̶ Optional Hardware Handshaking RTS-CTS

̶ Receiver Time-out and Transmitter Timeguard

̶ Optional Multidrop Mode with Address Generation and Detection

 RS485 with Driver Control Signal

 ISO7816, T = 0 or T = 1 Protocols for Interfacing with Smart Cards

̶ NACK Handling, Error Counter with Repetition and Iteration Limit

 IrDA Modulation and Demodulation

̶ Communication at up to 115.2 kbit/s

 SPI Mode

̶ Master or Slave

̶ Serial Clock Programmable Phase and Polarity

̶ SPI Serial Clock (SCK) Frequency up to fperipheral clock/6

 LIN Mode

̶ Compliant with LIN 1.3 and LIN 2.0 SPECIFICATIONS

̶ Master or Slave

̶ Processing of Frames with Up to 256 Data Bytes

̶ Response Data Length can be Configurable or Defined Automatically by the Identifier

̶ Self-synchronization in Slave Node Configuration

̶ Automatic Processing and Verification of the “Synch Break” and the “Synch Field”

̶ “Synch Break” Detection Even When Partially Superimposed with a Data Byte

̶ Automatic Identifier Parity Calculation/Sending and Verification

̶ Parity Sending and Verification Can be Disabled

̶ Automatic Checksum Calculation/sending and Verification

̶ Checksum Sending and Verification Can be Disabled

̶ Support Both “Classic” and “Enhanced” Checksum Types

̶ Full LIN Error Checking and Reporting

̶ Frame Slot Mode: Master Allocates Slots to the Scheduled Frames Automatically

̶ Generation of the Wakeup Signal

 Test Modes

̶ Remote Loopback, Local Loopback, Automatic Echo

 Supports Connection of:

̶ Two DMA Controller Channels (DMAC)

 Offers Buffer Transfer without Processor Intervention

 Register Write Protection
809SAM9G35 [DATASHEET]
Atmel-11053F-ATARM-SAM9G35-Datasheet_31-Aug-15



The USART cannot operate concurrently in both Receiver and Transmitter modes as the communication is
unidirectional at a time. It has to be configured according to the required mode by enabling or disabling either the
receiver or the transmitter as desired. Enabling both the receiver and the transmitter at the same time in ISO7816
mode may lead to unpredictable results.

The ISO7816 specification defines an inverse transmission format. Data bits of the character must be transmitted
on the I/O line at their negative value.

38.6.4.2  Protocol T = 0

In T = 0 protocol, a character is made up of one start bit, eight data bits, one parity bit and one guard time, which
lasts two bit times. The transmitter shifts out the bits and does not drive the I/O line during the guard time. 

If no parity error is detected, the I/O line remains at 1 during the guard time and the transmitter can continue with
the transmission of the next character, as shown in Figure 38-30. 

If a parity error is detected by the receiver, it drives the I/O line to 0 during the guard time, as shown in Figure 38-
31. This error bit is also named NACK, for Non Acknowledge. In this case, the character lasts 1 bit time more, as
the guard time length is the same and is added to the error bit time which lasts 1 bit time. 

When the USART is the receiver and it detects an error, it does not load the erroneous character in the Receive
Holding register (US_RHR). It appropriately sets the PARE bit in the Status register (US_SR) so that the software
can handle the error.

Figure 38-30. T = 0 Protocol without Parity Error 

Figure 38-31. T = 0 Protocol with Parity Error 

Receive Error Counter

The USART receiver also records the total number of errors. This can be read in the Number of Error (US_NER)
register. The NB_ERRORS field can record up to 255 errors. Reading US_NER automatically clears the
NB_ERRORS field. 

Receive NACK Inhibit

The USART can also be configured to inhibit an error. This can be achieved by setting the INACK bit in US_MR. If
INACK is to 1, no error signal is driven on the I/O line even if a parity bit is detected. 

Moreover, if INACK is set, the erroneous received character is stored in the Receive Holding register, as if no error
occurred and the RXRDY bit does rise.

Transmit Character Repetition

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Parity
Bit

Baud Rate
Clock

Start 
Bit

Guard
Time 1

Next 
Start 

Bit

Guard
Time 2

D0 D1 D2 D3 D4 D5 D6 D7

I/O

Parity
Bit

Baud Rate
Clock

Start
Bit

Guard
Time 1

Start 
Bit

Guard
Time 2

D0 D1

Error

Repetition
831SAM9G35 [DATASHEET]
Atmel-11053F-ATARM-SAM9G35-Datasheet_31-Aug-15



38.7.9 USART Interrupt Disable Register (SPI_MODE)

Name:  US_IDR (SPI_MODE)

Address: 0xF801C00C (0), 0xF802000C (1), 0xF802400C (2)

Access:  Write-only

This configuration is relevant only if USART_MODE = 0xE or 0xF in the USART Mode Register.

The following configuration values are valid for all listed bit names of this register:

0: No effect

1: Disables the corresponding interrupt.

• RXRDY: RXRDY Interrupt Disable

• TXRDY: TXRDY Interrupt Disable

• OVRE: Overrun Error Interrupt Disable

• TXEMPTY: TXEMPTY Interrupt Disable

• UNRE: SPI Underrun Error Interrupt Disable

• NSSE: NSS Line (Driving CTS Pin) Rising or Falling Edge Event Interrupt Disable

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – NSSE – – –

15 14 13 12 11 10 9 8

– – – – – UNRE TXEMPTY –

7 6 5 4 3 2 1 0

– – OVRE – – – TXRDY RXRDY
871SAM9G35 [DATASHEET]
Atmel-11053F-ATARM-SAM9G35-Datasheet_31-Aug-15



979SAM9G35 [DATASHEET]
Atmel-11053F-ATARM-SAM9G35-Datasheet_31-Aug-15

Figure 42-12. Receiver Block Diagram

42.8.4 Start

The transmitter and receiver can both be programmed to start their operations when an event occurs, respectively
in the Transmit Start Selection (START) field of SSC_TCMR and in the Receive Start Selection (START) field of
SSC_RCMR. 

Under the following conditions the start event is independently programmable:

 Continuous. In this case, the transmission starts as soon as a word is written in SSC_THR and the reception 
starts as soon as the Receiver is enabled.

 Synchronously with the transmitter/receiver 

 On detection of a falling/rising edge on TF/RF

 On detection of a low level/high level on TF/RF

 On detection of a level change or an edge on TF/RF

A start can be programmed in the same manner on either side of the Transmit/Receive Clock Register
(SSC_RCMR/SSC_TCMR). Thus, the start could be on TF (Transmit) or RF (Receive).

Moreover, the Receiver can start when data is detected in the bit stream with the Compare Functions.

Detection on TF/RF input/output is done by the field FSOS of the Transmit/Receive Frame Mode Register
(SSC_TFMR/SSC_RFMR).

SSC_RFMR.MSBF
SSC_RFMR.DATNB

SSC_TCMR.START
SSC_RCMR.START

SSC_RHRSSC_RSHR

SSC_RFMR.FSLEN SSC_RFMR.DATLEN

RX Controller counter reached STTDLY

RX Controller

RD

SSC_CR.RXEN

SSC_CR.RXDIS

SSC_SR.RXEN

Receiver Clock

RF

TXEN

RX Start

RF

RXEN

RC0R

SSC_RCMR.STTDLY != 0

Receive Shift Register

Start
Selector Start

Selector

RX Start

load load



0x00000108 Overlay 1 Channel Status Register LCDC_OVRCHSR1 Read-only 0x00000000

0x0000010C Overlay 1 Interrupt Enable Register LCDC_OVRIER1 Write-only –

0x00000110 Overlay 1 Interrupt Disable Register LCDC_OVRIDR1 Write-only –

0x00000114 Overlay 1 Interrupt Mask Register LCDC_OVRIMR1 Read-only 0x00000000

0x00000118 Overlay 1 Interrupt Status Register LCDC_OVRISR1 Read-only 0x00000000

0x0000011C Overlay 1 DMA Head Register LCDC_OVRHEAD1 Read/Write 0x00000000

0x00000120 Overlay 1 DMA Address Register LCDC_OVRADDR1 Read/Write 0x00000000

0x00000124 Overlay1 DMA Control Register LCDC_OVRCTRL1 Read/Write 0x00000000

0x00000128 Overlay1 DMA Next Register LCDC_OVRNEXT1 Read/Write 0x00000000

0x0000012C Overlay 1 Configuration 0 Register LCDC_OVR1CFG0 Read/Write 0x00000000

0x00000130 Overlay 1 Configuration 1 Register LCDC_OVR1CFG1 Read/Write 0x00000000

0x00000134 Overlay 1 Configuration 2 Register LCDC_OVR1CFG2 Read/Write 0x00000000

0x00000138 Overlay 1 Configuration 3 Register LCDC_OVR1CFG3 Read/Write 0x00000000

0x0000013C Overlay 1 Configuration 4 Register LCDC_OVR1CFG4 Read/Write 0x00000000

0x00000140 Overlay 1 Configuration 5 Register LCDC_OVR1CFG5 Read/Write 0x00000000

0x00000144 Overlay 1 Configuration 6 Register LCDC_OVR1CFG6 Read/Write 0x00000000

0x00000148 Overlay 1 Configuration 7 Register LCDC_OVR1CFG7 Read/Write 0x00000000

0x0000014C Overlay 1 Configuration 8 Register LCDC_OVR1CFG8 Read/Write 0x00000000

0x00000150 Overlay 1 Configuration 9 Register LCDC_OVR1CFG9 Read/Write 0x00000000

0x154–0x27C Reserved – – –

0x00000280 High End Overlay Channel Enable Register LCDC_HEOCHER Write-only –

0x00000284 High End Overlay Channel Disable Register LCDC_HEOCHDR Write-only –

0x00000288 High End Overlay Channel Status Register LCDC_HEOCHSR Read-only 0x00000000

0x0000028C High End Overlay Interrupt Enable Register LCDC_HEOIER Write-only –

0x00000290 High End Overlay Interrupt Disable Register LCDC_HEOIDR Write-only –

0x00000294 High End Overlay Interrupt Mask Register LCDC_HEOIMR Read-only 0x00000000

0x00000298 High End Overlay Interrupt Status Register LCDC_HEOISR Read-only 0x00000000

0x0000029C High End Overlay DMA Head Register LCDC_HEOHEAD Read/Write 0x00000000

0x000002A0 High End Overlay DMA Address Register LCDC_HEOADDR Read/Write 0x00000000

0x000002A4 High End Overlay DMA Control Register LCDC_HEOCTRL Read/Write 0x00000000

0x000002A8 High End Overlay DMA Next Register LCDC_HEONEXT Read/Write 0x00000000

0x000002AC High End Overlay U DMA Head Register LCDC_HEOUHEAD Read/Write 0x00000000

0x000002B0 High End Overlay U DMA Address Register LCDC_HEOUADDR Read/Write 0x00000000

0x000002B4 High End Overlay U DMA Control Register LCDC_HEOUCTRL Read/Write 0x00000000

0x000002B8 High End Overlay U DMA Next Register LCDC_HEOUNEXT Read/Write 0x00000000

0x000002BC High End Overlay V DMA Head Register LCDC_HEOVHEAD Read/Write 0x00000000

0x000002C0 High End Overlay V DMA Address Register LCDC_HEOVADDR Read/Write 0x00000000

Table 44-55. Register Mapping (Continued)

Offset Register Name Access Reset
1115SAM9G35 [DATASHEET]
Atmel-11053F-ATARM-SAM9G35-Datasheet_31-Aug-15



44.7.45   Overlay 1 Layer Configuration 3 Register

Name: LCDC_OVR1CFG3

Address: 0xF8038138

Access: Read/Write

• XSIZE: Horizontal Window Size

Overlay 1 window width in pixels. The window width is set to (XSIZE + 1).

The following constraint must be met: XPOS + XSIZE ≤ PPL

• YSIZE: Vertical Window Size

Overlay 1 window height in pixels. The window height is set to (YSIZE + 1).

The following constrain must be met: YPOS + YSIZE ≤ RPF

31 30 29 28 27 26 25 24

– – – – – YSIZE

23 22 21 20 19 18 17 16

YSIZE

15 14 13 12 11 10 9 8

– – – – – XSIZE

7 6 5 4 3 2 1 0

XSIZE
SAM9G35 [DATASHEET]
Atmel-11053F-ATARM-SAM9G35-Datasheet_31-Aug-15

1164



44.7.51   Overlay1 Layer Configuration 9 Register

Name: LCDC_OVR1CFG9

Address: 0xF8038150

Access: Read/Write

• CRKEY: Blender Chroma Key Enable

0: Chroma key matching is disabled.

1: Chroma key matching is enabled.

• INV: Blender Inverted Blender Output Enable

0: Iterated pixel is the blended pixel.

1: Iterated pixel is the inverted pixel.

• ITER2BL: Blender Iterated Color Enable

0: Final adder stage operand is set to 0.

1: Final adder stage operand is set to the iterated pixel value.

• ITER: Blender Use Iterated Color

0: Pixel difference is set to 0.

1: Pixel difference is set to the iterated pixel value.

• REVALPHA: Blender Reverse Alpha

0: Pixel difference is multiplied by alpha.

1: Pixel difference is multiplied by 1 - alpha.

• GAEN: Blender Global Alpha Enable

0: Global alpha blending coefficient is disabled.

1: Global alpha blending coefficient is enabled.

• LAEN: Blender Local Alpha Enable

0: Local alpha blending coefficient is disabled.

1: Local alpha blending coefficient is enabled.

• OVR: Blender Overlay Layer Enable

0: Overlay pixel color is set to the default overlay pixel color.

1: Overlay pixel color is set to the DMA channel pixel color.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

GA

15 14 13 12 11 10 9 8

– – – – – DSTKEY REP DMA

7 6 5 4 3 2 1 0

OVR LAEN GAEN REVALPHA ITER ITER2BL INV CRKEY
SAM9G35 [DATASHEET]
Atmel-11053F-ATARM-SAM9G35-Datasheet_31-Aug-15

1170



44.7.62   High End Overlay Layer Next Register

Name: LCDC_HEONEXT

Address: 0xF80382A8

Access: Read/Write

• NEXT: DMA Descriptor Next Address

DMA Descriptor next address, this address must be word aligned.

31 30 29 28 27 26 25 24

NEXT

23 22 21 20 19 18 17 16

NEXT

15 14 13 12 11 10 9 8

NEXT

7 6 5 4 3 2 1 0

NEXT
SAM9G35 [DATASHEET]
Atmel-11053F-ATARM-SAM9G35-Datasheet_31-Aug-15

1186



31-Aug-15

Section 23. “Debug Unit (DBGU)”

Instances of “Master clock” or “MCK” replaced with “Peripheral clock”

Updated Section 23.2 “Embedded Characteristics”

Updated Figure 23-1 “Debug Unit Functional Block Diagram”

Section 23.6.10 “Debug Unit Chip ID Register”: changed name and description of value 0xA5 for ARCH field (was 
reserved; is now ATSAMA5xx / ATSAMA5xx Series)

Section 28. “Static Memory Controller (SMC)”

Added Table 28-3 “I/O Lines”

Section 28.9 “Standard Read and Write Protocols”: deleted subsection “Write Protected Registers”

Updated Section 28.9.1.3 “Read Cycle”

Updated Section 28.9.3.3 “Write Cycle”

Section 28.14.2 “Byte Access Type in Page Mode”: “SMC_REGISTER” corrected to “SMC Mode Register 
(SMC_MODE)”

Removed section 29.15 “Programmable IO Delays”

Added Section 28.15 “Register Write Protection”

Table 28-9 “Register Mapping”: removed registers SMC_DELAY1–SMC_DELAY8 (offset range 0xC0–0xDC now 
reserved)

Section 28.16.1 “SMC Setup Register”: added sentence about write protection

Section 28.16.2 “SMC Pulse Register”: added sentence about write protection

Section 28.16.3 “SMC Cycle Register”: added sentence about write protection

Section 28.16.4 “SMC Mode Register”:

- added sentence about write protection

- added sentence about confirming the SMC configuration

- updated descriptions of bits/fields READ_MODE, WRITE_MODE, EXNW_MODE, BAT, DBW, and PS

Removed section 29.16.5 “SMC DELAY I/O Register”

Section 28.16.5 “SMC Write Protection Mode Register”: removed “Reset” line; updated WPEN and WPKEY field 
descriptions

Section 28.16.6 “SMC Write Protection Status Register”: removed “Reset” line; updated WPVS and WPVSRC field 
descriptions

Section 29. “DDR SDR SDRAM Controller (DDRSDRC)”

Removed instances of or references to “temperature compensated self refresh”, “TCR” field, and acronym “TCSR”

Section 29.4.2 “Low-power DDR1-SDRAM Initialization”: added “Low-power” to title and modified step 6

Section 29.5.1 “SDRAM Controller Write Cycle”: added note defining TWRD

Figure 29-12 “Single Read Access, Row Closed, Latency = 3, DDR2-SDRAM Device”: modified diagram to add one 
cycle and corrected “Latency = 2” to “Latency = 3”

Figure 29-16 “Burst Read Access, Latency = 2, SDR-SDRAM Devices”: removed DQS[1:0] waveform

Section 29.5.4 “Power Management”: added note specifying that possible SDRAM constraint of 4K cycles of burst auto-
refresh is not supported

Updated Section 29.5.6 “Register Write Protection”

Section 29.6.3 “SDR-SDRAM Address Mapping for 32-bit Memory Data Bus Width”: updated footnote 2

Table 29-16 “Register Mapping”: added row for reserved offset 0x28; added row for reserved offset range 0xEC–0xFC

Removed “Reset” line from individual register descriptions (reset values are provided in Table 29-16 “Register 
Mapping”)

Doc. Rev.
11053F Comments
1285SAM9G35 [DATASHEET]
11053E–ATARM–31-Aug-15


