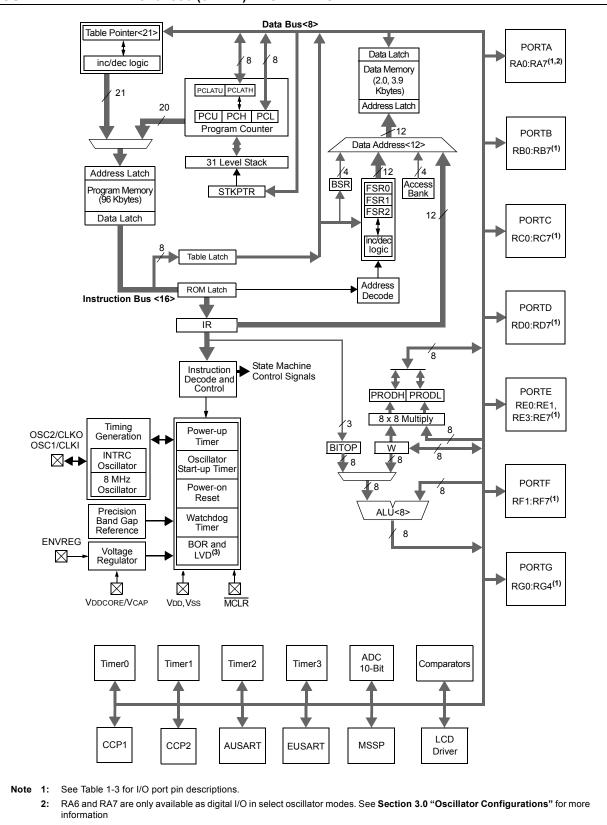


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, LVD, POR, PWM, WDT
Number of I/O	51
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f63j90-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3: Brown-out Reset and Low-Voltage Detect functions are provided when the on-board voltage regulator is enabled.

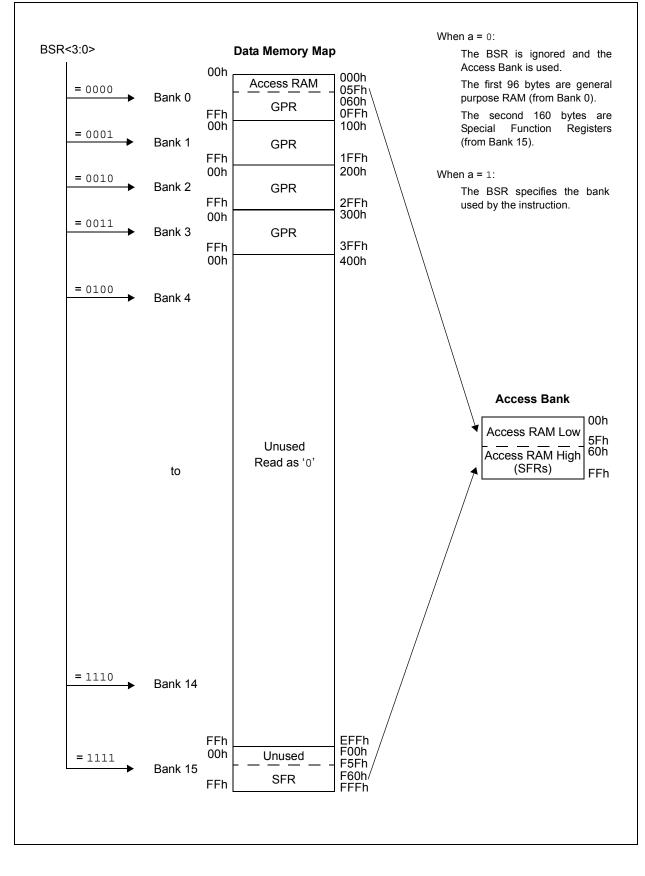

Pin Name	Pin Number	Pin	Buffer	Description		
Pin Name	TQFP	Туре	Туре	Description		
				PORTG is a bidirectional I/O port.		
RG0/LCDBIAS0 RG0 LCDBIAS0	5	I/O I	ST Analog	Digital I/O. BIAS0 input for LCD.		
RG1/TX2/CK2 RG1 TX2 CK2	6	I/O O I/O	ST — ST	Digital I/O. AUSART asynchronous transmit. AUSART synchronous clock (see related RX2/DT2).		
RG2/RX2/DT2/VLCAP1 RG2 RX2 DT2 VLCAP1	7	I/O I I/O I	ST ST ST Analog	Digital I/O. AUSART asynchronous receive. AUSART synchronous data (see related TX2/CK2). LCD charge pump capacitor input.		
RG3/VLCAP2 RG3 VLCAP2	8	I/O I	ST Analog	Digital I/O. LCD charge pump capacitor input.		
RG4/SEG26 RG4 SEG26	10	I/O O	ST Analog	Digital I/O. SEG26 output for LCD.		
	ompatible input tt Trigger input 1Bus	with C	MOS leve	CMOS = CMOS compatible input or output Analog = Analog input O = Output OD = Open-Drain (no P diode to VDD)		

TABLE 1-4: PIC18F8XJ90 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set.

2: Alternate assignment for CCP2 when the CCP2MX Configuration bit is cleared.

FIGURE 6-6: DATA MEMORY MAP FOR PIC18FX3J90/X4J90 DEVICES

7.2.2 TABLE LATCH REGISTER (TABLAT)

The Table Latch (TABLAT) is an 8-bit register mapped into the SFR space. The Table Latch register is used to hold 8-bit data during data transfers between program memory and data RAM.

7.2.3 TABLE POINTER REGISTER (TBLPTR)

The Table Pointer (TBLPTR) register addresses a byte within the program memory. The TBLPTR is comprised of three SFR registers: Table Pointer Upper Byte, Table Pointer High Byte and Table Pointer Low Byte (TBLPTRU:TBLPTRH:TBLPTRL). These three registers join to form a 22-bit wide pointer. The low-order 21 bits allow the device to address up to 2 Mbytes of program memory space. The 22nd bit allows access to the device ID, the user ID and the Configuration bits.

The Table Pointer register, TBLPTR, is used by the TBLRD and TBLWT instructions. These instructions can update the TBLPTR in one of four ways based on the table operation. These operations are shown in Table 7-1. These operations on the TBLPTR only affect the low-order 21 bits.

7.2.4 TABLE POINTER BOUNDARIES

TBLPTR is used in reads, writes and erases of the Flash program memory.

When a TBLRD is executed, all 22 bits of the TBLPTR determine which byte is read from program memory into TABLAT.

When a TBLWT is executed, the seven LSbs of the Table Pointer register (TBLPTR<6:0>) determine which of the 64 program memory holding registers is written to. When the timed write to program memory begins (via the WR bit), the 12 MSbs of the TBLPTR (TBLPTR<21:10>) determine which program memory block of 1024 bytes is written to. For more detail, see **Section 7.5 "Writing to Flash Program Memory"**.

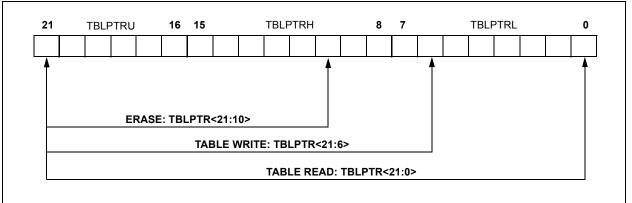

When an erase of program memory is executed, the 12 MSbs of the Table Pointer register point to the 1024-byte block that will be erased. The Least Significant bits are ignored.

Figure 7-3 describes the relevant boundaries of the TBLPTR based on Flash program memory operations.

TABLE 7-1: TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS

Example	Operation on Table Pointer					
TBLRD* TBLWT*	TBLPTR is not modified					
TBLRD*+ TBLWT*+	TBLPTR is incremented after the read/write					
TBLRD*- TBLWT*-	TBLPTR is decremented after the read/write					
TBLRD+* TBLWT+*	TBLPTR is incremented before the read/write					

FIGURE 7-3: TABLE POINTER BOUNDARIES BASED ON OPERATION

9.4 IPR Registers

The IPR registers contain the individual priority bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are three Peripheral Interrupt Priority registers (IPR1, IPR2, IPR3). Using the priority bits requires that the Interrupt Priority Enable (IPEN) bit be set.

REGISTER 9-10: IPR1: PERIPHERAL INTERRUPT PRIORITY REGISTER 1

U-0	R/W-1	R/W-1	R/W-1	R/W-1	U-0	R/W-1	R/W-1
	ADIP	RC1IP	TX1IP	SSPIP		TMR2IP	TMR1IP
bit 7							bit (
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7	Unimplemer	nted: Read as '	כ'				
bit 6	ADIP: A/D C	onverter Interru	pt Priority bit				
	1 = High price						
	0 = Low prio	rity					
bit 5	RC1IP: EUS	ART Receive Ir	terrupt Priority	/ bit			
	1 = High prio	•					
	0 = Low prio	rity					
bit 4	TX1IP: EUS/	ART Transmit Ir	terrupt Priorit	y bit			
	1 = High prio						
	0 = Low prio	rity					
bit 3	SSPIP: Mast	er Synchronous	Serial Port Ir	terrupt Priority b	bit		
	1 = High prio						
	0 = Low prio	rity					
bit 2	Unimplemer	nted: Read as '	כ'				
bit 1	TMR2IP: TM	R2 to PR2 Mate	ch Interrupt Pr	iority bit			
	1 = High prio	•					
	0 = Low prio	rity					
bit 0	TMR1IP: TM	R1 Overflow Int	errupt Priority	bit			
	1 = High prio	,					
	0 = Low prio	rity					

Pin Name	Function	TRIS Setting	I/O	I/O Type	Description			
RB0/INT0/SEG30	RB0	0	0	DIG	LATB<0> data output.			
		1	I	TTL	PORTB<0> data input; weak pull-up when RBPU bit is cleared.			
	INT0	1	Ι	ST	External Interrupt 0 input.			
	SEG30	x	0	ANA	LCD Segment 30 output; disables all other pin functions.			
RB1/INT1/SEG8	RB1	0	0	DIG	LATB<1> data output.			
		1	Ι	TTL	PORTB<1> data input; weak pull-up when RBPU bit is cleared.			
	INT1	1	I	ST	External Interrupt 1 input.			
			ANA	LCD Segment 8 output; disables all other pin functions.				
RB2/INT2/SEG9	RB2	0	0	DIG	LATB<2> data output.			
		1	I	TTL	PORTB<2> data input; weak pull-up when RBPU bit is cleared.			
	INT2	1	Ι	ST	External Interrupt 2 input.			
	SEG9	x O ANA LCD Segment 9 output; disables all other pin functions.						
RB3/INT3/SEG10	RB3	0	0	DIG	LATB<3> data output.			
		1	I	TTL	PORTB<3> data input; weak pull-up when RBPU bit is cleared.			
	INT3	1	Ι	ST	External Interrupt 3 input.			
	SEG10	x	0	ANA	LCD Segment 10 output; disables all other pin functions.			
RB4/KBI0/SEG11	RB4	0	0	DIG	LATB<4> data output.			
		1	I	TTL	PORTB<4> data input; weak pull-up when RBPU bit is cleared.			
	KBI0	1	I	TTL	Interrupt-on-pin change.			
	SEG11	x	0	ANA	LCD Segment 11 output; disables all other pin functions.			
RB5/KBI1/SEG29	RB5	0	0	DIG	LATB<5> data output.			
		1	Ι	TTL	PORTB<5> data input; weak pull-up when RBPU bit is cleared.			
	KBI1	1	Ι	TTL	Interrupt-on-pin change.			
	SEG29	x	0	ANA	LCD Segment 29 output; disables all other pin functions.			
RB6/KBI2/PGC	RB6	0	0	DIG	LATB<6> data output.			
		1	I	TTL	PORTB<6> data input; weak pull-up when RBPU bit is cleared.			
	KBI2	1	Ι	TTL	Interrupt-on-pin change.			
	PGC	х	I	ST	Serial execution (ICSP™) clock input for ICSP and ICD operation.			
RB7/KBI3/PGD	RB7	0	0	DIG	LATB<7> data output.			
		1	I	TTL	PORTB<7> data input; weak pull-up when RBPU bit is cleared.			
	KBI3	1	Ι	TTL	Interrupt-on-pin change.			
	PGD	x	0	DIG	Serial execution data output for ICSP and ICD operation.			
		x	Ι	ST	Serial execution data input for ICSP and ICD operation.			

TABLE 10-5: PORTB FUNCTIONS

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input,

TTL = TTL Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

10.6 PORTE, TRISE and LATE Registers

PORTE is a 7-bit wide, bidirectional port. The corresponding Data Direction and Data Latch registers are TRISE and LATE. All pins on PORTE are digital only and tolerate voltages up to 5.5V.

All pins on PORTE are implemented with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output. The RE7 pin is also configurable for open-drain output when CCP2 is active on this pin. Open-drain configuration is selected by setting the CCP2OD control bit (TRISG<6>)

Note:	These pins are configured as digital inputs	
	on any device Reset.	

Each of the PORTE pins has a weak internal pull-up. A single control bit can turn off all the pull-ups. This is performed by clearing bit, REPU (PORTG<6>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on any device Reset.

Pins, RE<6:3>, are multiplexed with the LCD common drives. I/O port functions are only available on those PORTE pins depending on which commons are active. The configuration is determined by the LMUX<1:0> control bits (LCDCON<1:0>). The availability is summarized in Table 10-11.

TABLE 10-11: PORTE PINS AVAILABLE IN DIFFERENT LCD DRIVE CONFIGURATIONS

LCDCON <1:0>	Active LCD Commons	PORTE Available for I/O
00	COM0 RE6, RE5	
01	COM0, COM1	RE6, RE5
10	COM0, COM1 and COM2	RE6
11	All (COM0 through COM3)	None

Pins, RE1 and RE0, are multiplexed with the functions of LCDBIAS2 and LCDBIAS1. When LCD bias generation is required (i.e., any application where the device is connected to an external LCD), these pins cannot be used as digital I/O.

Note:	The pin corresponding to RE2 of other
	PIC18F parts has the function of
	LCDBIAS3 in this device. It cannot be used
	as digital I/O.

RE7 is multiplexed with LCD segment drive (SEG31) controlled by the LCDSE3<7> bit. I/O port function is only available when the segment is disabled.

RE7 can also be configured as the alternate peripheral pin for the CCP2 module. This is done by clearing the CCP2MX Configuration bit.

EXAMPLE 10-5: INITIALIZING PORTE

CLRF	PORTE	; Initialize PORTE by ; clearing output
CLRF	LATE	; data latches ; Alternate method
СШКР	DATE	; to clear output
		; data latches
MOVLW	03h	; Value used to
		; initialize data ; direction
MOVWF	TRISE	

11.0 TIMER0 MODULE

The Timer0 module incorporates the following features:

- Software selectable operation as a timer or counter in both 8-bit or 16-bit modes
- Readable and writable registers
- Dedicated 8-bit, software programmable
 prescaler
- Selectable clock source (internal or external)
- Edge select for external clock
- Interrupt-on-overflow

The T0CON register (Register 11-1) controls all aspects of the module's operation, including the prescale selection; it is both readable and writable.

A simplified block diagram of the Timer0 module in 8-bit mode is shown in Figure 11-1. Figure 11-2 shows a simplified block diagram of the Timer0 module in 16-bit mode.

REGISTER 11-1: T0CON: TIMER0 CONTROL REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
TMR00N	T08BIT	TOCS	TOSE	PSA	T0PS2	T0PS1	T0PS0
bit 7							bit 0

Legend:									
R = Reada	ble bit	W = Writable bit	U = Unimplemented bit	, read as '0'					
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					
bit 7	TMR0ON:	Timer0 On/Off Control bit							
	1 = Enable 0 = Stops								
bit 6	T08BIT: T	imer0 8-Bit/16-Bit Control b	it						
) is configured as an 8-bit ti) is configured as a 16-bit ti							
bit 5	TOCS: Tim	ner0 Clock Source Select bi	t						
		tion on T0CKI pin input edg al clock (F0sc/4)	le						
bit 4	T0SE: Tim	TOSE: Timer0 Source Edge Select bit							
		nent on high-to-low transitio nent on low-to-high transitio	•						
bit 3	PSA: Time	er0 Prescaler Assignment b	it						
			Timer0 clock input bypasses er0 clock input comes from pr						
bit 2-0	T0PS<2:0	>: Timer0 Prescaler Select	bits						
	110 = 1:12 $101 = 1:64$ $100 = 1:32$ $011 = 1:16$ $010 = 1:8$ $001 = 1:4$	 56 Prescale value 28 Prescale value 4 Prescale value 2 Prescale value 6 Prescale value Prescale value Prescale value Prescale value Prescale value 							

12.0 TIMER1 MODULE

The Timer1 timer/counter module incorporates these features:

- Software selectable operation as a 16-bit timer or counter
- Readable and writable 8-bit registers (TMR1H and TMR1L)
- Selectable clock source (internal or external) with device clock or Timer1 oscillator internal options
- Interrupt on overflow
- Reset on CCP Special Event Trigger
- Device clock status flag (T1RUN)

A simplified block diagram of the Timer1 module is shown in Figure 12-1. A block diagram of the module's operation in Read/Write mode is shown in Figure 12-2.

The module incorporates its own low-power oscillator to provide an additional clocking option. The Timer1 oscillator can also be used as a low-power clock source for the microcontroller in power-managed operation.

Timer1 can also be used to provide Real-Time Clock (RTC) functionality to applications with only a minimal addition of external components and code overhead.

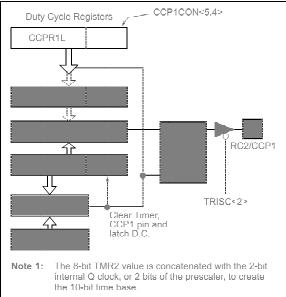
Timer1 is controlled through the T1CON Control register (Register 12-1). It also contains the Timer1 Oscillator Enable bit (T1OSCEN). Timer1 can be enabled or disabled by setting or clearing control bit, TMR1ON (T1CON<0>).

R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N
bit 7							bit 0

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER

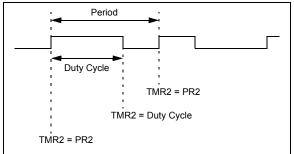
Legend:										
R = Reada	ble bit	W = Writable bit	U = Unimplemented bit	, read as '0'						
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown						
bit 7	RD16: 16	-Bit Read/Write Mode Enab	le bit							
		bles register read/write of TIr bles register read/write of Tir	•							
bit 6	T1RUN:	Timer1 System Clock Status	bit							
		ce clock is derived from Time ce clock is derived from ano								
bit 5-4	T1CKPS	<1:0>: Timer1 Input Clock P	rescale Select bits							
	==•	11 = 1:8 Prescale value								
) = 1:4 Prescale value . = 1:2 Prescale value								
		0 = 1:1 Prescale value								
bit 3		N: Timer1 Oscillator Enable	bit							
	1 = Time	r1 oscillator is enabled								
		r1 oscillator is shut off								
			esistor are turned off to elimina	ate power drain.						
bit 2		: Timer1 External Clock Inpu	t Synchronization Select bit							
		<u>IR1CS = 1:</u> ot synchronize external clock	cinnut							
		hronize external clock input	(input							
	When TM	IR1CS = 0:								
	This bit is	ignored. Timer1 uses the in	ternal clock when TMR1CS =	0.						
bit 1	TMR1CS	TMR1CS: Timer1 Clock Source Select bit								
		rnal clock from pin RC0/T1C nal clock (Fosc/4)	SO/T13CKI (on the rising edge	e)						
bit 0	TMR10N	I: Timer1 On bit								
	1 = Enat 0 = Stop	bles Timer1 s Timer1								

15.4 PWM Mode

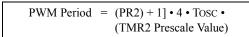

In Pulse-Width Modulation (PWM) mode, the CCP2 pin produces up to a 10-bit resolution PWM output. Since the CCP2 pin is multiplexed with a PORTC or PORTE data latch, the appropriate TRIS bit must be cleared to make the CCP2 pin an output.

Note:	Clearing the CCP2CON register will force the RC1 or RE7 output latch (depending on device configuration) to the default low level. This is not the PORTC or PORTE
	I/O data latch.

Figure 15-4 shows a simplified block diagram of the CCP1 module in PWM mode.

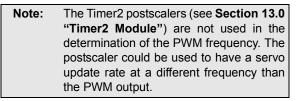

For a step-by-step procedure on how to set up the CCP module for PWM operation, see **Section 15.4.3** "Setup for PWM Operation".

A PWM output (Figure 15-5) has a time base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/period).


FIGURE 15-5: PWM OUTPUT

15.4.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:


EQUATION 15-1:

PWM frequency is defined as 1/[PWM period].

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP2 pin is set (exception: if PWM duty cycle = 0%, the CCP2 pin will not be set)
- The PWM duty cycle is latched from CCPR2L into CCPR2H

R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
WFT	BIASMD	LCDA	WA	LP3	LP2	LP1	LP0
bit 7			•				bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7	WFT: Wavefo	rm Type Selec	t bit				
	1 = Type-B wa	aveform (phase	e changes on	each frame bou hin each commo			
bit 6	BIASMD: Bia When LMUX< 0 = Static Bias	s Mode Select < <u>1:0> = 00:</u> s mode (do not < <u>1:0> = 01 or 1</u> node	bit set this bit to		,		
	When LMUX<		et this bit to '1	.')			
bit 5	LCDA: LCD A	Active Status bi	t				
		er module is act er module is ina					
bit 4	1 = Write into	te Allow Status the LCDDATA the LCDDATA	x registers is				
bit 3-0	LP<3:0>: LCI	D Prescaler Se	lect bits				
	1111 = 1:16 $1110 = 1:15$ $1101 = 1:14$ $1100 = 1:13$ $1011 = 1:12$ $1010 = 1:11$ $1001 = 1:10$ $1000 = 1:9$ $0111 = 1:8$ $0110 = 1:7$ $0101 = 1:6$ $0100 = 1:5$ $0011 = 1:4$ $0010 = 1:3$ $0001 = 1:2$ $0000 = 1:1$						

REGISTER 16-2: LCDPS: LCD PHASE REGISTER

16.3.3 BIAS CONFIGURATIONS

PIC18F85J90 family devices have four distinct circuit configurations for LCD bias generation:

- · M0: Regulator with Boost
- M1: Regulator without Boost
- · M2: Resistor Ladder with Software Contrast
- M3: Resistor Ladder with Hardware Contrast

16.3.3.1 M0 (Regulator with Boost)

In M0 operation, the LCD charge pump feature is enabled. This allows the regulator to generate voltages up to +3.6V to the LCD (as measured at LCDBIAS3).

M0 uses a flyback capacitor connected between VLCAP1 and VLCAP2, as well as filter capacitors on LCDBIAS0 through LCDBIAS3, to obtain the required voltage boost (Figure 16-3).

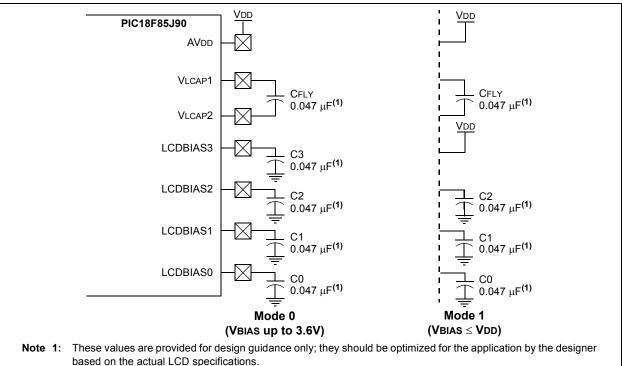
Note:	When the device is put to Sleep while
	operating in M0 or M1 mode, make sure
	that the Bias capacitors are fully discharged
	to get the lowest Sleep current.

The output voltage (VBIAS) is the difference of potential between LCDBIAS3 and LCDBIAS0. It is set by the BIAS<2:0> bits which adjust the offset between LCDBIAS0 and VSS. The flyback capacitor (CFLY) acts as a charge storage element for large LCD loads. This mode is useful in those cases where the voltage requirements of the LCD are higher than the micro-controller's VDD. It also permits software control of the display's contrast by adjustment of bias voltage by changing the value of the BIAS bits.

M0 supports Static and 1/3 Bias types. Generation of the voltage levels for 1/3 Bias is handled automatically, but must be configured in software.

M0 is enabled by selecting a valid regulator clock source (CKSEL<1:0> set to any value except '00') and setting the CPEN bit. If static Bias type is required, the MODE13 bit must be cleared.

16.3.3.2 M1 (Regulator without Boost)


M1 operation is similar to M0, but does not use the LCD charge pump. It can provide VBIAS up to the voltage level supplied directly to LCDBIAS3. It can be used in cases where VDD for the application is expected to never drop below a level that can provide adequate contrast for the LCD. The connection of external components is very similar to M0, except that LCDBIAS3 must be tied directly to VDD (Figure 16-3).

The BIAS<2:0> bits can still be used to adjust contrast in software by changing VBIAS. As with M0, changing these bits changes the offset between LCDBIAS0 and Vss. In M1, this is reflected in the change between the LCDBIAS0 and the voltage tied to LCDBIAS3. Thus, if VDD should change, VBIAS will also change; where in M0, the level of VBIAS is constant.

Like M0, M1 supports Static and 1/3 Bias types. Generation of the voltage levels for 1/3 Bias is handled automatically but must be configured in software.

M1 is enabled by selecting a valid regulator clock source (CKSEL<1:0> set to any value except '00') and clearing the CPEN bit. If 1/3 Bias type is required, the MODE13 bit should also be set.

FIGURE 16-3: LCD REGULATOR CONNECTIONS FOR M0 AND M1 CONFIGURATIONS

17.3.1 REGISTERS

Each MSSP module has four registers for SPI mode operation. These are:

- MSSP Control Register 1 (SSPCON1)
- MSSP Status Register (SSPSTAT)
- MSSP Serial Receive/Transmit Buffer Register (SSPBUF)
- MSSP Shift Register (SSPSR) Not directly accessible

SSPCON1 and SSPSTAT are the control and status registers in SPI mode operation. The SSPCON1 register is readable and writable. The lower 6 bits of the SSPSTAT are read-only. The upper two bits of the SSPSTAT are read/write.

SSPSR is the shift register used for shifting data in or out. SSPBUF is the buffer register to which data bytes are written to or read from.

In receive operations, SSPSR and SSPBUF together create a double-buffered receiver. When SSPSR receives a complete byte, it is transferred to SSPBUF and the SSPIF interrupt is set.

During transmission, the SSPBUF is not double-buffered. A write to SSPBUF will write to both SSPBUF and SSPSR.

REGISTER 17-1: SSPSTAT: MSSP STATUS REGISTER (SPI MODE)

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R0	R-0
SMP	CKE ⁽¹⁾	D/A	Р	S	R/W	UA	BF
bit 7	•						bit
Legend:							
R = Readal	ole bit	W = Writable	bit	U = Unimpler	mented bit, rea	id as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown
bit 7	SMP: Sample	e bit					
	<u>SPI Master m</u>						
		a sampled at en					
	0 = input data SPI Slave mo	a sampled at mi	dole of data of	Sulput time			
		e cleared when t	SPI is used ir	n Slave mode.			
bit 6		ock Select bit ⁽¹⁾					
	1 = Transmit	occurs on trans	ition from act	ive to Idle clock	state		
	0 = Transmit	occurs on trans	ition from Idle	e to active clock	state		
bit 5	D/A: Data/Ad	Idress bit					
	Used in I ² C™	⁴ mode only.					
bit 4	P: Stop bit						
	Used in I ² C n	node only. This	bit is cleared	when the MSSI	P module is dis	abled, SSPEN	is cleared.
bit 3	S: Start bit						
	Used in I ² C n	node only.					
bit 2	R/W: Read/V	Vrite Information	ı bit				
	Used in I ² C n	node only.					
bit 1 UA: Update Address bit							
	Used in I ² C n	node only.					
bit 0	BF: Buffer Fu	ull Status bit (Re	ceive mode o	only)			
		complete, SSPE					
	0 = Receive I	not complete, S	SPBUF is err	npty			

Note 1: Polarity of clock state is set by the CKP bit (SSPCON1<4>).

R/W-0	R-1	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	—	WUE	ABDEN
bit 7							bit
Logondi							
Legend: R = Readab	le bit	W = Writable	bit	U = Unimplem	ented bit. read	d as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unk	nown
bit 7	1 = A BRG I	uto-Baud Acquis rollover has occ 6 rollover has oc	urred during A	Status bit uto-Baud Rate [Detect mode (r	must be cleare	d in software)
bit 6		eive Operation I					
	1 = Receive	operation is Idl	е				
bit 5	RXDTP: Red	ceived Data Pola	arity Select bit	(Asynchronous	mode only)		
	<u>Asynchronou</u> 1 = RX data 0 = RX data		nverted				
bit 4	TXCKP: Clo	ck and Data Pol	arity Select bit	t			
	Asynchronou 1 = Idle state		K) is a low leve	el			
		<u>s mode:</u> e for clock (CK) e for clock (CK)					
bit 3	1 = 16-bit Ba		ator – SPBRG	e bit 6H1 and SPBRG ⊢only (Compatib		3RGH1 value i	gnored
bit 2	Unimpleme	nted: Read as '	כי				
bit 1	WUE: Wake	-up Enable bit					
	hardwar	T will continue to re on following ri not monitored o s mode:	sing edge	RX1 pin – interru detected	upt generated	on falling edge	e; bit cleared i
bit 0	ABDEN: Aut	o-Baud Detect I	Enable bit				
	cleared 0 = Baud ra	baud rate meas in hardware upo te measuremen	on completion.		r. Requires re	ception of a S	vnc field (55h
	Synchronous Unused in th						

		SYNC = 0, BRGH = 0, BRG16 = 0										
BAUD	Fosc = 40.000 MHz			Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fosc = 8.000 MHz		
RATE (K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3	_						_		_	_	_	
1.2	—	_	—	1.221	1.73	255	1.202	0.16	129	1.201	-0.16	103
2.4	2.441	1.73	255	2.404	0.16	129	2.404	0.16	64	2.403	-0.16	51
9.6	9.615	0.16	64	9.766	1.73	31	9.766	1.73	15	9.615	-0.16	12
19.2	19.531	1.73	31	19.531	1.73	15	19.531	1.73	7	_	_	_
57.6	56.818	-1.36	10	62.500	8.51	4	52.083	-9.58	2	—	_	_
115.2	125.000	8.51	4	104.167	-9.58	2	78.125	-32.18	1	_	_	_

TABLE 18-3: BAUD RATES FOR ASYNCHRONOUS MODES

			S	YNC = 0, E	BRGH = (, BRG16 =	0		
BAUD	Fos	Fosc = 4.000 MHz			c = 2.000	MHz	Fosc = 1.000 MHz		
RATE (K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3	0.300	0.16	207	0.300	-0.16	103	0.300	-0.16	51
1.2	1.202	0.16	51	1.201	-0.16	25	1.201	-0.16	12
2.4	2.404	0.16	25	2.403	-0.16	12	—	_	_
9.6	8.929	-6.99	6	—	_	_	—	_	_
19.2	20.833	8.51	2	—	_	_	—	_	_
57.6	62.500	8.51	0	—	_	_	—	_	_
115.2	62.500	-45.75	0	_	_	_	_	_	_

					SYNC	= 0, BRGH	i = 1, BRG	16 = 0				
BAUD	Fosc = 40.000 MHz			Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fosc = 8.000 MHz		
RATE (K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3			_		_		_		_	_	_	_
1.2	—	_	_	—	_	_	—	_	—	_	_	—
2.4	—	_	_	—	_	_	2.441	1.73	255	2.403	-0.16	207
9.6	9.766	1.73	255	9.615	0.16	129	9.615	0.16	64	9.615	-0.16	51
19.2	19.231	0.16	129	19.231	0.16	64	19.531	1.73	31	19.230	-0.16	25
57.6	58.140	0.94	42	56.818	-1.36	21	56.818	-1.36	10	55.555	3.55	8
115.2	113.636	-1.36	21	113.636	-1.36	10	125.000	8.51	4	—	_	_

			S	YNC = 0, E	BRGH = 1	, BRG16 =	0		SYNC = 0, BRGH = 1, BRG16 = 0									
BAUD RATE	Fosc = 4.000 MHz			Fos	c = 2.000	MHz	Fosc = 1.000 MHz											
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)									
0.3			_			_	0.300	-0.16	207									
1.2	1.202	0.16	207	1.201	-0.16	103	1.201	-0.16	51									
2.4	2.404	0.16	103	2.403	-0.16	51	2.403	-0.16	25									
9.6	9.615	0.16	25	9.615	-0.16	12	_	_	—									
19.2	19.231	0.16	12	—	_	_	—	_	_									
57.6	62.500	8.51	3	—	_	_	—	_	_									
115.2	125.000	8.51	1	—	_	—	—	_	_									

18.3.5 BREAK CHARACTER SEQUENCE

The Enhanced USART module has the capability of sending the special Break character sequences that are required by the LIN/J2602 bus standard. The Break character transmit consists of a Start bit, followed by twelve '0' bits and a Stop bit. The Frame Break character is sent whenever the SENDB and TXEN bits (TXSTA<3> and TXSTA<5>) are set while the Transmit Shift register is loaded with data. Note that the value of data written to TXREG1 will be ignored and all '0's will be transmitted.

The SENDB bit is automatically reset by hardware after the corresponding Stop bit is sent. This allows the user to preload the transmit FIFO with the next transmit byte following the Break character (typically, the Sync character in the LIN/J2602 specification).

Note that the data value written to the TXREG1 for the Break character is ignored. The write simply serves the purpose of initiating the proper sequence.

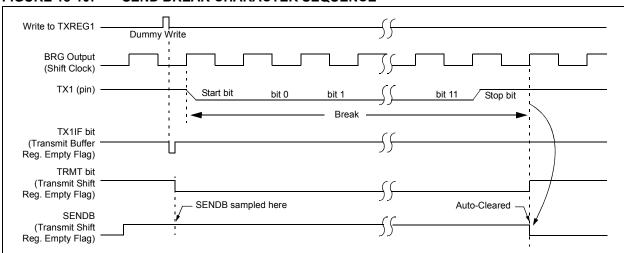
The TRMT bit indicates when the transmit operation is active or Idle, just as it does during normal transmission. See Figure 18-10 for the timing of the Break character sequence.

18.3.5.1 Break and Sync Transmit Sequence

The following sequence will send a message frame header made up of a Break, followed by an Auto-Baud Sync byte. This sequence is typical of a LIN/J2602 bus master.

- 1. Configure the EUSART for the desired mode.
- 2. Set the TXEN and SENDB bits to set up the Break character.
- 3. Load the TXREG1 with a dummy character to initiate transmission (the value is ignored).
- 4. Write '55h' to TXREG1 to load the Sync character into the transmit FIFO buffer.
- 5. After the Break has been sent, the SENDB bit is reset by hardware. The Sync character now transmits in the preconfigured mode.

When the TXREG1 becomes empty, as indicated by the TX1IF, the next data byte can be written to TXREG1.


18.3.6 RECEIVING A BREAK CHARACTER

The Enhanced USART module can receive a Break character in two ways.

The first method forces configuration of the baud rate at a frequency of 9/13 the typical speed. This allows for the Stop bit transition to be at the correct sampling location (13 bits for Break versus Start bit and 8 data bits for typical data).

The second method uses the auto-wake-up feature described in **Section 18.3.4 "Auto-Wake-up On Sync Break Character"**. By enabling this feature, the EUSART will sample the next two transitions on RX1/DT1, cause an RC1IF interrupt and receive the next data byte followed by another interrupt.

Note that following a Break character, the user will typically want to enable the Auto-Baud Rate Detect feature. For both methods, the user can set the ABD bit once the TX1IF interrupt is observed.

FIGURE 18-10: SEND BREAK CHARACTER SEQUENCE

21.2 Comparator Operation

A single comparator is shown in Figure 21-2, along with the relationship between the analog input levels and the digital output. When the analog input at VIN+ is less than the analog input VIN-, the output of the comparator is a digital low level. When the analog input at VIN+ is greater than the analog input VIN-, the output of the comparator is a digital high level. The shaded areas of the output of the comparator in Figure 21-2 represent the uncertainty due to input offsets and response time.

21.3 Comparator Reference

Depending on the comparator operating mode, either an external or internal voltage reference may be used. The analog signal present at VIN- is compared to the signal at VIN+ and the digital output of the comparator is adjusted accordingly (Figure 21-2).

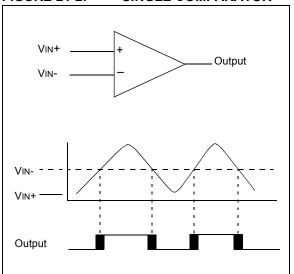


FIGURE 21-2: SINGLE COMPARATOR

21.3.1 EXTERNAL REFERENCE SIGNAL

When external voltage references are used, the comparator module can be configured to have the comparators operate from the same or different reference sources. However, threshold detector applications may require the same reference. The reference signal must be between VSS and VDD and can be applied to either pin of the comparator(s).

21.3.2 INTERNAL REFERENCE SIGNAL

The comparator module also allows the selection of an internally generated voltage reference from the comparator voltage reference module. This module is described in more detail in **Section 22.0 "Comparator Voltage Reference Module"**.

The internal reference is only available in the mode where four inputs are multiplexed to two comparators (CM<2:0> = 110). In this mode, the internal voltage reference is applied to the VIN+ pin of both comparators.

21.4 Comparator Response Time

Response time is the minimum time, after selecting a new reference voltage or input source, before the comparator output has a valid level. If the internal reference is changed, the maximum delay of the internal voltage reference must be considered when using the comparator outputs; otherwise, the maximum delay of the comparators should be used (see Section 26.0 "Electrical Characteristics").

21.5 Comparator Outputs

The comparator outputs are read through the CMCON register. These bits are read-only. The comparator outputs may also be directly output to the RF1 and RF2 I/O pins. When enabled, multiplexors in the output path of the RF1 and RF2 pins will switch and the output of each pin will be the unsynchronized output of the comparator. The uncertainty of each of the comparators is related to the input offset voltage and the response time given in the specifications. Figure 21-3 shows the comparator output block diagram.

The TRISF bits will still function as an output enable/ disable for the RF1 and RF2 pins while in this mode.

The polarity of the comparator outputs can be changed using the C2INV and C1INV bits (CMCON<5:4>).

When reading the PORT register, all pins
configured as analog inputs will read as
'0'. Pins configured as digital inputs will
convert an analog input according to the
Schmitt Trigger input specification.

2: Analog levels on any pin defined as a digital input may cause the input buffer to consume more current than is specified.

COMF	Compleme	ent f		CPI	SEQ	Compare f	with W, Skip	if f = W
Syntax:	COMF f	{,d {,a}}		Syn	tax:	CPFSEQ	f {,a}	
Operands:	0 ≤ f ≤ 255			Ope	erands:	$0 \leq f \leq 255$		
opolaliaol	d ∈ [0,1]					a ∈ [0,1]		
	a ∈ [0,1]			Ope	eration:	(f) – (W),		
Operation:	$\overline{f} \rightarrow dest$					skip if (f) = (unsigned o	(W) comparison)	
Status Affected:	N, Z			Stat	us Affected:	None		
Encoding:	0001	11da ff:	ff ffff	Enc	oding:	0110	001a ff	ff ffff
Description:	complemer stored in W	nts of register 'f nted. If 'd' is '0' /. If 'd' is '1', th k in register 'f'.	, the result is		cription:	location 'f' t		f data memory of W by
	lf 'a' is '0', t	the Access Bai the BSR is use	nk is selected. d to select the			discarded a	en the fetched and a NOP is e aking this a two	
	set is enab in Indexed	and the extendent led, this instruct Literal Offset A never $f \le 95$ (5)	ction operates Addressing					nk is selected. d to select the
	Section 24 Bit-Oriente	I.2.3 "Byte-Or ed Instruction set Mode" for	iented and s in Indexed			set is enabl in Indexed	nd the extend ed, this instruct Literal Offset A never f \leq 95 (5	ction operates Addressing
Words:	1						.2.3 "Byte-Or	,
Cycles:	1					Bit-Oriente	ed Instruction set Mode" for	s in Indexed
Q Cycle Activity:				Woi	de.	1		dotano.
Q1	Q2	Q3	Q4	Cyc		1(2)		
Decode	Read register 'f'	Process Data	Write to destination	Cyc	163.	Note: 3 cy	cles if skip and 2-word instru	
Evennley	CONT	556 0 0		Q	Cycle Activity:			
Example:	COMF	REG, 0, 0			Q1	Q2	Q3	Q4
Before Instruc REG	= 13h				Decode	Read register 'f'	Process Data	No operation
After Instructio REG				lf s	kip:			
W	= 13h = ECh				Q1	Q2	Q3	Q4
					No	No	No	No
				16 -	operation	operation	operation	operation
				If S	kip and followe			04
					Q1 No	Q2 No	Q3 No	Q4 No
					operation	operation	operation	operation
					No	No	No	No
					operation	operation	operation	operation
				Exa	<u>mple:</u>	HERE NEQUAL	CPFSEQ REC :	G, O
					Before Instruc	EQUAL	:	

20AD	•	
=	HERE	
=	?	
=	?	
=	W;	
=	Address	(EQUAL)
≠	W;	
=	Address	(NEQUAL)
		= HERE = ? = ? = W; = Address ≠ W;

RET	URN	Return from Subroutine				
Synta	ax:	RETURN	{s}			
Oper	ands:	$s \in [0,1]$				
Oper	ation:	$(TOS) \rightarrow PC;$ if s = 1 $(WS) \rightarrow W,$ $(STATUSS) \rightarrow STATUS,$ $(BSRS) \rightarrow BSR,$ PCLATU, PCLATH are unchanged				
Statu	is Affected:	None				
Enco	oding:	0000	0000	0001	001s	
		popped and is loaded in 's'= 1, the of registers W loaded into registers W 's' = 0, no of occurs.	nto the pr contents /S, STAT their cor /, STATU	ogram co of the sh USS and respondi S and BS	ounter. If adow BSRS are ing SR. If	
Word	ls:	1	1			
Cycle	es:	2				
QC	ycle Activity:					
	Q1	Q2	Q	3	Q4	
	Decode	No operation	Proce Dat		POP PC rom stack	
	No	No	No		No	
	operation	operation	opera	tion o	operation	
Exan	nple:	RETURN				

After Instruction: PC = TOS

RLCF	Rotate Left	f through Ca	arry	
Syntax:	RLCF f{,	d {,a}}		
Operands:	$0 \le f \le 255$			
	d ∈ [0,1] a ∈ [0,1]			
Operation:	$(f < n >) \rightarrow de$	st <n +="" 1="">,</n>		
·	$(f < 7 >) \rightarrow C,$ (C) $\rightarrow dest < 6$	0>		
Status Affected:	C, N, Z			
Encoding:	0011	01da ff	ff fff	
Description:	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.			
			ink is selected. ed to select the	
	set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.			
	С	- regist	erf 🗕	
Words:	1			
Cycles:	1			
Q Cycle Activity: Q1	Q2	Q3	Q4	
Decode	Read	Process	Write to	
	register 'f'	Data	destination	
Example:	RLCF	REG, 0	, 0	
Before Instruc REG		0110		
C = 0				
After Instructio REG		0110		
W C		1100		
	= 1			

MOVSS	Move Indexed to Indexed			
Syntax:	MOVSS [z _s], [z _d]			
Operands:	$0 \le z_s \le 127$ $0 \le z_d \le 127$			
Operation:	$((FSR2) + z_s) \rightarrow ((FSR2) + z_d)$			
Status Affected:	None			
Encoding: 1st word (source) 2nd word (dest.) Description	11101011 $1zzz$ $zzzz_s$ 1111 $xxxx$ $xzzz$ $zzzz_d$ The contents of the source register are moved to the destination register. The addresses of the source and destination registers are determined by adding the 7-bit literal offsets, ' z_s ' or ' z_d ', respectively, to the value of FSR2. Both registers can be located anywhere in the 4096-byte data memory space (000h to FFFh).			
	The MOVSS instruction cannot use th PCL, TOSU, TOSH or TOSL as the destination register.			
	If the resultant source address points an Indirect Addressing register, the value returned will be 00h. If the resultant destination address points an Indirect Addressing register, the instruction will execute as a NOP.			
Words:	2			
Cycles:	2			
Q Cycle Activity:				

	_	
Cycles:	2	
Q Cycle Activity:		
01	02	0

,			
 Q1	Q2	Q3	Q4
Decode	Determine	Determine	Read
	source addr	source addr	source reg
Decode	Determine	Determine	Write
	dest addr	dest addr	to dest reg

Example:	MOVSS	[05h],	[06h]

Before Instruction		
FSR2	=	80h
Contents of 85h Contents	=	33h
of 86h	=	11h
After Instruction		
FSR2	=	80h
Contents of 85h Contents	=	33h
of 86h	=	33h

PUSHL	Store Literal	at FSR	2, Decr	ement FSR2
Syntax:	PUSHL k			
Operands:	$0 \le k \le 255$			
Operation:	$k \rightarrow (FSR2),$ FSR2 – 1 \rightarrow	FSR2		
Status Affected:	None			
Encoding:	1111	1010	kkk}	k kkk
	memory address specified by FSR2. FSR2 is decremented by 1 after the operation. This instruction allows users to push values onto a software stack.			
Words:	1	a sonwa	ie staer	.
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	G	3	Q4
Decode	Read 'k'	Proc da		Write to destination
Example:	PUSHL 08	h		

Before Instruction FSR2H:FSR2L Memory (01ECh)	= =	01ECh 00h
After Instruction FSR2H:FSR2L Memory (01ECh)	= =	01EBh 08h