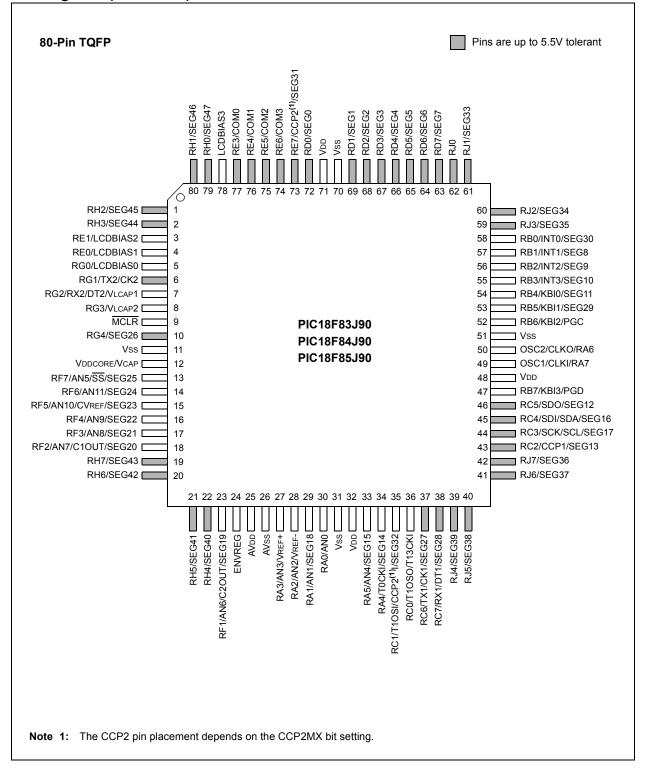


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, LVD, POR, PWM, WDT
Number of I/O	51
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f63j90t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

1.2 LCD Driver

The on-chip LCD driver includes many features that make the integration of displays in low-power applications easier. These include an integrated voltage regulator with charge pump that allows contrast control in software and display operation above device VDD.

1.3 Other Special Features

- Communications: The PIC18F85J90 family incorporates a range of serial communication peripherals, including an Addressable USART, a separate Enhanced USART that supports LIN/J2602 Specification 1.2, and one Master SSP module capable of both SPI and I²C[™] (Master and Slave) modes of operation.
- CCP Modules: All devices in the family incorporate two Capture/Compare/PWM (CCP) modules. Up to four different time bases may be used to perform several different operations at once.
- **10-Bit A/D Converter:** This module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period and thus, reducing code overhead.
- Extended Watchdog Timer (WDT): This enhanced version incorporates a 16-bit prescaler, allowing an extended time-out range that is stable across operating voltage and temperature. See Section 26.0 "Electrical Characteristics" for time-out periods.

1.4 Details on Individual Family Members

Devices in the PIC18F85J90 family are available in 64-pin and 80-pin packages. Block diagrams for the two groups are shown in Figure 1-1 and Figure 1-2.

The devices are differentiated from each other in four ways:

- Flash program memory (three sizes, ranging from 8 Kbytes for PIC18FX3J90 devices to 32 Kbytes for PIC18FX5J90 devices).
- Data RAM (1024 bytes for PIC18FX3J90 and PIC18FX4J90 devices, 2048 bytes for PIC18FX5J90 devices).
- I/O ports (7 bidirectional ports on 64-pin devices, 9 bidirectional ports on 80-pin devices).
- LCD Pixels: 132 pixels (33 SEGs x 4 COMs) can be driven by 64-pin devices; 192 pixels (48 SEGs x 4 COMs) can be driven by 80-pin devices.

All other features for devices in this family are identical. These are summarized in Table 1-1 and Table 1-2.

The pinouts for all devices are listed in Table 1-3 and Table 1-4.

Pin Name	Pin Number	Pin	Buffer	Description
Pin Name	TQFP	Туре	Туре	Description
				PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.
RB0/INT0/SEG30 RB0 INT0 SEG30	48	I/O I O	TTL ST Analog	Digital I/O. External Interrupt 0. SEG30 output for LCD.
RB1/INT1/SEG8 RB1 INT1 SEG8	47	I/O I O	TTL ST Analog	Digital I/O. External Interrupt 1. SEG8 output for LCD.
RB2/INT2/SEG9 RB2 INT2 SEG9	46	I/O I O	TTL ST Analog	Digital I/O. External Interrupt 2. SEG9 output for LCD.
RB3/INT3/SEG10 RB3 INT3 SEG10	45	I/O I O	TTL ST Analog	Digital I/O. External Interrupt 3. SEG10 output for LCD.
RB4/KBI0/SEG11 RB4 KBI0 SEG11	44	I/O I O	TTL TTL Analog	Digital I/O. Interrupt-on-change pin. SEG11 output for LCD.
RB5/KBI1/SEG29 RB5 KBI1 SEG29	43	I/O I O	TTL TTL Analog	Digital I/O. Interrupt-on-change pin. SEG29 output for LCD.
RB6/KBI2/PGC RB6 KBI2 PGC	42	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP™ programming clock pin
RB7/KBI3/PGD RB7 KBI3 PGD	37	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming data pin.
	MBus			CMOS = CMOS compatible input or output Analog = Analog input O = Output OD = Open-Drain (no P diode to VDD)

TABLE 1-3:	PIC18F6XJ90 PINOUT I/O DESCRIPTIONS (

Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set.

2: Alternate assignment for CCP2 when the CCP2MX Configuration bit is cleared.

Pin Name	Pin Number	Pin	Buffer	Description			
Pin Name	TQFP	Туре	Туре	Description			
				PORTG is a bidirectional I/O port.			
RG0/LCDBIAS0 RG0 LCDBIAS0	5	I/O I	ST Analog	Digital I/O. BIAS0 input for LCD.			
RG1/TX2/CK2 RG1 TX2 CK2	6	I/O O I/O	ST — ST	Digital I/O. AUSART asynchronous transmit. AUSART synchronous clock (see related RX2/DT2).			
RG2/RX2/DT2/VLCAP1 RG2 RX2 DT2 VLCAP1	7	I/O I I/O I	ST ST ST Analog	Digital I/O. AUSART asynchronous receive. AUSART synchronous data (see related TX2/CK2). LCD charge pump capacitor input.			
RG3/VLCAP2 RG3 VLCAP2	8	I/O I	ST Analog	Digital I/O. LCD charge pump capacitor input.			
RG4/SEG26 RG4 SEG26	10	I/O O	ST Analog	Digital I/O. SEG26 output for LCD.			
Legend:TTL= TTL compatible inputCMOS= CMOS compatible input or outputST= Schmitt Trigger input with CMOS levelsAnalog= Analog inputI= InputO= OutputP= PowerOD= Open-Drain (no P diode to VDD) $l^2C^{TM} = l^2C/SMBus$ II							

TABLE 1-4: PIC18F8XJ90 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set.

2: Alternate assignment for CCP2 when the CCP2MX Configuration bit is cleared.

4.0 POWER-MANAGED MODES

The PIC18F85J90 family devices provide the ability to manage power consumption by simply managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. For the sake of managing power in an application, there are three primary modes of operation:

- Run mode
- Idle mode
- · Sleep mode

These modes define which portions of the device are clocked and at what speed. The Run and Idle modes may use any of the three available clock sources (primary, secondary or internal oscillator block); the Sleep mode does not use a clock source.

The power-managed modes include several power-saving features offered on previous PIC[®] devices. One is the clock switching feature, offered in other PIC18 devices, allowing the controller to use the Timer1 oscillator in place of the primary oscillator. Also included is the Sleep mode, offered by all PIC devices, where all device clocks are stopped.

4.1 Selecting Power-Managed Modes

Selecting a power-managed mode requires two decisions: if the CPU is to be clocked or not and which clock source is to be used. The IDLEN bit (OSCCON<7>) controls CPU clocking, while the SCS<1:0> bits (OSCCON<1:0>) select the clock source. The individual modes, bit settings, clock sources and affected modules are summarized in Table 4-1.

4.1.1 CLOCK SOURCES

The SCS<1:0> bits allow the selection of one of three clock sources for power-managed modes. They are:

- the primary clock, as defined by the FOSC<2:0> Configuration bits
- the secondary clock (Timer1 oscillator)
- · the internal oscillator

4.1.2 ENTERING POWER-MANAGED MODES

Switching from one power-managed mode to another begins by loading the OSCCON register. The SCS<1:0> bits select the clock source and determine which Run or Idle mode is to be used. Changing these bits causes an immediate switch to the new clock source, assuming that it is running. The switch may also be subject to clock transition delays. These are discussed in **Section 4.1.3 "Clock Transitions and Status Indicators"** and subsequent sections.

Entry to the power-managed Idle or Sleep modes is triggered by the execution of a SLEEP instruction. The actual mode that results depends on the status of the IDLEN bit.

Depending on the current mode and the mode being switched to, a change to a power-managed mode does not always require setting all of these bits. Many transitions may be done by changing the oscillator select bits, or changing the IDLEN bit, prior to issuing a SLEEP instruction. If the IDLEN bit is already configured correctly, it may only be necessary to perform a SLEEP instruction to switch to the desired mode.

., .= ==										
	oso	CON bits	Modul	e Clocking	Augilable Cleak and Occillator Source					
Mode	IDLEN<7>(1)	DLEN<7> ⁽¹⁾ SCS<1:0> CPU Peripherals		Available Clock and Oscillator Source						
Sleep	0	N/A	Off	Off	None – All clocks are disabled					
PRI_RUN	N/A	10	Clocked	Clocked	Primary – HS, EC, HSPLL, ECPLL; this is the normal full-power execution mode					
SEC_RUN	N/A	01	Clocked	Clocked	Secondary – Timer1 Oscillator					
RC_RUN	N/A	11	Clocked	Clocked	Internal Oscillator					
PRI_IDLE	1	10	Off	Clocked	Primary – HS, EC, HSPLL, ECPLL					
SEC_IDLE	1	01	Off	Clocked	Secondary – Timer1 Oscillator					
RC_IDLE	1	11	Off	Clocked	Internal Oscillator					

TABLE 4-1: POWER-MANAGED MODES

Note 1: IDLEN reflects its value when the SLEEP instruction is executed.

TABLE 6-3:	PIC18F85J90 FAMILY REGISTER FILE SUMMARY (CONTINUED)	1

TABLE 0-3		8282790		KEGISTE	K FILE SI	UIVIIVIART		IUED)		
File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page
TMR0H	Timer0 Regis	ster High Byte							0000 0000	58, 139
TMR0L	Timer0 Regis	ster Low Byte							xxxx xxxx	58, 139
TOCON	TMR00N	T08BIT	TOCS	T0SE	PSA	T0PS2	T0PS1	T0PS0	1111 1111	58, 137
OSCCON	IDLEN	IRCF2	IRCF1	IRCF0	OSTS	IOFS	SCS1	SCS0	0100 q000	36, 58
LCDREG	_	CPEN	BIAS2	BIAS1	BIAS0	MODE13	CKSEL1	CKSEL0	-011 1100	58, 169
WDTCON	REGSLP	_	_		_	_	_	SWDTEN	00	58, 298
RCON	IPEN	_	CM	RI	TO	PD	POR	BOR	0-11 11q0	52, 58
TMR1H	Timer1 Regis	ster High Byte		xxxx xxxx	58, 145					
TMR1L	Timer1 Regis	ster Low Byte							xxxx xxxx	58, 145
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	58, 141
TMR2	Timer2 Regis	ster							0000 0000	58, 148
PR2	Timer2 Perio	d Register							1111 1111	58, 148
T2CON	_	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	58, 147
SSPBUF	MSSP Receive Buffer/Transmit Register									58, 199, 234
SSPADD	MSSP Addre	ess Register in	I ² C™ Slave	mode. MSSP	1 Baud Rate F	Reload Registe	er in I ² C Maste	er mode.	0000 0000	58, 234
SSPSTAT	SMP	CKE	D/Ā	Р	S	R/W	UA	BF	0000 0000	58, 192, 201
SSPCON1	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	58, 193, 202
SSPCON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	58, 203,
	GCEN	ACKSTAT	ADMSK5(3)	ADMSK4 ⁽³⁾	ADMSK3(3)	ADMSK2(3)	ADMSK1(3)	SEN		204
ADRESH	A/D Result R	egister High E	Byte		•	•		•	xxxx xxxx	59, 279
ADRESL	A/D Result R	egister Low B	yte						xxxx xxxx	59, 279
ADCON0	ADCAL	_	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	0-00 0000	59, 271
ADCON1	_	_	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	00 0000	59, 272
ADCON2	ADFM	_	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0	0-00 0000	59, 273
LCDDATA4	S39C0 ⁽²⁾	S38C0 ⁽²⁾	S37C0 ⁽²⁾	S36C0 ⁽²⁾	S35C0 ⁽²⁾	S34C0 ⁽²⁾	S33C0 ⁽²⁾	S32C0	xxxx xxxx	59, 167
LCDDATA3	S31C0	S30C0	S29C0	S28C0	S27C0	S26C0	S25C0	S24C0	xxxx xxxx	59, 167
LCDDATA2	S23C0	S22C0	S21C0	S20C0	S19C0	S18C0	S17C0	S16C0	xxxx xxxx	59, 167
LCDDATA1	S15C0	S14C0	S13C0	S12C0	S11C0	S10C0	S09C0	S08C0	xxxx xxxx	59, 167
LCDDATA0	S07C0	S06C0	S05C0	S04C0	S03C0	S02C0	S01C0	S00C0	xxxx xxxx	59, 167
LCDSE5 ⁽²⁾	SE47	SE46	SE45	SE44	SE43	SE42	SE41	SE40	0000 0000	59, 166
LCDSE4	SE39 ⁽²⁾	SE38 ⁽²⁾	S37 ⁽²⁾	SE36 ⁽²⁾	SE35 ⁽²⁾	SE34 ⁽²⁾	SE33 ⁽²⁾	SE32	0000 0000	59, 166
LCDSE3	SE31	SE30	SE29	SE28	SE27	SE26	SE25	SE24	0000 0000	59, 166
LCDSE2	SE23	SE22	SE21	SE20	SE19	SE18	SE17	SE16	0000 0000	59, 166
LCDSE1	SE15	SE14	SE13	SE12	SE11	SE10	SE09	SE08	0000 0000	59, 166
CVRCON	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	0000 0000	59, 287
CMCON	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0111	59, 281
TMR3H	Timer3 Regis	ster High Byte							xxxx xxxx	59, 151
TMR3L	Timer3 Regis	ster Low Byte							xxxx xxxx	59, 151
T3CON	RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	0000 0000	59, 149

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved, do not modify

Note 1: Bit 21 of the PC is only available in Test mode and Serial Programming modes.

2: These registers and/or bits are available only on 80-pin devices; otherwise, they are unimplemented and read as '0'. Reset states shown are for 80-pin devices.

3: Alternate names and definitions for these bits when the MSSP module is operating in I²C[™] Slave mode. See Section 17.4.3.2 "Address Masking" for details.

4: The PLLEN bit is only available in specific oscillator configurations; otherwise, it is disabled and reads as '0'. See Section 3.4.3 "PLL Frequency Multiplier" for details.

5: RA6/RA7 and their associated latch and direction bits are configured as port pins only when the internal oscillator is selected as the default clock source (FOSC2 Configuration bit = 0); otherwise, they are disabled and these bits read as '0'.

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
RBPU	INTEDG0	INTEDG1	INTEDG2	INTEDG3	TMR0IP	INT3IP	RBIP			
bit 7							bit C			
Legend:										
R = Read		W = Writable	bit	•	nented bit, read					
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown			
bit 7	RBPU : PORT	B Pull-up Enat	ole bit							
		B pull-ups are								
	0 = PORTB p	oull-ups are ena	abled by individ	lual port latch v	alues					
bit 6	INTEDG0: Ex	ternal Interrupt	0 Edge Select	bit						
		on rising edge								
	•	on falling edge								
bit 5		ternal Interrupt	1 Edge Select	bit						
		on rising edge on falling edge								
bit 4	•	•••	2 Edge Soled	hit.						
DIL 4		ternal Interrupt on rising edge	2 Euge Select	DIL						
	•	on falling edge								
bit 3	•	ternal Interrupt	3 Edge Select	bit						
		on rising edge	0							
	0 = Interrupt on falling edge									
bit 2	TMR0IP: TMF	R0 Overflow Int	errupt Priority	bit						
	1 = High prio	•								
	0 = Low prior	-								
bit 1		External Interro	upt Priority bit							
	1 = High prio 0 = Low prior									
bit 0			rupt Drigrity bit							
DILU	1 = High prio	rt Change Inter								
	0 = Low prior									
Note:	Interrupt flag bits	are set when a	an interrupt co	ndition occurs	regardless of t	he state of its	corresponding			
	enable bit or the g are clear prior to g	global interrupt	enable bit. Use	er software sho	uld ensure the	appropriate inte				

REGISTER 9-2: INTCON2: INTERRUPT CONTROL REGISTER 2

15.0 CAPTURE/COMPARE/PWM (CCP) MODULES

PIC18F85J90 family devices have two CCP (Capture/Compare/PWM) modules, designated CCP1 and CCP2. Both modules implement standard Capture, Compare and Pulse-Width Modulation (PWM) modes.

Each CCP module contains a 16-bit register which can operate as a 16-bit Capture register, a 16-bit Compare register or a PWM Master/Slave Duty Cycle register. For the sake of clarity, all CCP module operation in the following sections is described with respect to CCP2, but is equally applicable to CCP1.

REGISTER 15-1: CCPxCON: CCPx CONTROL REGISTER (CCP1, CCP2 MODULES)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	DCxB1	DCxB0	CCPxM3	CCPxM2	CCPxM1	CCPxM0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	Unimplemented: Read as '0'						
bit 5-4	DCxB<1:0>: PWM Duty Cycle bit 1 and bit 0 for CCPx Module						
	Capture mode:						
	Unused.						
	Compare mode:						
	Unused.						
	PWM mode:						
	These bits are the two Least Significant bits (bit 1 and bit 0) of the 10-bit PWM duty cycle. The eight Most Significant bits (DCx<9:2>) of the duty cycle are found in CCPRxL.						
bit 3-0	CCPxM<3:0>: CCPx Module Mode Select bits						
	0000 = Capture/Compare/PWM disabled (resets CCPx module)						
	0001 = Reserved						
	0010 = Compare mode, toggle output on match (CCPxIF bit is set)						
	0011 = Reserved						
	0100 = Capture mode, every falling edge						
	0101 = Capture mode, every rising edge						
	0110 = Capture mode, every 4th rising edge						
	0111 = Capture mode, every 16th rising edge						
	1000 = Compare mode: initialize CCPx pin low; on compare match, force CCPx pin high (CCPxIF bit is set)						
	1001 = Compare mode: initialize CCPx pin high; on compare match, force CCPx pin low (CCPxIF bit is set)						
	1010 = Compare mode: generate software interrupt on compare match (CCPxIF bit is set, CCPx pin reflects I/O state)						
	1011 = Compare mode: Special Event Trigger; reset timer; start A/D conversion on CCPx match (CCPxIF bit is set) ⁽¹⁾						
	11xx = PWM mode						

16.1.2 LCD DATA REGISTERS

Once the module is initialized for the LCD panel, the individual bits of the LCDDATA23:LCDDATA0 registers are cleared or set to represent a clear or dark pixel, respectively. Specific sets of LCDDATA registers are used with specific segments and common signals. Each bit represents a unique combination of a specific segment connected to a specific common.

Individual LCDDATA bits are named by the convention "SxxCy", with "xx" as the segment number and "y" as the common number. The relationship is summarized in Table 16-2. The prototype LCDDATA register is shown in Register 16-4.

Note: In 64-pin devices, writing into the registers LCDDATA5, LCDDATA11, LCDDATA17, and LCDDATA23 will not affect the status of any pixels.

REGISTER 16-4: LCDDATAX: LCD DATA REGISTERS

R/W-0	R/W-0						
S(n + 7)Cy	S(n + 6)Cy	S(n + 5)Cy	S(n + 4)Cy	S(n + 3)Cy	S(n + 2)Cy	S(n + 1)Cy	S(n)Cy
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-0	S(n + 7)Cy:S(n)Cy: Pixel On bits
	For LCDDATA0 through LCDDATA5: n = (8x), y = 0
	<u>For LCDDATA6 through LCDDATA11: n = (8(x – 6)), y = 1</u>
	<u>For LCDDATA12 through LCDDATA17: n = (8(x – 12)), y = 2</u>
	<u>For LCDDATA18 through LCDDATA23: n = (8(x – 18)), y = 3</u>
	1 = Pixel on (dark)0 = Pixel off (clear)

TABLE 16-2: LCDDATA REGISTERS AND BITS FOR SEGMENT AND COM COMBINATIONS

Sogmonto	COM Lines						
Segments	0	1	2	3			
0 through 7	LCDDATA0	LCDDATA6	LCDDATA12	LCDDATA18			
0 through 7	S00C0:S07C0	S00C1:S07C1	S00C2:S07C2	S00C3:S07C3			
8 through 15	LCDDATA1	LCDDATA7	LCDDATA13	LCDDATA19			
o unough 15	S08C0:S15C0	S08C1:S15C1	S08C2:S15C2	S08C0:S15C3			
16 through 22	LCDDATA2	LCDDATA8	LCDDATA14	LCDDATA20			
16 through 23	S16C0:S23C0	S16C1:S23C1	S16C2:S23C2	S16C3:S23C3			
24 through 21	LCDDATA3	LCDDATA9	LCDDATA15	LCDDATA21			
24 through 31	S24C0:S31C0	S24C1:S31C1	S24C2:S31C2	S24C3:S31C3			
22 through 20	LCDDATA4 ⁽¹⁾	LCDDATA10 ⁽¹⁾	LCDDATA16 ⁽¹⁾	LCDDATA22 ⁽¹⁾			
32 through 39	S32C0:S39C0	S32C1:S39C1	S32C2:S39C2	S32C3:S39C3			
40 through 47	LCDDATA5 ⁽²⁾	LCDDATA11 ⁽²⁾	LCDDATA17 ⁽²⁾	LCDDATA23 ⁽²⁾			
40 tinough 47	S40C0:S47C0	S40C1:S47C1	S40C2:S47C2	S40C3:S47C3			

Note 1: Bits<7:1> of these registers are not implemented in 64-pin devices. Bit 0 of these registers (SEG32Cy) is always implemented.

2: These registers are not implemented on 64-pin devices.

16.2 LCD Clock Source

The LCD driver module generates its internal clock from 3 possible sources:

- System clock (Fosc/4)
- · Timer1 oscillator
- INTRC source

The LCD clock generator uses a configurable divide-by-32/divide-by-8192 postscaler to produce a baseline frequency of about 1 kHz nominal, regardless of the source selected. The clock source selection and the postscaler configuration are determined by the Clock Source Select bits, CS<1:0> (LCDCON<3:2>).

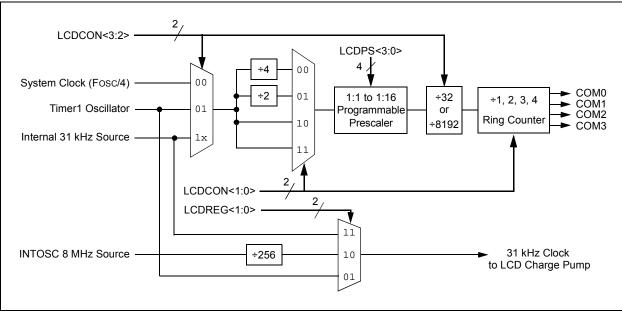
An additional programmable prescaler is used to derive the LCD frame frequency from the 1 kHz baseline. The prescaler is configured using the LP<3:0> bits (LCDPS<3:0>) for any one of 16 options, ranging from 1:1 to 1:16.

Proper timing for waveform generation is set by the LMUX<1:0> bits (LCDCON<1:0>). These bits determine which Commons Multiplexing mode is to be used, and divide down the LCD clock source as required. They also determine the configuration of the ring counter that is used to switch the LCD commons on or off.

16.2.1 LCD VOLTAGE REGULATOR CLOCK SOURCE

In addition to the clock source for LCD timing, a separate 31 kHz nominal clock is required for the LCD charge pump. This is provided from a distinct branch of the LCD clock source.

The charge pump clock can use either the Timer1 oscillator or the INTRC source, as well as the 8 MHz INTOSC source (after being divided by 256 by a prescaler). The charge pump clock source is configured using the CKSEL<1:0> bits (LCDREG<1:0>).


16.2.2 CLOCK SOURCE CONSIDERATIONS

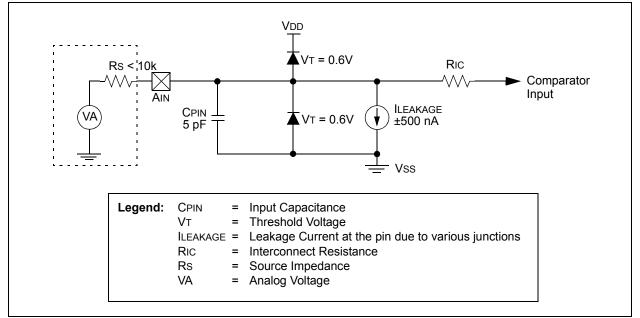
When using the system clock as the LCD clock source, it is assumed that the system clock frequency is a nominal 32 MHz (for a Fosc/4 frequency of 8 MHz). Because the prescaler option for the Fosc/4 clock selection is fixed at divide-by-8192, system clock speeds that differ from 32 MHz will produce frame frequencies and refresh rates different than discussed in this chapter. The user will need to keep this in mind when designing the display application.

The Timer1 and INTRC sources can be used as LCD clock sources when the device is in Sleep mode. To use the Timer1 oscillator, it is necessary to set the T1OSCEN bit (T1CON<3>). Selecting either Timer1 or INTRC as the LCD clock source will not automatically activate these sources.

Similarly, selecting the INTOSC as the charge pump clock source will not turn the oscillator on. To use INTOSC, it must be selected as the system clock source by using the FOSC2 Configuration bit.

If Timer1 is used as a clock source for the device, either as an LCD clock source or for any other purpose, LCD segment 32 become unavailable.

FIGURE 16-2: LCD CLOCK GENERATION


NOTES:

21.9 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 21-4. Since the analog pins are connected to a digital output, they have reverse biased diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this

range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up condition may occur. A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current.

FIGURE 21-4: COMPARATOR ANALOG INPUT MODEL

TABLE 21-1: REGISTERS ASSOCIATED WITH COMPARATOR MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	57
PIR2	OSCFIF	CMIF		—	BCLIF	LVDIF	TMR3IF	_	60
PIE2	OSCFIE	CMIE		—	BCLIE	LVDIE	TMR3IE	_	60
IPR2	OSCFIP	CMIP	_	_	BCLIP	LVDIP	TMR3IP		60
CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	59
CVRCON	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	59
PORTF	RF7	RF6	RF5	RF4	RF3	RF2	RF1	_	60
LATF	LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1		60
TRISF	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	_	60

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the comparator module.

REGISTER 23-8: WDTCON: WATCHDOG TIMER CONTROL REGISTER

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
REGSLP ⁽¹⁾	—	—	—	—	—		SWDTEN ⁽²⁾
bit 7							bit 0
Legend:							

=ogonan					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7	REGSLP: Voltage Regulator Low-Power Operation Enable bit ⁽¹⁾
	 1 = On-chip regulator enters low-power operation when device enters Sleep mode 0 = On-chip regulator continues to operate normally in Sleep mode
bit 6-1	Unimplemented: Read as '0'
bit 0	SWDTEN: Software Controlled Watchdog Timer Enable bit ⁽²⁾
	1 = Watchdog Timer is on
	0 = Watchdog Timer is off
· · · · · · · · · · · · · · · · · · ·	

Note 1: The REGSLP bit is automatically cleared when a Low-Voltage Detect condition occurs.

2: This bit has no effect if the Configuration bit, WDTEN, is enabled.

TABLE 23-3: SUMMARY OF WATCHDOG TIMER REGISTERS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
RCON	IPEN	_	CM	RI	TO	PD	POR	BOR	58
WDTCON	REGSLP	_	_	_	_	_		SWDTEN	58

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Watchdog Timer.

CPFS	SGT	Compare f	with W, Skip	if f > W				
Synta	ax:	CPFSGT	CPFSGT f {,a}					
Oper	ands:	$0 \leq f \leq 255$						
		a ∈ [0,1]						
Oper	ation:	(f) – (W), skip if (f) > (unsigned o	(W) comparison)					
Statu	s Affected:	None						
Enco	dina:	0110	010a fff	f ffff				
	ription:	location 'f'	Compares the contents of data memory location 'f' to the contents of the W by performing an unsigned subtraction.					
		contents of instruction	nts of 'f' are gro WREG, then t is discarded ar istead, making istruction.	he fetched nd a NOP is				
			he Access Bar he BSR is use					
If 'a' is '0' and the extended instru set is enabled, this instruction op in Indexed Literal Offset Address mode whenever f ≤ 95 (5Fh). See Section 24.2.3 "Byte-Oriented a Bit-Oriented Instructions in Ind Literal Offset Mode" for details.								
Word	s:	1						
Cycle			cycles if skip ar a 2-word instru					
QC	ycle Activity: Q1	Q2	Q3	Q4				
	Decode	Read	Process	No				
	Decode	register 'f'	Data	operation				
lf sk	ip:	Ŭ						
	Q1	Q2	Q3	Q4				
	No	No	No	No				
	operation	operation	operation	operation				
IT SK	ip and followe			Q4				
1	Q1 No	Q2 No	Q3 No	No				
	operation	operation	operation	operation				
	No	No	No	No				
	operation	operation	operation	operation				
<u>Exan</u>	<u>iple:</u>	HERE NGREATER GREATER	CPFSGT RE	G, 0				
	Before Instruc							
	PC W	= Ac = ?	dress (HERE)				
	After Instructio	-						
	If REG	> W						
	PC If REG PC	= Ac ≤ W	ldress (GREA ; ldress (NGREA					

CPFSLT		Compare f with W, Skip if f < W					
Syntax:		CPFSLT	f {,a}				
Operands	S:	0 ≤ f ≤ 255 a ∈ [0,1]					
Operation	ו:	(f) – (W), skip if (f) < (W) (unsigned comparison)					
Status Af	fected:	None					
Encoding	J:	0110	000a fi	fff ffff			
Descriptio	on:	location 'f'	the contents of to the content an unsigned	•			
If the contents of 'f' are less than th contents of W, then the fetched instruction is discarded and a NOP i executed instead, making this a two-cycle instruction.							
		-	he BSR is us	ank is selected. ed to select the			
Words:		1					
Cycles:			ycles if skip a a 2-word instr				
Q Cycle	Activity:						
	Q1	Q2	Q3	Q4			
D	ecode	Read register 'f'	Process Data	No operation			
lf skip:		regiotor r	Data	oporation			
	Q1	Q2	Q3	Q4			
	No	No	No	No			
	peration	operation	operation	operation			
If skip ar	nd followe	d by 2-word in Q2	Q3	Q4			
	No	No	No	No			
ор	peration	operation	operation	operation			
	No	No	No	No			
ор	peration	operation	operation	operation			
Example:	<u>.</u>		CPFSLT REG : :	¥, 1			
Before Instruction							
	PC = Address (HERE) W = ?						
After Instruction							
	If REG	< W		a)			
	PC If REG	≥ W					
	PC	= Ac	dress (NLE	SS)			

MOVLW	Move Literal to W					
Syntax:	MOVLW I	k				
Operands:	$0 \le k \le 255$	5				
Operation:	$k\toW$					
Status Affected:	None					
Encoding:	0000	1110	kkkk	kkkk		
Description:	The eight-l	The eight-bit literal 'k' is loaded into W.				
Words:	1					
Cycles:	1					
Q Cycle Activity	:					
Q1	Q2	Q3		Q4		
Decode	Read literal 'k'	Proces Data	s V	/rite to W		
Example:	MOVLW	5Ah				

After Instruction W

=

5Ah

MOVWF	Move W to	o f			
Syntax:	MOVWF	f {,a}			
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]				
Operation:	$(W) \to f$				
Status Affected:	None				
Encoding:	0110	111a	ffff	ffff	
Description:	Move data Location 'f' 256-byte ba	can be an	•		
	lf 'a' is '0', t If 'a' is '1', t GPR bank.	he BSR is			
	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.				
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3		Q4	
Decode	Read register 'f'	Proces Data	-	Write gister 'f'	
Example:	MOVWF	REG, O			
Before Instruct W REG	= 4Fh = FFh				

After Instruction

W REG

4Fh 4Fh

= =

© 2010 Microchip Technology Inc.

25.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows[®] programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC[®] microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

25.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

25.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

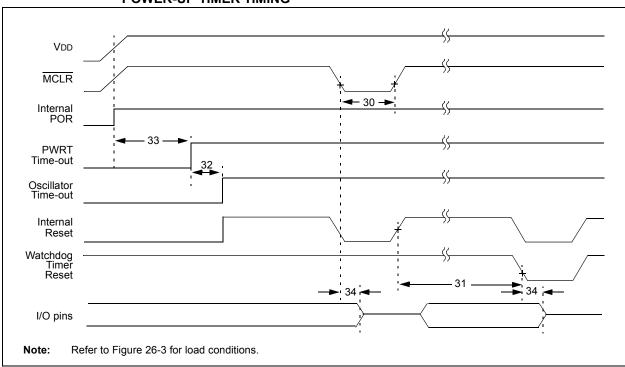
Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

26.2 DC Characteristics: Power-Down and Supply Current PIC18F85J90 Family (Industrial) (Continued)

PIC18F85J90 Family (Industrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le Ta \le +85^{\circ}C$ for industrial						
Param No.	Device	Тур	Max	Units		3		
	Supply Current (IDD) ⁽²⁾							
	All devices	10.5	22	μA	-40°C		Fosc = 32 kHz ⁽³⁾ (SEC_RUN mode, Timer1 as clock)	
		13.4	28	μA	+25°C	VDD = 2.0V, VDDCORE = 2.0V ⁽⁴⁾		
		17.6	40	μA	+85°C	VDDOORE 2.0V		
	All devices	13.2	30	μA	-40°C			
		16.2	35	μA	+25°C	VDD = 2.5V, VDDCORE = 2.5V ⁽⁴⁾		
		20.7	50	μA	+85°C	VBBOOKE 2.0V		
	All devices	39	120	μA	-40°C			
		58	150	μA	+25°C	VDD = 3.3V ⁽⁵⁾		
		75	190	μA	+85°C			
	All devices	5.7	15	μA	-40°C		Fosc = 32 kHz ⁽³⁾ (SEC_IDLE mode, Timer1 as clock)	
		8.9	20	μA	+25°C	VDD = 2.0V, VDDCORE = 2.0V ⁽⁴⁾		
		12.8	26	μA	+85°C	VBBOOKE 2.0V		
	All devices	6.6	17	μA	-40°C			
		9.7	24	μA	+25°C	VDD = 2.5V, VDDCORE = 2.5V ⁽⁴⁾		
		13.7	30	μA	+85°C			
	All devices	39	115	μA	-40°C			
		52.8	145	μA	+25°C	VDD = 3.3V ⁽⁵⁾		
		72.7	185	μA	+85°C			

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or VSS, and all features that add delta current disabled (such as WDT, Timer1 oscillator, BOR, etc.).


2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

- **3:** Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.
- 4: Voltage regulator is disabled (ENVREG tied to Vss).
- **5:** Voltage regulator is enabled (ENVREG tied to VDD).
- 6: Resistor ladder current is not included.
- 7: Connecting an actual display will increase the current consumption depending on the size of the LCD.

FIGURE 26-6: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

TABLE 26-11: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND BROWN-OUT RESET REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
30	ТмсL	MCLR Pulse Width (low)	2 Tcy	10 Tcy	_		(Note 1)
31	Twdt	Watchdog Timer Time-out Period (no postscaler)	3.4	4.0	4.6	ms	
32	Tost	Oscillation Start-up Timer Period	1024 Tosc	_	1024 Tosc	_	Tosc = OSC1 period
33	TPWRT	Power-up Timer Period	45.8	65.5	85.2	ms	
34	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	—	2	_	μS	
38	Tcsd	CPU Start-up Time	_	10	_	μS	
			_	200	—	μS	Voltage regulator enabled and put to Sleep
39	TIOBST	Time for INTOSC to Stabilize	—	1	_	μS	

Note 1: To ensure device Reset, $\overline{\text{MCLR}}$ must be low for at least 2 TcY or 400 µs, whichever is lower.

FIGURE 26-8: CAPTURE/COMPARE/PWM TIMINGS (CCP1, CCP2 MODULES)

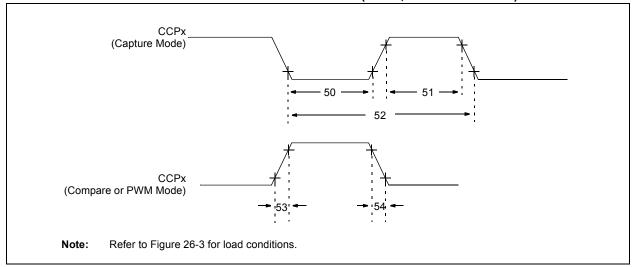


TABLE 26-13: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1, CCP2 MODULES)

Param No.	Symbol	Characteristic		Min	Мах	Units	Conditions
50	TccL	CCPx Input Low	No prescaler	0.5 Tcy + 20		ns	
		Time	With prescaler	10	_	ns	
51	Тссн	CCPx Input High Time	No prescaler	0.5 Tcy + 20	_	ns	
			With prescaler	10	-	ns	
52	TCCP	CCPx Input Period		<u>3 Tcy + 40</u> N	_	ns	N = prescale value (1, 4 or 16)
53	TccR	CCPx Output Fall Time		—	25	ns	
54	TccF	CCPx Output Fall Time		—	25	ns	

APPENDIX A: REVISION HISTORY

Revision A (July 2006)

Original data sheet for PIC18F85J90 family devices.

Revision B (March 2007)

Updated power-down and supply current electrical characteristics and package details illustrations.

Revision C (January 2010)

Updated electrical characteristics and package detail illustrations. Minor text edits throughout document.