

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, LVD, POR, PWM, WDT
Number of I/O	51
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f65j90t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Din Nama	Pin Number	Pin	Buffer	Description		
Pin Name	TQFP	Туре	Туре	Description		
				PORTF is a bidirectional I/O port.		
RF1/AN6/C2OUT/SEG19 RF1 AN6 C2OUT SEG19	23	I/O I O O	ST Analog — Analog	Digital I/O. Analog Input 6. Comparator 2 output. SEG19 output for LCD.		
RF2/AN7/C1OUT/SEG20 RF2 AN7 C1OUT SEG20	18	I/O I O O	ST Analog — Analog	Digital I/O. Analog Input 7. Comparator 1 output. SEG20 output for LCD.		
RF3/AN8/SEG21 RF3 AN8 SEG21	17	I/O I O	ST Analog Analog	Digital I/O. Analog Input 8. SEG21 output for LCD.		
RF4/AN9/SEG22 RF4 AN9 SEG22	16	I/O I O	ST Analog Analog	Digital I/O. Analog Input 9. SEG22 output for LCD.		
RF5/AN10/CVREF/SEG23 RF5 AN10 CVREF SEG23	15	I/O I O O	ST Analog Analog Analog	Digital I/O. Analog Input 10. Comparator reference voltage output. SEG23 output for LCD.		
RF6/AN11/SEG24 RF6 AN11 SEG24	14	I/O I O	ST Analog Analog	Digital I/O. Analog Input 11. SEG24 output for LCD.		
RF7/AN5/SS/SEG25 RF7 AN5 SS SEG25	13	I/O O I O	ST Analog TTL Analog	Digital I/O. Analog Input 5. SPI slave select input. SEG25 output for LCD.		
Legend: TTL = TTL cc ST = Schmit I = Input P = Power $I^2C^{TM} = I^2C/SM$	tt Trigger input	with C	MOS level	CMOS = CMOS compatible input or output s Analog = Analog input O = Output OD = Open-Drain (no P diode to VDD)		

TABLE 1-4: PIC18F8XJ90 PINOUT I/O DESCRIPTIONS (CONTINUED)

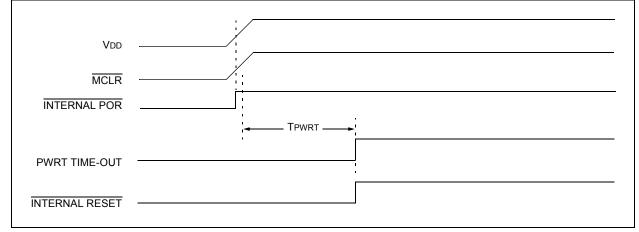
Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set.

2: Alternate assignment for CCP2 when the CCP2MX Configuration bit is cleared.

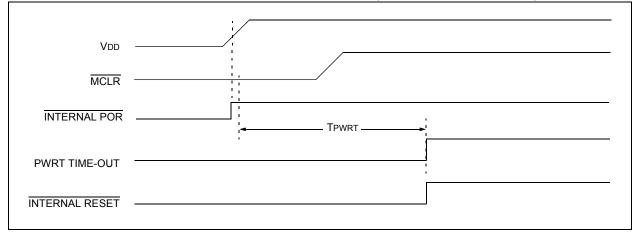
A CM Reset behaves similarly to a Master Clear Reset, RESET instruction, WDT time-out or Stack Event Resets. As with all hard and power Reset events, the device Configuration Words are reloaded from the Flash Configuration Words in program memory as the device restarts.

5.6 Power-up Timer (PWRT)

PIC18F85J90 family devices incorporate an on-chip Power-up Timer (PWRT) to help regulate the Power-on Reset process. The PWRT is always enabled. The main function is to ensure that the device voltage is stable before code is executed.


The Power-up Timer (PWRT) of the PIC18F85J90 family devices is an 11-bit counter which uses the INTRC source as the clock input. This yields an approximate time interval of 2048 x 32 μ s = 65.6 ms. While the PWRT is counting, the device is held in Reset. The power-up time delay depends on the INTRC clock and will vary from chip-to-chip due to temperature and process variation. See DC parameter 33 for details.

5.6.1 TIME-OUT SEQUENCE


If enabled, the PWRT time-out is invoked after the POR pulse has cleared. The total time-out will vary based on the status of the PWRT. Figure 5-3, Figure 5-4, Figure 5-5 and Figure 5-6 all depict time-out sequences on power-up with the Power-up Timer enabled.

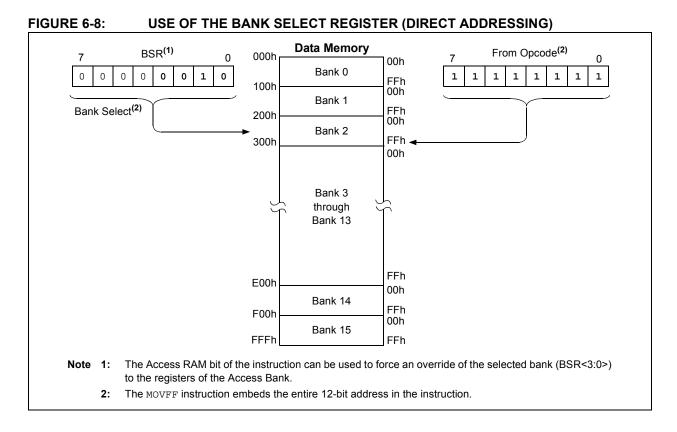

Since the time-outs occur from the POR pulse, if MCLR is kept low long enough, the PWRT will expire. Bringing MCLR high will begin execution immediately (Figure 5-5). This is useful for testing purposes, or to synchronize more than one PIC18FXXXX device operating in parallel.

FIGURE 5-4: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1

6.3.2 ACCESS BANK

While the use of the BSR with an embedded 8-bit address allows users to address the entire range of data memory, it also means that the user must always ensure that the correct bank is selected. Otherwise, data may be read from, or written to, the wrong location. This can be disastrous if a GPR is the intended target of an operation, but an SFR is written to instead. Verifying and/or changing the BSR for each read or write to data memory can become very inefficient.

To streamline access for the most commonly used data memory locations, the data memory is configured with an Access Bank, which allows users to access a mapped block of memory without specifying a BSR. The Access Bank consists of the first 96 bytes of memory (00h-5Fh) in Bank 0 and the last 160 bytes of memory (60h-FFh) in Bank 15. The lower half is known as the "Access RAM" and is composed of GPRs. The upper half is where the device's SFRs are mapped. These two areas are mapped contiguously in the Access Bank and can be addressed in a linear fashion by an 8-bit address (Figure 6-6).

The Access Bank is used by core PIC18 instructions that include the Access RAM bit (the 'a' parameter in the instruction). When 'a' is equal to '1', the instruction uses the BSR and the 8-bit address included in the opcode for the data memory address. When 'a' is '0',

however, the instruction is forced to use the Access Bank address map; the current value of the BSR is ignored entirely.

Using this "forced" addressing allows the instruction to operate on a data address in a single cycle without updating the BSR first. For 8-bit addresses of 60h and above, this means that users can evaluate and operate on SFRs more efficiently. The Access RAM below 60h is a good place for data values that the user might need to access rapidly, such as immediate computational results or common program variables. Access RAM also allows for faster and more code efficient context saving and switching of variables.

The mapping of the Access Bank is slightly different when the extended instruction set is enabled (XINST Configuration bit = 1). This is discussed in more detail in Section 6.6.3 "Mapping the Access Bank in Indexed Literal Offset Mode".

6.3.3 GENERAL PURPOSE REGISTER FILE

PIC18 devices may have banked memory in the GPR area. This is data RAM which is available for use by all instructions. GPRs start at the bottom of Bank 0 (address 000h) and grow upwards towards the bottom of the SFR area. GPRs are not initialized by a Power-on Reset and are unchanged on all other Resets.

TABLE 6-3:	PIC18F85J90 FAMILY REGISTER FILE SUMMARY (CONTINUED)
------------	--

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page
PORTJ ⁽²⁾	RJ7	RJ6	RJ5	RJ4	RJ3	RJ2	RJ1	RJ0	xxxx xxxx	60, 136
PORTH ⁽²⁾	RH7	RH6	RH5	RH4	RH3	RH2	RH1	RH0	xxxx xxxx	60, 134
PORTG	RDPU	REPU	RJPU ⁽²⁾	RG4	RG3	RG2	RG1	RG0	000x xxxx	60, 132
PORTF	RF7	RF6	RF5	RF4	RF3	RF2	RF1	_	xxxx xxx-	60, 130
PORTE	RE7	RE6	RE5	RE4	RE3	_	RE1	RE0	xxxx x-xx	61, 127
PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	61, 125
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	61, 123
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	61, 120
PORTA	RA7 ⁽⁵⁾	RA6 ⁽⁵⁾	RA5	RA4	RA3	RA2	RA1	RA0	xx0x 0000	61, 117
SPBRGH1	EUSART Ba	ud Rate Gene	rator High By	e					0000 0000	61, 240
BAUDCON1	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	_	WUE	ABDEN	0100 0-00	61, 238
LCDDATA23 ⁽²⁾	S47C3	S46C3	S45C3	S44C3	S43C3	S42C3	S41C3	S40C3	xxxx xxxx	61, 167
LCDDATA22	S39C3 ⁽²⁾	S38C3 ⁽²⁾	S37C3 ⁽²⁾	S36C3 ⁽²⁾	S35C3 ⁽²⁾	S34C3 ⁽²⁾	S33C3 ⁽²⁾	S32C3	xxxx xxxx	61, 167
LCDDATA21	S31C3	S30C3	S29C3	S28C3	S27C3	S26C3	S25C3	S24C3	xxxx xxxx	61, 167
LCDDATA20	S23C3	S22C3	S21C3	S20C3	S19C3	S18C3	S17C3	S16C3	xxxx xxxx	61, 167
LCDDATA19	S15C3	S14C3	S13C3	S12C3	S11C3	S10C3	S09C3	S08C3	xxxx xxxx	61, 167
LCDDATA18	S07C3	S06C3	S05C3	S04C3	S03C3	S02C3	S01C3	S00C3	xxxx xxxx	61, 167
LCDDATA17 ⁽²⁾	S47C2	S46C2	S45C2	S44C2	S43C2	S42C2	S41C2	S40C2	xxxx xxxx	61, 167
LCDDATA16	S39C2 ⁽²⁾	S38C2 ⁽²⁾	S37C2 ⁽²⁾	S36C2 ⁽²⁾	S35C2 ⁽²⁾	S34C2 ⁽²⁾	S33C2 ⁽²⁾	S32C2	xxxx xxxx	61, 167
LCDDATA15	S31C2	S30C2	S29C2	S28C2	S27C2	S26C2	S25C2	S24C2	xxxx xxxx	61, 167
LCDDATA14	S23C2	S22C2	S21C2	S20C2	S19C2	S18C2	S17C2	S16C2	xxxx xxxx	61, 167
LCDDATA13	S15C2	S14C2	S13C2	S12C2	S11C2	S10C2	S09C2	S08C2	xxxx xxxx	61, 167
LCDDATA12	S07C2	S06C2	S05C2	S04C2	S03C2	S02C2	S01C2	S00C2	xxxx xxxx	61, 167
LCDDATA11 ⁽²⁾	S47C1	S46C1	S45C1	S44C1	S43C1	S42C1	S41C1	S40C1	xxxx xxxx	61, 167
LCDDATA10	S39C1 ⁽²⁾	S38C1 ⁽²⁾	S37C1 ⁽²⁾	S36C1 ⁽²⁾	S35C1 ⁽²⁾	S34C1 ⁽²⁾	S33C1 ⁽²⁾	S32C1	xxxx xxxx	61, 167
LCDDATA9	S31C1	S30C1	S29C1	S28C1	S27C1	S26C1	S25C1	S24C1	xxxx xxxx	61, 167
LCDDATA8	S23C1	S22C1	S21C1	S20C1	S19C1	S18C1	S17C1	S16C1	xxxx xxxx	61, 167
LCDDATA7	S15C1	S14C1	S13C1	S12C1	S11C1	S10C1	S09C1	S08C1	xxxx xxxx	61, 167
LCDDATA6	S07C1	S06C1	S05C1	S04C1	S03C1	S02C1	S01C1	S00C1	xxxx xxxx	61, 167
LCDDATA5 ⁽²⁾	S47C0	S46C0	S45C0	S44C0	S43C0	S42C0	S41C0	S40C0	xxxx xxxx	61, 167
CCPR1H	Capture/Com	pare/PWM R	egister 1 High	Byte					xxxx xxxx	61, 154
CCPR1L	Capture/Com	pare/PWM R	egister 1 Low	Byte					xxxx xxxx	61, 154
CCP1CON	—	—	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	61, 153
CCPR2H	Capture/Com	pare/PWM R	egister 2 High	Byte					xxxx xxxx	61, 154
CCPR2L	Capture/Com	pare/PWM R	egister 2 Low	Byte					xxxx xxxx	62, 154
CCP2CON	—	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	62, 153
SPBRG2	AUSART Ba	ud Rate Gene	rator Register						0000 0000	62, 260
RCREG2	AUSART Re	ceive Register							0000 0000	62, 265
TXREG2	AUSART Tra	nsmit Registe	r						0000 0000	62, 263
TXSTA2	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	62, 258
RCSTA2	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	62, 259

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved, do not modify

Note 1: Bit 21 of the PC is only available in Test mode and Serial Programming modes.

2: These registers and/or bits are available only on 80-pin devices; otherwise, they are unimplemented and read as '0'. Reset states shown are for 80-pin devices.

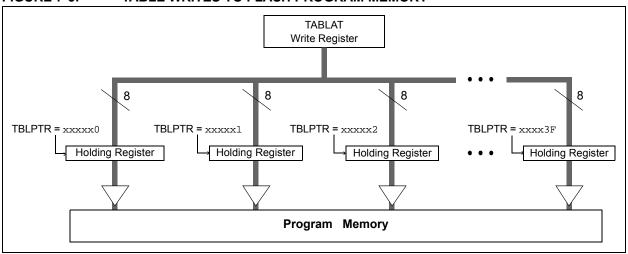
3: Alternate names and definitions for these bits when the MSSP module is operating in I²C[™] Slave mode. See Section 17.4.3.2 "Address Masking" for details.

4: The PLLEN bit is only available in specific oscillator configurations; otherwise, it is disabled and reads as '0'. See Section 3.4.3 "PLL Frequency Multiplier" for details.

5: RA6/RA7 and their associated latch and direction bits are configured as port pins only when the internal oscillator is selected as the default clock source (FOSC2 Configuration bit = 0); otherwise, they are disabled and these bits read as '0'.

7.5 Writing to Flash Program Memory

The minimum programming block is 32 words or 64 bytes. Word or byte programming is not supported.


Table writes are used internally to load the holding registers needed to program the Flash memory. There are 64 holding registers used by the table writes for programming.

Since the Table Latch (TABLAT) is only a single byte, the TBLWT instruction may need to be executed 64 times for each programming operation. All of the table write operations will essentially be short writes because only the holding registers are written. At the end of updating the 64 holding registers, the EECON1 register must be written to in order to start the programming operation with a long write.

The long write is necessary for programming the internal Flash. Instruction execution is halted while in a long write cycle. The long write will be terminated by the internal programming timer. The on-chip timer controls the write time. The write/erase voltages are generated by an on-chip charge pump, rated to operate over the voltage range of the device.

- Note 1: Unlike previous PIC[®] devices, members of the PIC18F85J90 family do not reset the holding registers after a write occurs. The holding registers must be cleared or overwritten before a programming sequence.
 - 2: To maintain the endurance of the program memory cells, each Flash byte should not be programmed more than one time between erase operations. Before attempting to modify the contents of the target cell a second time, a block erase of the target block, or a bulk erase of the entire memory, must be performed.

7.5.1 FLASH PROGRAM MEMORY WRITE SEQUENCE

The sequence of events for programming an internal program memory location should be:

- 1. Read 1024 bytes into RAM.
- 2. Update data values in RAM as necessary.
- 3. Load the Table Pointer register with the address being erased.
- 4. Execute the block erase procedure.
- 5. Load the Table Pointer register with the address of the first byte being written, minus 1.
- 6. Write the 64 bytes into the holding registers with auto-increment.
- 7. Set the WREN bit (EECON1<2>) to enable byte writes.

- 8. Disable interrupts.
- 9. Write 55h to EECON2.
- 10. Write 0AAh to EECON2.
- 11. Set the WR bit; this will begin the write cycle.
- 12. The CPU will stall for the duration of the write for TIW (see parameter D133A).
- 13. Re-enable interrupts.
- 14. Repeat steps 6 through 13 until all 1024 bytes are written to program memory.
- 15. Verify the memory (table read).

An example of the required code is shown in Example 7-3 on the following page.

Note: Before setting the WR bit, the Table Pointer address needs to be within the intended address range of the 64 bytes in the holding register.

10.3 PORTB, TRISB and LATB Registers

PORTB is an 8-bit wide, bidirectional port. The corresponding Data Direction and Data Latch registers are TRISB and LATB. All pins on PORTB are digital only and tolerate voltages up to 5.5V.

EXAMPLE 10-2: INITIALIZING PORTB

CLRF	PORTB	; Initialize PORTB by ; clearing output
		; data latches
CLRF	LATB	; Alternate method
		; to clear output
		; data latches
MOVLW	OCFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISB	; Set RB<3:0> as inputs
		; RB<5:4> as outputs
		; RB<7:6> as inputs

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn <u>on all</u> the pull-ups. This is performed by clearing bit, RBPU (INTCON2<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

Four of the PORTB pins (RB<7:4>) have an interrupt-on-change feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB<7:4> pin configured as an output is excluded from the interrupt-on-change comparison). The input pins (of RB<7:4>) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB<7:4> are ORed together to generate the RB Port Change Interrupt with Flag bit, RBIF (INTCON<0>).

This interrupt can wake the device from power-managed modes. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB (except with the MOVFF (ANY), PORTB instruction). This will end the mismatch condition.
- b) Wait one instruction cycle (such as executing a NOP instruction).
- c) Clear flag bit, RBIF.

A mismatch condition will continue to set flag bit, RBIF. Reading PORTB will end the mismatch condition and allow flag bit, RBIF, to be cleared after one TCY delay.

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

RB<5:0> are also multiplexed with LCD segment drives, controlled by bits in the LCDSE1 and LCDSE3 registers. I/O port functionality is only available when the LCD segments are disabled.

TABLE 10-6:	SUMMARY OF REGISTERS ASSOCIATED WITH PORTB
-------------	--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	61
LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	60
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	60
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	57
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	INTEDG3	TMR0IP	INT3IP	RBIP	57
INTCON3	INT2IP	INT1IP	INT3IE	INT2IE	INT1IE	INT3IF	INT2IF	INT1IF	57
LCDSE1	SE15	SE14	SE13	SE12	SE11	SE10	SE09	SE08	59
LCDSE3	SE31	SE30	SE29	SE28	SE27	SE26	SE25	SE24	59

Legend: Shaded cells are not used by PORTB.

10.5 PORTD, TRISD and LATD Registers

PORTD is an 8-bit wide, bidirectional port. The corresponding Data Direction and Data Latch registers are TRISD and LATD. All pins on PORTD are digital only and tolerate voltages up to 5.5V.

All pins on PORTD are implemented with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

Note:	These pins are configured as digital inputs
	on any device Reset.

Each of the PORTD pins has a weak internal pull-up. A single control bit can turn off all the pull-ups. This is performed by clearing bit, RDPU (PORTG<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on all device Resets.

All of the PORTD pins are multiplexed with LCD segment drives, controlled by bits in the LCDSE0 register. I/O port functionality is only available when the LCD segments are disabled.

EXAMPLE 10-4: INITIALIZING PORTD

CLRF POR	; clearing output
	; data latches
CLRF LAT	D ; Alternate method
	; to clear output
	; data latches
MOVLW OCF	h ; Value used to
	; initialize data
	; direction
MOVWF TRI	SD ; Set RD<3:0> as inputs
	; RD<5:4> as outputs
	; RD<7:6> as inputs

13.0 TIMER2 MODULE

The Timer2 module incorporates the following features:

- 8-bit Timer and Period registers (TMR2 and PR2, respectively)
- Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4 and 1:16)
- Software programmable postscaler (1:1 through 1:16)
- Interrupt on TMR2 to PR2 match
- Optional use as the shift clock for the MSSP module

The module is controlled through the T2CON register (Register 13-1) which enables or disables the timer and configures the prescaler and postscaler. Timer2 can be shut off by clearing control bit, TMR2ON (T2CON<2>), to minimize power consumption.

A simplified block diagram of the module is shown in Figure 13-1.

13.1 Timer2 Operation

In normal operation, TMR2 is incremented from 00h on each clock (Fosc/4). A 4-bit counter/prescaler on the clock input gives direct input, divide-by-4 and divide-by-16 prescale options. These are selected by the prescaler control bits, T2CKPS<1:0> (T2CON<1:0>). The value of TMR2 is compared to that of the Period register, PR2, on each clock cycle. When the two values match, the comparator generates a match signal as the timer output. This signal also resets the value of TMR2 to 00h on the next cycle and drives the output counter/postscaler (see Section 13.2 "Timer2 Interrupt").

The TMR2 and PR2 registers are both directly readable and writable. The TMR2 register is cleared on any device Reset, while the PR2 register initializes at FFh. Both the prescaler and postscaler counters are cleared on the following events:

- a write to the TMR2 register
- · a write to the T2CON register
- any device Reset (Power-on Reset, MCLR Reset, Watchdog Timer Reset or Brown-out Reset)

TMR2 is not cleared when T2CON is written.

REGISTER 13-1: T2CON: TIMER2 CONTROL REGISTER

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	Unimplemented: Read as '0'
bit 6-3	T2OUTPS<3:0>: Timer2 Output Postscale Select bits
	0000 = 1:1 Postscale
	0001 = 1:2 Postscale
	•
	•
	1111 = 1:16 Postscale
bit 2	TMR2ON: Timer2 On bit
	1 = Timer2 is on
	0 = Timer2 is off
bit 1-0	T2CKPS<1:0>: Timer2 Clock Prescale Select bits
	00 = Prescaler is 1
	01 = Prescaler is 4
	1x = Prescaler is 16

15.3 Compare Mode

In Compare mode, the 16-bit CCPR2 register value is constantly compared against either the TMR1 or TMR3 register pair value. When a match occurs, the CCP2 pin can be:

- driven high
- · driven low
- toggled (high-to-low or low-to-high)
- remain unchanged (that is, reflects the state of the I/O latch)

The action on the pin is based on the value of the mode select bits (CCP2M<3:0>). At the same time, the interrupt flag bit, CCP2IF, is set.

15.3.1 CCP PIN CONFIGURATION

The user must configure the CCPx pin as an output by clearing the appropriate TRIS bit.

Clearing the CCP2CON register will force					
the RC1 or RE7 compare output latch					
(depending on device configuration) to the					
default low level. This is not the PORTC or					
PORTE I/O data latch.					

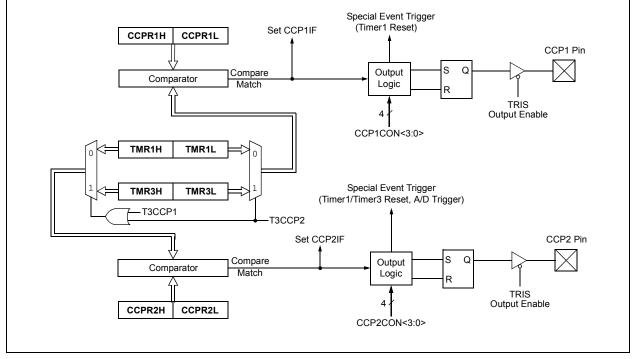
15.3.2 TIMER1/TIMER3 MODE SELECTION

Timer1 and/or Timer3 must be running in Timer mode, or Synchronized Counter mode, if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

15.3.3 SOFTWARE INTERRUPT MODE

When the Generate Software Interrupt mode is chosen (CCP2M<3:0> = 1010), the CCP2 pin is not affected. Only a CCP interrupt is generated, if enabled, and the CCP2IE bit is set.

15.3.4 SPECIAL EVENT TRIGGER


Both CCP modules are equipped with a Special Event Trigger. This is an internal hardware signal generated in Compare mode to trigger actions by other modules. The Special Event Trigger is enabled by selecting the Compare Special Event Trigger mode (CCP2M<3:0> = 1011).

For either CCP module, the Special Event Trigger resets the timer register pair for whichever timer resource is currently assigned as the module's time base. This allows the CCPRx registers to serve as a programmable period register for either timer.

The Special Event Trigger for CCP2 can also start an A/D conversion. In order to do this, the A/D Converter must already be enabled.

Note: The Special Event Trigger of CCP1 only resets Timer1/Timer3 and cannot start an A/D conversion even when the A/D Converter is enabled.

FIGURE 15-3: COMPARE MODE OPERATION BLOCK DIAGRAM

17.4.10 I²C MASTER MODE TRANSMISSION

Transmission of a data byte, a 7-bit address or the other half of a 10-bit address is accomplished by simply writing a value to the SSPBUF register. This action will set the Buffer Full bit, BF, and allow the Baud Rate Generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDA pin after the falling edge of SCL is asserted (see data hold time specification parameter 106). SCL is held low for one Baud Rate Generator rollover count (TBRG). Data should be valid before SCL is released high (see data setup time specification parameter 107). When the SCL pin is released high, it is held that way for TBRG. The data on the SDA pin must remain stable for that duration and some hold time after the next falling edge of SCL. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDA. This allows the slave device being addressed to respond with an ACK bit during the ninth bit time if an address match occurred, or if data was received properly. The status of ACK is written into the ACKDT bit on the falling edge of the ninth clock. If the master receives an Acknowledge, the Acknowledge Status bit, ACKSTAT, is cleared; if not, the bit is set. After the ninth clock, the SSPIF bit is set and the master clock (Baud Rate Generator) is suspended until the next data byte is loaded into the SSPBUF, leaving SCL low and SDA unchanged (Figure 17-23).

After the write to the SSPBUF, each bit of the address will be shifted out on the falling edge of SCL until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock, the master will deassert the SDA pin, allowing the slave to respond with an Acknowledge. On the falling edge of the ninth clock, the master will sample the SDA pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the ACKSTAT status bit (SSPCON2<6>). Following the falling edge of the ninth clock transmission of the address, the SSPIF is set, the BF flag is cleared and the Baud Rate Generator is turned off until another write to the SSPBUF takes place, holding SCL low and allowing SDA to float.

17.4.10.1 BF Status Flag

In Transmit mode, the BF bit (SSPSTAT<0>) is set when the CPU writes to SSPBUF and is cleared when all 8 bits are shifted out.

17.4.10.2 WCOL Status Flag

If the user writes to the SSPBUF when a transmit is already in progress (i.e., SSPSR is still shifting out a data byte), the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur) after 2 TcY after the SSPBUF write. If SSPBUF is rewritten within 2 TcY, the WCOL bit is set and SSPBUF is updated. This may result in a corrupted transfer. The user should verify that the WCOL is clear after each write to SSPBUF to ensure the transfer is correct. In all cases, WCOL must be cleared in software.

17.4.10.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit (SSPCON2<6>) is cleared when the slave has sent an Acknowledge $(\overline{ACK} = 0)$ and is set when the slave does not Acknowledge $(\overline{ACK} = 1)$. A slave sends an Acknowledge when it has recognized its address (including a general call), or when the slave has properly received its data.

17.4.11 I²C MASTER MODE RECEPTION

Master mode reception is enabled by programming the Receive Enable bit, RCEN (SSPCON2<3>).

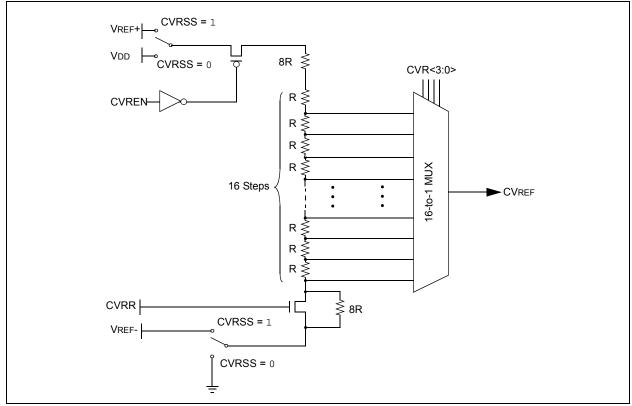
Note: The MSSP module must be in an Idle state before the RCEN bit is set or the RCEN bit will be disregarded.

The Baud Rate Generator begins counting and on each rollover, the state of the SCL pin changes (high-to-low/low-to-high) and data is shifted into the SSPSR. After the falling edge of the eighth clock, the receive enable flag is automatically cleared, the contents of the SSPSR are loaded into the SSPBUF, the BF flag bit is set, the SSPIF flag bit is set and the Baud Rate Generator is suspended from counting, holding SCL low. The MSSP is now in Idle state awaiting the next command. When the buffer is read by the CPU, the BF flag bit is automatically cleared. The user can then send an Acknowledge bit at the end of reception by setting the Acknowledge Sequence Enable bit, ACKEN (SSPCON2<4>).

17.4.11.1 BF Status Flag

In receive operation, the BF bit is set when an address or data byte is loaded into SSPBUF from SSPSR. It is cleared when the SSPBUF register is read.

17.4.11.2 SSPOV Status Flag


In receive operation, the SSPOV bit is set when 8 bits are received into the SSPSR and the BF flag bit is already set from a previous reception.

17.4.11.3 WCOL Status Flag

If the user writes the SSPBUF when a receive is already in progress (i.e., SSPSR is still shifting in a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-1	R/W-0
CSRC	TX9	TXEN ⁽¹⁾	SYNC	SENDB	BRGH	TRMT	TX9D
oit 7				·			bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7	CSRC: Clock	k Source Select	bit				
	<u>Asynchronou</u> Don't care.	<u>is mode:</u>					
		<u>s mode:</u> node (clock gen ode (clock from					
bit 6		ansmit Enable I		0)			
		9-bit transmissio					
	0 = Selects	8-bit transmissio	on				
oit 5	TXEN: Trans	smit Enable bit ⁽¹)				
	1 = Transmi 0 = Transmi						
oit 4	SYNC: AUS	ART Mode Sele	ct bit				
	1 = Synchro 0 = Asynchr						
oit 3	SENDB: Ser	nd Break Chara	cter bit				
	<u>Asynchronou</u>	<u>is mode:</u>					
		vnc Break on ne eak transmissio		n (cleared by ha	ardware upon c	completion)	
	<u>Synchronous</u> Don't care.	<u>s mode:</u>					
oit 2	BRGH: High	Baud Rate Sel	ect bit				
	Asynchronou 1 = High spe	eed					
	0 = Low spe	<u>s mode:</u>					
bit 1	Unused in th TRMT: Trans	smit Shift Regist	er Status bit				
	1 = TSR em 0 = TSR full						
bit 0	TX9D: 9th bi	t of Transmit Da	ita				
	Can be addre	ess/data bit or a	parity bit.				
	REN/CREN ov						

REGISTER 18-1: TXSTA1: EUSART TRANSMIT STATUS AND CONTROL REGISTER

FIGURE 22-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

22.2 Voltage Reference Accuracy/Error

The full range of voltage reference cannot be realized due to the construction of the module. The transistors on the top and bottom of the resistor ladder network (Figure 22-1) keep CVREF from approaching the reference source rails. The voltage reference is derived from the reference source; therefore, the CVREF output changes with fluctuations in that source. The tested absolute accuracy of the voltage reference can be found in **Section 26.0 "Electrical Characteristics"**.

22.3 Operation During Sleep

When the device wakes up from Sleep through an interrupt or a Watchdog Timer time-out, the contents of the CVRCON register are not affected. To minimize current consumption in Sleep mode, the voltage reference should be disabled.

22.4 Effects of a Reset

A device Reset disables the voltage reference by clearing bit, CVREN (CVRCON<7>). This Reset also disconnects the reference from the RA2 pin by clearing bit, CVROE (CVRCON<6>) and selects the high-voltage range by clearing bit, CVRR (CVRCON<5>). The CVR value select bits are also cleared.

22.5 Connection Considerations

The voltage reference module operates independently of the comparator module. The output of the reference generator may be connected to the RF5 pin if the CVROE bit is set. Enabling the voltage reference output onto RA2 when it is configured as a digital input will increase current consumption. Connecting RF5 as a digital output with CVRSS enabled will also increase current consumption.

The RF5 pin can be used as a simple D/A output with limited drive capability. Due to the limited current drive capability, a buffer must be used on the voltage reference output for external connections to VREF. Figure 22-2 shows an example buffering technique.

PLL (HS+PLL)

REGISTER 23-3: CONFIG2L: CONFIGURATION REGISTER 2 LOW (BYTE ADDRESS 300002h)

R/WO-1	R/WO-1	U-0	U-0	U-0	R/WO-1	R/WO-1	R/WO-1
IESO	FCMEN	—	—	—	FOSC2	FOSC1	FOSC0
bit 7							bit 0

Legend:			
R = Readable bit	WO = Write-Once bit	U = Unimplemented I	bit, read as '0'
-n = Value when device is unprogrammed		'1' = Bit is set	'0' = Bit is cleared

bit 7	IESO: Two-Speed Start-up (Internal/External Oscillator Switchover) Control bit 1 = Two-Speed Start-up is enabled 0 = Two-Speed Start-up is disabled
bit 6	FCMEN: Fail-Safe Clock Monitor Enable bit
	1 = Fail-Safe Clock Monitor is enabled
	0 = Fail-Safe Clock Monitor is disabled
bit 5-3	Unimplemented: Read as '0'
bit 2-0	FOSC<2:0>: Oscillator Selection bits
	111 = OSC1/OSC2 as primary; EC oscillator with CLKO function and software controlled PLL (EC+PLL)
	110 = OSC1/OSC2 as primary; EC oscillator with CLKO function (EC)
	101 = OSC1/OSC2 as primary; HS oscillator with software controlled PLL (HS+PLL)
	100 = OSC1/OSC2 as primary; HS oscillator (HS)
	011 = INTOSC with CLKO as primary; port function on RA7; EC oscillator with CLKO function and
	software controlled PLL (EC+PLL)
	010 = INTOSC with CLKO as primary; port function on RA7; EC oscillator with CLKO function
	001 = INTOSC as primary with port function on RA6/RA7; HS oscillator with software controlled

000 = INTOSC as primary with port function on RA6/RA7; HS oscillator (HS)

BTFSC		Bit Test File	, Skip if Clear		BTFS	S	Bit Test File	, Skip if Set	
Syntax:		BTFSC f, b	{,a}		Synta	IX:	BTFSS f, b {	,a}	
Operands:		$\begin{array}{l} 0 \leq f \leq 255 \\ 0 \leq b \leq 7 \\ a \in [0,1] \end{array}$			Opera	ands:	0 ≤ f ≤ 255 0 ≤ b < 7 a ∈ [0,1]		
Operation:		skip if (f)	= 0		Opera	ation:	skip if (f)	= 1	
Status Affect	cted:	None			Statu	s Affected:	None		
Encoding:		1011	bbba ff	ff ffff	Enco	ding:	1010	bbba ffi	f ffff
Description	:	instruction is the next instruction current instruction and a NOP is	gister 'f' is '0', t skipped. If bit ruction fetched uction executio executed instruction.	'b' is '0', then during the n is discarded ead, making	Desc	ription:	instruction is the next instruction current instruction and a NOP is	gister 'f' is '1', t skipped. If bit ruction fetched uction execution executed inste cle instruction.	'b' is '1', then during the n is discarded
			e Access Banł BSR is used to	is selected. If select the				e Access Bank BSR is used to	
		is enabled, ti Indexed Liter whenever f ≤ Section 24.2 Bit-Oriented	d the extended nis instruction ral Offset Addr 95 (5Fh). See 2.3 "Byte-Orie I Instructions et Mode" for d	essing mode nted and in Indexed			set is enable Indexed Liter whenever f ≤ Section 24.2 Bit-Oriented	d the extended d, this instruction ral Offset Addro S 95 (5Fh). See 2.3 "Byte-Orient I Instructions of Mode" for de	on operates in essing mode nted and in Indexed
Words:		1			Word	s:	1		
Cycles:		•	cles if skip and 2-word instruc		Cycle	s:		/cles if skip and a 2-word instru	
Q Cycle Ad	ctivity:				QC	cle Activity:			
(Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4
Dee	code	Read	Process	No		Decode	Read	Process	No
lf skip:		register 'f'	Data	operation	lf ski	n.	register 'f'	Data	operation
	Q1	Q2	Q3	Q4	11 5 11	ρ. Q1	Q2	Q3	Q4
	No	No	No	No		No	No	No	No
oper	ration	operation	operation	operation		operation	operation	operation	operation
•		by 2-word inst		_	lf ski	•	by 2-word inst		
	Q1	Q2	Q3	Q4	l	Q1	Q2	Q3	Q4
	No ration	No operation	No operation	No operation		No operation	No operation	No operation	No operation
	No	No	No	No		No	No	No	No
	ration	operation	operation	operation		operation	operation	operation	operation
Example:		HERE BI FALSE : TRUE :	FSC FLAG	, l, O	Exam	iple:	HERE BI FALSE : TRUE :	TFSS FLAG	, 1, 0
P After Iı If	e Instructi PC nstruction FLAG<1 PC f FLAG<1	= add n 1> = 0; = add	ress (HERE) ress (TRUE)			Before Instruct PC After Instructio If FLAG< PC If FLAG<	= add n 1> = 0; = add	ress (HERE) ress (False)	
	PC		ress (False)		PC	· · · · ·	ress (TRUE)	

CAL	LW	Subroutine	Subroutine Call Using WREG					
Synta	ax:	CALLW						
Oper	ands:	None						
Oper	ation:	(W) → PCL (PCLATH) -	$(PC + 2) \rightarrow TOS,$ $(W) \rightarrow PCL,$ $(PCLATH) \rightarrow PCH,$ $(PCLATU) \rightarrow PCU$					
Statu	is Affected:	None						
Enco	oding:	0000	0000 000	01 0100				
Desc	ription	pushed ont contents of existing val contents of latched into respectively executed as	First, the return address (PC + 2) is pushed onto the return stack. Next, the contents of W are written to PCL; the existing value is discarded. Then, the contents of PCLATH and PCLATU are latched into PCH and PCU, respectively. The second cycle is executed as a NOP instruction while the new next instruction is fetched.					
			Unlike CALL, there is no option to update W, STATUS or BSR.					
Word	ls:	1	1					
Cycle	es:	2						
QC	ycle Activity:							
	Q1	Q2	Q3	Q4				
	Decode	Read WREG	Push PC to stack	No operation				
	No operation	No operation	No operation	No operation				
<u>Exar</u>	n <u>ple:</u> Before Instruc PC		CALLW					
)							

моу	SF	Move Inde	xed to f					
Synta			MOVSF [z _s], f _d					
	ands:	•	$0 \le z_s \le 127$					
Oper	ation:	((FSR2) + z						
•	s Affected:	None	-57 7 -0					
	ding: ord (source) vord (destin.)	1110 1111	1011 Ozz ffff fff	5				
Description:The contents of the source reprint moved to destination register actual address of the source reprint determined by adding the 7-bit offset ' z_s ', in the first word, to of FSR2. The address of the d register is specified by the 12- 'f_d' in the second word. Both a can be anywhere in the 4096- space (000h to FFFh).The MOVSF instruction cannot PCL, TOSU, TOSH or TOSL a destination register.If the resultant source address an Indirect Addressing register								
			value returned will be 00h.					
Word		2						
Cycle		2						
QC	ycle Activity: Q1	Q2	Q3	Q4				
	Decode	Determine	Determine	Read				
	200040	source addr	source addr	source reg				
	Decode	No operation No dummy read	No operation	Write register 'f' (dest)				
Exan	<u>nple:</u>	MOVSF	[05h], REG2					
	Before Instruc FSR2 Contents of 85h REG2 After Instructio FSR2 Contents of 85h REG2	= 80 = 33 = 11 on = 80	h h h					

25.7 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

25.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

25.9 MPLAB ICD 3 In-Circuit Debugger System

MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC[®] Flash microcontrollers and dsPIC[®] DSCs with the powerful, yet easyto-use graphical user interface of MPLAB Integrated Development Environment (IDE).

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

25.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express

The MPLAB PICkit 3 allows debugging and programming of PIC[®] and dsPIC[®] Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming[™].

The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

26.2 DC Characteristics: Power-Down and Supply Current PIC18F85J90 Family (Industrial) (Continued)

IC18F85 (Indus)	-	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le T_A \le +85^{\circ}C$ for industrial						
Param No.	Device	Тур	Max	Units		Conditions		
	Supply Current (IDD) ⁽²⁾							
	All devices	165	490	μA	-40°C			
		180	490	μA	+25°C	$VDD = 2.0V,$ $VDDCORE = 2.0V^{(4)}$		
		200	490	μA	+85°C	VDDCORE - 2.0V		
	All devices	256	670	μA	-40°C		Fosc = 1 MHz	
		260	670	μA	+25°C	VDD = 2.5V, VDDCORE = 2.5V ⁽⁴⁾	(PRI_RUN mode,	
		280	670	μA	+85°C	VDDCORE - 2.3V	EC oscillator)	
	All devices	460	850	μA	-40°C			
		456	850	μA	+25°C	VDD = 3.3V ⁽⁵⁾		
		482	850	μA	+85°C			
	All devices	0.632	2.2	mA	-40°C		Fosc = 4 MHz (PRI_RUN mode,	
		0.681	2.2	mA	+25°C	VDD = 2.0V, VDDCORE = 2.0V ⁽⁴⁾		
		0.738	2.2	mA	+85°C	VDDCORE - 2.0V		
	All devices	0.912	2.5	mA	-40°C			
		1.04	2.5	mA	+25°C	VDD = 2.5V, VDDCORE = 2.5V ⁽⁴⁾		
		1.04	2.5	mA	+85°C	VDDCORE - 2.5V	EC oscillator)	
	All devices	1.32	3.0	mA	-40°C			
		1.32	3.0	mA	+25°C	VDD = 3.3V ⁽⁵⁾		
		1.41	3.0	mA	+85°C]		
	All devices	7.47	14	mA	-40°C			
		5.81	14	mA	+25°C	VDD = 2.5V, VDDCORE = 2.5V ⁽⁴⁾		
		6.32	13	mA	+85°C		Fosc = 40 MHz	
	All devices	8.84	18	mA	-40°C		(PRI_RUN mode, EC oscillator)	
		8.66	18	mA	+25°C	VDD = 3.3V ⁽⁵⁾		
		7.97	16	mA	+85°C			

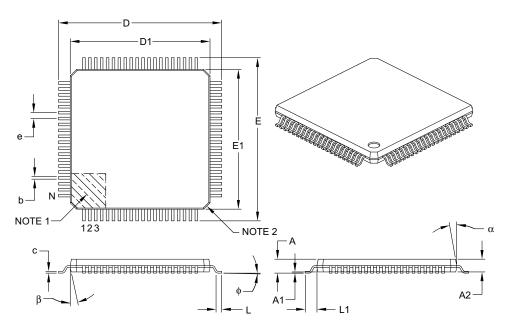
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or VSS, and all features that add delta current disabled (such as WDT, Timer1 oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

- OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;
- MCLR = VDD; WDT enabled/disabled as specified.
- 3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.
- 4: Voltage regulator is disabled (ENVREG tied to Vss).
- **5**: Voltage regulator is enabled (ENVREG tied to VDD).
- 6: Resistor ladder current is not included.
- 7: Connecting an actual display will increase the current consumption depending on the size of the LCD.

26.3 DC Characteristics:PIC18F84J90 Family (Industrial)


DC CHA	ARACTER	RISTICS	Standard Operating Conditions (unless otherwise stated Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial			
Param No.	Symbol	Characteristic	Min	Мах	Units	Conditions
	VIL	Input Low Voltage				
		All I/O Ports:				
D030		with TTL Buffer	Vss	0.15 Vdd	V	Vdd < 3.3V
D30A			—	0.8	V	$3.3V \leq V\text{DD} \leq 3.6V$
D031		with Schmitt Trigger Buffer	Vss	0.2 VDD	V	
D031A		RC3 and RC4	Vss	0.3 VDD	V	I ² C [™] enabled
D031B			Vss	0.8	V	SMBus enabled
D032		MCLR	Vss	0.2 Vdd	V	
D033		OSC1	Vss	0.3 VDD	V	HS, HSPLL modes
D033A		OSC1	Vss	0.2 VDD	V	EC, ECPLL modes
D034		Т13СКІ	Vss	0.3	V	
	VIH	Input High Voltage				
		I/O Ports with non 5.5V Tolerance: ⁽²⁾				
D040		with TTL Buffer	0.25 VDD + 0.8V	Vdd	V	Vdd < 3.3V
D040A			2.0	Vdd	V	$3.3V \leq V\text{DD} \leq 3.6V$
D041		with Schmitt Trigger Buffer	0.8 Vdd	Vdd	V	
D041A		RC3 and RC4	0.7 Vdd	Vdd	V	I ² C™ enabled
D041B			2.1	Vdd	V	SMBus enabled, VDD < 3.3V
		I/O Ports with 5.5V Tolerance: ⁽²⁾				
		with TTL Buffer	0.25 VDD + 0.8V	5.5	V	Vdd < 3.3V
			2.0	5.5	V	$3.3V \le V\text{DD} \le 3.6V$
		with Schmitt Trigger Buffer	0.8 Vdd	5.5	V	
D042		MCLR	0.8 Vdd	Vdd	V	
D043		OSC1	0.7 Vdd	Vdd	V	HS, HSPLL modes
D043A		OSC1	0.8 Vdd	Vdd	V	EC, ECPLL modes
D044		Т13СКІ	1.6	Vdd	V	
	lı∟	Input Leakage Current ⁽¹⁾				
D060		I/O Ports with non 5.5V tolerance: ⁽²⁾	_	200	nA	$Vss \le VPIN \le VDD,$ Pin at high-impedance
		I/O Ports with 5.5V tolerance: ⁽²⁾	_	200	nA	VSS \leq VPIN \leq 5.5V, Pin at high-impedance
D061		MCLR	_	±1	μA	$Vss \leq V PIN \leq V DD$
D063		OSC1	_	±1	μA	$Vss \leq VPin \leq Vdd$
	IPU	Weak Pull-up Current				
D070	IPURB	PORTB Weak Pull-up Current	30	400	μA	VDD = 3.3V, VPIN = VSS

Note 1: Negative current is defined as current sourced by the pin.

2: Refer to Table 10-1 for the pins that have corresponding tolerance limits.

80-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS		
	Dimension Limits	MIN	NOM	MAX	
Number of Leads	N		80		
Lead Pitch	е		0.50 BSC		
Overall Height	А	_	_	1.20	
Molded Package Thickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05	-	0.15	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	φ	0°	3.5°	7°	
Overall Width	E		14.00 BSC		
Overall Length	D		14.00 BSC		
Molded Package Width	E1		12.00 BSC		
Molded Package Length	D1		12.00 BSC		
Lead Thickness	С	0.09 – 0.20			
Lead Width	b	0.17	0.22	0.27	
Mold Draft Angle Top	α	11° 12° 13°			
Mold Draft Angle Bottom	β	11°	12°	13°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-092B