

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, LVD, POR, PWM, WDT
Number of I/O	67
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f83j90t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin Number	Din	Buffor				
Pin Name	TQFP	Туре	Туре	Description			
MCLR	9	I	ST	Master Clear (input) or programming voltage (input). This pin is an active-low Reset to the device.			
OSC1/CLKI/RA7 OSC1 CLKI RA7	49	 /O	CMOS CMOS TTL	Oscillator crystal or external clock input. Oscillator crystal input. External clock source input. Always associated with pin function OSC1. (See related OSC1/CLKI, OSC2/CLKO pins.) General purpose I/O pin.			
OSC2/CLKO/RA6	50	0		Oscillator crystal or clock output.			
CLKO		0	_	In EC modes, OSC2 pin outputs CLKO, which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.			
RA6		I/O	TTL	General purpose I/O pin.			
RA0/AN0 RA0	30	I/O	TTL	PORTA is a bidirectional I/O port. Digital I/O.			
AN0		I	Analog	Analog Input 0.			
RA1/AN1/SEG18 RA1 AN1 SEG18	29	I/O I O	TTL Analog Analog	Digital I/O. Analog Input 1. SEG18 output for LCD.			
RA2/AN2/VREF- RA2 AN2 VREF-	28	I/O I I	TTL Analog Analog	Digital I/O. Analog Input 2. A/D reference voltage (low) input.			
RA3/AN3/VREF+ RA3 AN3 VREF+	27	I/O I I	TTL Analog Analog	Digital I/O. Analog Input 3. A/D reference voltage (high) input.			
RA4/T0CKI/SEG14 RA4 T0CKI SEG14	34	I/O I O	ST/OD ST Analog	Digital I/O. Open-drain when configured as output. Timer0 external clock input. SEG14 output for LCD.			
RA5/AN4/SEG15 RA5 AN4 SEG15	33	I/O I O	TTL Analog Analog	Digital I/O. Analog Input 4. SEG15 output for LCD.			
RA6				See the OSC2/CLKO/RA6 pin.			
RA7				See the OSC1/CLKI/RA7 pin.			
Legend: TTL = TTL co ST = Schmit I = Input P = Power I^2C^{TM} = I^2C/SM	ompatible input tt Trigger input 1Bus	with C	MOS leve	CMOS = CMOS compatible input or output Analog = Analog input O = Output OD = Open-Drain (no P diode to VDD)			

Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set.

2: Alternate assignment for CCP2 when the CCP2MX Configuration bit is cleared.

NOTES:

Register	Applicable Devices		Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset RESET Instruction Stack Resets CM Resets	Wake-up via WDT or Interrupt	
PORTE	PIC18F6XJ90	PIC18F8XJ90	xxxx x-xx	uuuu u-uu	uuuu u-uu	
PORTD	PIC18F6XJ90	PIC18F8XJ90	xxxx xxxx	uuuu uuuu	uuuu uuuu	
PORTC	PIC18F6XJ90	PIC18F8XJ90	xxxx xxxx	uuuu uuuu	uuuu uuuu	
PORTB	PIC18F6XJ90	PIC18F8XJ90	xxxx xxxx	uuuu uuuu	uuuu uuuu	
PORTA ⁽⁵⁾	PIC18F6XJ90	PIC18F8XJ90	xx0x 0000 (5)	uu0u 0000 (5)	uuuu uuuu ⁽⁵⁾	
SPBRGH1	PIC18F6XJ90	PIC18F8XJ90	0000 0000	0000 0000	uuuu uuuu	
BAUDCON1	PIC18F6XJ90	PIC18F8XJ90	0100 0-00	0100 0-00	uuuu u-uu	
LCDDATA23	PIC18F6XJ90	PIC18F8XJ90	xxxx xxxx	uuuu uuuu	uuuu uuuu	
LCDDATA22	PIC18F6XJ90	PIC18F8XJ90	x	u	u	
LCDDATA22	PIC18F6XJ90	PIC18F8XJ90	xxxx xxxx	uuuu uuuu	uuuu uuuu	
LCDDATA21	PIC18F6XJ90	PIC18F8XJ90	xxxx xxxx	uuuu uuuu	uuuu uuuu	
LCDDATA20	PIC18F6XJ90	PIC18F8XJ90	XXXX XXXX	uuuu uuuu	uuuu uuuu	
LCDDATA19	PIC18F6XJ90	PIC18F8XJ90	xxxx xxxx	uuuu uuuu	uuuu uuuu	
LCDDATA18	PIC18F6XJ90	PIC18F8XJ90	XXXX XXXX	uuuu uuuu	uuuu uuuu	
LCDDATA17	PIC18F6XJ90	PIC18F8XJ90	XXXX XXXX	uuuu uuuu	uuuu uuuu	
LCDDATA16	PIC18F6XJ90	PIC18F8XJ90	x	u	u	
LCDDATA16	PIC18F6XJ90	PIC18F8XJ90	XXXX XXXX	uuuu uuuu	uuuu uuuu	
LCDDATA15	PIC18F6XJ90	PIC18F8XJ90	XXXX XXXX	uuuu uuuu	uuuu uuuu	
LCDDATA14	PIC18F6XJ90	PIC18F8XJ90	XXXX XXXX	uuuu uuuu	uuuu uuuu	
LCDDATA13	PIC18F6XJ90	PIC18F8XJ90	XXXX XXXX	uuuu uuuu	uuuu uuuu	
LCDDATA12	PIC18F6XJ90	PIC18F8XJ90	XXXX XXXX	uuuu uuuu	uuuu uuuu	
LCDDATA11	PIC18F6XJ90	PIC18F8XJ90	XXXX XXXX	uuuu uuuu	uuuu uuuu	
LCDDATA10	PIC18F6XJ90	PIC18F8XJ90	x	u	u	
LCDDATA10	PIC18F6XJ90	PIC18F8XJ90	XXXX XXXX	uuuu uuuu	uuuu uuuu	
LCDDATA9	PIC18F6XJ90	PIC18F8XJ90	XXXX XXXX	uuuu uuuu	uuuu uuuu	
LCDDATA8	PIC18F6XJ90	PIC18F8XJ90	XXXX XXXX	uuuu uuuu	uuuu uuuu	
LCDDATA7	PIC18F6XJ90	PIC18F8XJ90	XXXX XXXX	uuuu uuuu	uuuu uuuu	
LCDDATA6	PIC18F6XJ90	PIC18F8XJ90	XXXX XXXX	uuuu uuuu	uuuu uuuu	
LCDDATA5	PIC18F6XJ90	PIC18F8XJ90	XXXX XXXX	uuuu uuuu	uuuu uuuu	
CCPR1H	PIC18F6XJ90	PIC18F8XJ90	xxxx xxxx	uuuu uuuu	uuuu uuuu	
CCPR1L	PIC18F6XJ90	PIC18F8XJ90	XXXX XXXX	uuuu uuuu	uuuu uuuu	
CCP1CON	PIC18F6XJ90	PIC18F8XJ90	00 0000	00 0000	uu uuuu	
CCPR2H	PIC18F6XJ90	PIC18F8XJ90	XXXX XXXX	uuuu uuuu	uuuu uuuu	

TABLE 5-2:	INITIALIZATION CONDITIONS FOR ALL REGISTERS (CC	NTINUED)
	N 1	,

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

- 2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).
- 3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).
- **4:** See Table 5-1 for Reset value for specific condition.
- **5:** Bits 6 and 7 of PORTA, LATA and TRISA are enabled depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read as '0'.

6.4.3.2 FSR Registers and POSTINC, POSTDEC, PREINC and PLUSW

In addition to the INDF operand, each FSR register pair also has four additional indirect operands. Like INDF, these are "virtual" registers that cannot be indirectly read or written to. Accessing these registers actually accesses the associated FSR register pair, but also performs a specific action on its stored value. They are:

- POSTDEC: accesses the FSR value, then automatically decrements it by '1' afterwards
- POSTINC: accesses the FSR value, then automatically increments it by '1' afterwards
- PREINC: increments the FSR value by '1', then uses it in the operation
- PLUSW: adds the signed value of the W register (range of -127 to 128) to that of the FSR and uses the new value in the operation

In this context, accessing an INDF register uses the value in the FSR registers without changing them. Similarly, accessing a PLUSW register gives the FSR value offset by the value in the W register; neither value is actually changed in the operation. Accessing the other virtual registers changes the value of the FSR registers.

Operations on the FSRs with POSTDEC, POSTINC and PREINC affect the entire register pair; that is, rollovers of the FSRnL register from FFh to 00h carry over to the FSRnH register. On the other hand, results of these operations do not change the value of any flags in the STATUS register (e.g., Z, N, OV, etc.).

The PLUSW register can be used to implement a form of Indexed Addressing in the data memory space. By manipulating the value in the W register, users can reach addresses that are fixed offsets from pointer addresses. In some applications, this can be used to implement some powerful program control structure, such as software stacks, inside of data memory.

6.4.3.3 Operations by FSRs on FSRs

Indirect Addressing operations that target other FSRs or virtual registers represent special cases. For example, using an FSR to point to one of the virtual registers will not result in successful operations. As a specific case, assume that FSR0H:FSR0L contains FE7h, the address of INDF1. Attempts to read the value of the INDF1, using INDF0 as an operand, will return 00h. Attempts to write to INDF1, using INDF0 as the operand, will result in a NOP.

On the other hand, using the virtual registers to write to an FSR pair may not occur as planned. In these cases, the value will be written to the FSR pair but without any incrementing or decrementing. Thus, writing to INDF2 or POSTDEC2 will write the same value to the FSR2H:FSR2L.

Since the FSRs are physical registers mapped in the SFR space, they can be manipulated through all direct operations. Users should proceed cautiously when working on these registers, particularly if their code uses Indirect Addressing.

Similarly, operations by Indirect Addressing are generally permitted on all other SFRs. Users should exercise the appropriate caution that they do not inadvertently change settings that might affect the operation of the device.

6.5 Program Memory and the Extended Instruction Set

The operation of program memory is unaffected by the use of the extended instruction set.

Enabling the extended instruction set adds five additional two-word commands to the existing PIC18 instruction set: ADDFSR, CALLW, MOVSF, MOVSS and SUBFSR. These instructions are executed as described in Section 6.2.4 "Two-Word Instructions".

REGISTER 9-5: PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0
OSCFIF	CMIF	—	—	BCLIF	LVDIF	TMR3IF	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	OSCFIF: Oscillator Fail Interrupt Flag bit
	 1 = Device oscillator failed, clock input has changed to INTOSC (must be cleared in software) 0 = Device clock operating
bit 6	CMIF: Comparator Interrupt Flag bit
	1 = Comparator input has changed (must be cleared in software)0 = Comparator input has not changed
bit 5-4	Unimplemented: Read as '0'
bit 3	BCLIF: Bus Collision Interrupt Flag bit
	1 = A bus collision occurred (must be cleared in software)0 = No bus collision occurred
bit 2	LVDIF: Low-Voltage Detect Interrupt Flag bit
	 1 = A low-voltage condition occurred (must be cleared in software) 0 = The device voltage is above the regulator's low-voltage trip point
bit 1	TMR3IF: TMR3 Overflow Interrupt Flag bit
	1 = TMR3 register overflowed (must be cleared in software)0 = TMR3 register did not overflow
bit 0	Unimplemented: Read as '0'

U-0	R/W-0	R-0	R-0	U-0	R/W-0	R/W-0	U-0		
_	LCDIF	RC2IF	TX2IF	_	CCP2IF	CCP1IF	_		
bit 7							bit 0		
Legend:									
R = Reada	ıble bit	W = Writable	oit	U = Unimple	mented bit, rea	d as '0'			
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkne	own		
bit 7	Unimplemented: Read as '0'								
bit 6	LCDIF: LCD	Interrupt Flag b	it (valid when	Type-B wavefor	orm with Non-St	atic mode is sel	ected)		
	1 = LCD data	a of all COMs is	output (mus	t be cleared in	software)				
	0 = LCD data	a of all COMs is	not yet outpu	ut 					
bit 5	RC2IF: AUS		terrupt Flag b	it Olia fall (ala ana					
	1 = The AUS 0 = The AUS	SART receive bu	Iffer is empty	2, is full (cleare	a when RCRE	JZ IS read)			
bit 4	TX2IF: AUSA	TY2IE: ALISART Transmit Interrunt Flag bit							
	1 = The AUS	SART transmit b	uffer, TXREG	62, is empty (cle	eared when TXI	REG2 is written)			
	0 = The AUS	SART transmit b	uffer is full	, - , (-		· · · · · ,			
bit 3	Unimplemen	ted: Read as 'd)'						
bit 2	CCP2IF: CCI	P2 Interrupt Flag	g bit						
	Capture mod	<u>e:</u>							
	1 = A IMR1/	/IMR3 register	capture occui	rred (must be c	leared in softwa	ire)			
	Compare mo	de:	i captule occ	uneu					
	1 = A TMR1/	/TMR3 register	compare mat	ch occurred (m	ust be cleared i	n software)			
	0 = No TMR	1/TMR3 registe	r compare ma	atch occurred					
	PWM mode:								
hit 1		S Mode. D1 Interrupt Elec	a hit						
DILI	Capture mod	e.	y bit						
	1 = A TMR1	<u>e.</u> /TMR3 register	capture occui	red (must be c	leared in softwa	ire)			
	0 = No TMR	1/TMR3 registe	r capture occ	urred		,			
	Compare mo	<u>de:</u>							
	1 = A IMR1/ 0 = No TMR	/TMR3 register 1/TMR3 registe	compare mat	ch occurred (m	ust be cleared i	n software)			
	PWM mode	,, i wi to registe							
	Unused in thi	s mode.							
bit 0	Unimplemen	ted: Read as ')'						

REGISTER 9-6: PIR3: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 3

15.1 CCP Module Configuration

Each Capture/Compare/PWM module is associated with a control register (generically, CCPxCON) and a data register (CCPRx). The data register in turn is comprised of two 8-bit registers: CCPRxL (low byte) and CCPRxH (high byte). All registers are both readable and writable.

15.1.1 CCP MODULES AND TIMER RESOURCES

The CCP modules utilize Timers 1, 2 or 3, depending on the mode selected. Timer1 and Timer3 are available to modules in Capture or Compare modes, while Timer2 is available for modules in PWM mode.

TABLE 15-1:CCP MODE – TIMER
RESOURCE

CCP Mode	Timer Resource
Capture	Timer1 or Timer3
Compare	Timer1 or Timer3
PWM	Timer2

The assignment of a particular timer to a module is determined by the Timer to CCP enable bits in the T3CON register (Register 14-1). Both modules may be active at any given time and may share the same timer resource if they are configured to operate in the same mode (Capture/Compare or PWM) at the same time. The interactions between the two modules are summarized in Table 15-2.

Depending on the configuration selected, up to four timers may be active at once, with modules in the same configuration (Capture/Compare or PWM) sharing timer resources. The possible configurations are shown in Figure 15-1.

15.1.2 OPEN-DRAIN OUTPUT OPTION

When operating in Output mode (i.e., in Compare or PWM modes), the drivers for the CCPx pins can be optionally configured as open-drain outputs. This feature allows the voltage level on the pin to be pulled to a higher level through an external pull-up resistor and allows the output to communicate with external circuits without the need for additional level shifters.

The open-drain output option is controlled by the CCP2OD and CCP1OD bits (TRISG<6:5>). Setting the appropriate bit configures the pin for the corresponding module for open-drain operation.

15.1.3 CCP2 PIN ASSIGNMENT

The pin assignment for CCP2 (Capture input, Compare and PWM output) can change, based on device configuration. The CCP2MX Configuration bit determines which pin CCP2 is multiplexed to. By default, it is assigned to RC1 (CCP2MX = 1). If the Configuration bit is cleared, CCP2 is multiplexed with RE7.

Changing the pin assignment of CCP2 does not automatically change any requirements for configuring the port pin. Users must always verify that the appropriate TRIS register is configured correctly for CCP2 operation, regardless of where it is located.

FIGURE 15-1: CCP AND TIMER INTERCONNECT CONFIGURATIONS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	57
PIR3	_	LCDIF	RC2IF	TX2IF	_	CCP2IF	CCP1IF	_	60
PIE3	_	LCDIE	RC2IE	TX2IE	—	CCP2IE	CCP1IE	—	60
IPR3		LCDIP	RC2IP	TX2IP	—	CCP2IP	CCP1IP	—	60
RCON	IPEN	_	CM	RI	TO	PD	POR	BOR	58
LCDDATA23 ⁽¹⁾	S47C3	S46C3	S45C3	S44C3	S43C3	S42C3	S41C3	S40C3	61
LCDDATA22	S39C3 ⁽¹⁾	S38C3 ⁽¹⁾	S37C3 ⁽¹⁾	S36C3 ⁽¹⁾	S35C3 ⁽¹⁾	S34C3 ⁽¹⁾	S33C3 ⁽¹⁾	S32C3	61
LCDDATA21	S31C3	S30C3	S29C3	S28C3	S27C3	S26C3	S25C3	S24C3	61
LCDDATA20	S23C3	S22C3	S21C3	S20C3	S19C3	S18C3	S17C3	S16C3	61
LCDDATA19	S15C3	S14C3	S13C3	S12C3	S11C3	S10C3	S09C3	S08C3	61
LCDDATA18	S07C3	S06C3	S05C3	S04C3	S03C3	S02C3	S01C3	S00C3	61
LCDDATA17 ⁽¹⁾	S47C2	S46C2	S45C2	S44C2	S43C2	S42C2	S41C2	S40C2	61
LCDDATA16	S39C2 ⁽¹⁾	S38C2 ⁽¹⁾	S37C2 ⁽¹⁾	S36C2 ⁽¹⁾	S35C2 ⁽¹⁾	S34C2 ⁽¹⁾	S33C2 ⁽¹⁾	S32C2	61
LCDDATA15	S31C2	S30C2	S29C2	S28C2	S27C2	S26C2	S25C2	S24C2	61
LCDDATA14	S23C2	S22C2	S21C2	S20C2	S19C2	S18C2	S17C2	S16C2	61
LCDDATA13	S15C2	S14C2	S13C2	S12C2	S11C2	S10C2	S09C2	S08C2	61
LCDDATA12	S07C2	S06C2	S05C2	S04C2	S03C2	S02C2	S01C2	S00C2	61
LCDDATA11 ⁽¹⁾	S47C1	S46C1	S45C1	S44C1	S43C1	S42C1	S41C1	S40C1	61
LCDDATA10	S39C1 ⁽¹⁾	S38C1 ⁽¹⁾	S37C1 ⁽¹⁾	S36C1 ⁽¹⁾	S35C1 ⁽¹⁾	S34C1 ⁽¹⁾	S33C1 ⁽¹⁾	S32C1	61
LCDDATA9	S31C1	S30C1	S29C1	S28C1	S27C1	S26C1	S25C1	S24C1	61
LCDDATA8	S23C1	S22C1	S21C1	S20C1	S19C1	S18C1	S17C1	S16C1	61
LCDDATA7	S15C1	S14C1	S13C1	S12C1	S11C1	S10C1	S09C1	S08C1	61
LCDDATA6	S07C1	S06C1	S05C1	S04C1	S03C1	S02C1	S01C1	S00C1	61
LCDDATA5 ⁽¹⁾	S47C0	S46C0	S45C0	S44C0	S43C0	S42C0	S41C0	S40C0	61
LCDDATA4	S39C0 ⁽¹⁾	S38C0 ⁽¹⁾	S37C0 ⁽¹⁾	S36C0 ⁽¹⁾	S35C0 ⁽¹⁾	S34C0 ⁽¹⁾	S33C0 ⁽¹⁾	S32C0	59
LCDDATA3	S31C0	S30C0	S29C0	S28C0	S27C0	S26C0	S25C0	S24C0	59
LCDDATA2	S23C0	S22C0	S21C0	S20C0	S19C0	S18C0	S17C0	S16C0	59
LCDDATA1	S15C0	S14C0	S13C0	S12C0	S11C0	S10C0	S09C0	S08C0	59
LCDDATA0	S07C0	S06C0	S05C0	S04C0	S03C0	S02C0	S01C0	S00C0	59
LCDSE5 ⁽¹⁾	SE47	SE46	SE45	SE44	SE43	SE42	SE41	SE40	59
LCDSE4	SE39 ⁽¹⁾	SE38 ⁽¹⁾	SE37 ⁽¹⁾	SE36 ⁽¹⁾	SE35 ⁽¹⁾	SE34 ⁽¹⁾	SE33 ⁽¹⁾	SE32	59
LCDSE3	SE31	SE30	SE29	SE28	SE27	SE26	SE25	SE24	59
LCDSE2	SE23	SE22	SE21	SE20	SE19	SE18	SE17	SE16	59
LCDSE1	SE15	SE14	SE13	SE12	SE11	SE10	SE09	SE08	59
LCDSE0	SE07	SE06	SE05	SE04	SE03	SE02	SE01	SE00	59
LCDCON	LCDEN	SLPEN	WERR	—	CS1	CS0	LMUX1	LMUX0	59
LCDPS	WFT	BIASMD	LCDA	WA	LP3	LP2	LP1	LP0	59
LCDREG	—	CPEN	BIAS2	BIAS1	BIAS0	MODE13	CKSEL1	CKSEL0	

TABLE 16-6:	REGISTERS ASSOCIATED WITH LCD OPERATION
-------------	--

Legend: — = unimplemented, read as '0'. Shaded cells are not used for LCD operation.

Note 1: These registers or individual bits are unimplemented on 64-pin devices.

17.4.10 I²C MASTER MODE TRANSMISSION

Transmission of a data byte, a 7-bit address or the other half of a 10-bit address is accomplished by simply writing a value to the SSPBUF register. This action will set the Buffer Full bit, BF, and allow the Baud Rate Generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDA pin after the falling edge of SCL is asserted (see data hold time specification parameter 106). SCL is held low for one Baud Rate Generator rollover count (TBRG). Data should be valid before SCL is released high (see data setup time specification parameter 107). When the SCL pin is released high, it is held that way for TBRG. The data on the SDA pin must remain stable for that duration and some hold time after the next falling edge of SCL. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDA. This allows the slave device being addressed to respond with an ACK bit during the ninth bit time if an address match occurred, or if data was received properly. The status of ACK is written into the ACKDT bit on the falling edge of the ninth clock. If the master receives an Acknowledge, the Acknowledge Status bit, ACKSTAT, is cleared; if not, the bit is set. After the ninth clock, the SSPIF bit is set and the master clock (Baud Rate Generator) is suspended until the next data byte is loaded into the SSPBUF, leaving SCL low and SDA unchanged (Figure 17-23).

After the write to the SSPBUF, each bit of the address will be shifted out on the falling edge of SCL until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock, the master will deassert the SDA pin, allowing the slave to respond with an Acknowledge. On the falling edge of the ninth clock, the master will sample the SDA pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the ACKSTAT status bit (SSPCON2<6>). Following the falling edge of the ninth clock transmission of the address, the SSPIF is set, the BF flag is cleared and the Baud Rate Generator is turned off until another write to the SSPBUF takes place, holding SCL low and allowing SDA to float.

17.4.10.1 BF Status Flag

In Transmit mode, the BF bit (SSPSTAT<0>) is set when the CPU writes to SSPBUF and is cleared when all 8 bits are shifted out.

17.4.10.2 WCOL Status Flag

If the user writes to the SSPBUF when a transmit is already in progress (i.e., SSPSR is still shifting out a data byte), the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur) after 2 TcY after the SSPBUF write. If SSPBUF is rewritten within 2 TcY, the WCOL bit is set and SSPBUF is updated. This may result in a corrupted transfer. The user should verify that the WCOL is clear after each write to SSPBUF to ensure the transfer is correct. In all cases, WCOL must be cleared in software.

17.4.10.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit (SSPCON2<6>) is cleared when the slave has sent an Acknowledge $(\overline{ACK} = 0)$ and is set when the slave does not Acknowledge $(\overline{ACK} = 1)$. A slave sends an Acknowledge when it has recognized its address (including a general call), or when the slave has properly received its data.

17.4.11 I²C MASTER MODE RECEPTION

Master mode reception is enabled by programming the Receive Enable bit, RCEN (SSPCON2<3>).

Note: The MSSP module must be in an Idle state before the RCEN bit is set or the RCEN bit will be disregarded.

The Baud Rate Generator begins counting and on each rollover, the state of the SCL pin changes (high-to-low/low-to-high) and data is shifted into the SSPSR. After the falling edge of the eighth clock, the receive enable flag is automatically cleared, the contents of the SSPSR are loaded into the SSPBUF, the BF flag bit is set, the SSPIF flag bit is set and the Baud Rate Generator is suspended from counting, holding SCL low. The MSSP is now in Idle state awaiting the next command. When the buffer is read by the CPU, the BF flag bit is automatically cleared. The user can then send an Acknowledge bit at the end of reception by setting the Acknowledge Sequence Enable bit, ACKEN (SSPCON2<4>).

17.4.11.1 BF Status Flag

In receive operation, the BF bit is set when an address or data byte is loaded into SSPBUF from SSPSR. It is cleared when the SSPBUF register is read.

17.4.11.2 SSPOV Status Flag

In receive operation, the SSPOV bit is set when 8 bits are received into the SSPSR and the BF flag bit is already set from a previous reception.

17.4.11.3 WCOL Status Flag

If the user writes the SSPBUF when a receive is already in progress (i.e., SSPSR is still shifting in a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

EXAMPLE 18-1: CALCULATING BAUD RATE ERROR

For a device with Fost	C of 16 MHz, desired baud rate of 9600, Asynchronous mode, 8-bit BRG:							
Desired Baud Rate	= Fosc/(64 ([SPBRGH1:SPBRG1] + 1))							
Solving for SPBRGH1	Solving for SPBRGH1:SPBRG1:							
Х	= $((FOSC/Desired Baud Rate)/64) - 1$							
	= ((16000000/9600)/64) - 1							
	= [25.042] = 25							
Calculated Baud Rate	= 1600000/(64(25+1))							
	= 9615							
Error	= (Calculated Baud Rate – Desired Baud Rate)/Desired Baud Rate							
	= (9615 - 9600)/9600 = 0.16%							

TABLE 18-2: REGISTERS ASSOCIATED WITH THE BAUD RATE GENERATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
TXSTA1	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	59
RCSTA1	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	59
BAUDCON1	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	_	WUE	ABDEN	61
SPBRGH1	EUSART Baud Rate Generator Register High Byte						61		
SPBRG1	EUSART Baud Rate Generator Register Low Byte							59	

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the BRG.

		SYNC = 0, BRGH = 0, BRG16 = 1										
BAUD	Fosc	= 40.000) MHz	Fosc	= 20.000	0 MHz	Fosc = 10.000 MHz			Fosc = 8.000 MHz		
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3	0.300	0.00	8332	0.300	0.02	4165	0.300	0.02	2082	0.300	-0.04	1665
1.2	1.200	0.02	2082	1.200	-0.03	1041	1.200	-0.03	520	1.201	-0.16	415
2.4	2.402	0.06	1040	2.399	-0.03	520	2.404	0.16	259	2.403	-0.16	207
9.6	9.615	0.16	259	9.615	0.16	129	9.615	0.16	64	9.615	-0.16	51
19.2	19.231	0.16	129	19.231	0.16	64	19.531	1.73	31	19.230	-0.16	25
57.6	58.140	0.94	42	56.818	-1.36	21	56.818	-1.36	10	55.555	3.55	8
115.2	113.636	-1.36	21	113.636	-1.36	10	125.000	8.51	4	—	_	_

TABLE 18-3: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

			S	YNC = 0, E	BRGH = 0	, BRG16 =	1		
BAUD	Foso	= 4.000	MHz	Fos	c = 2.000	MHz	Fosc = 1.000 MHz		
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3	0.300	0.04	832	0.300	-0.16	415	0.300	-0.16	207
1.2	1.202	0.16	207	1.201	-0.16	103	1.201	-0.16	51
2.4	2.404	0.16	103	2.403	-0.16	51	2.403	-0.16	25
9.6	9.615	0.16	25	9.615	-0.16	12	_	_	_
19.2	19.231	0.16	12	—	_	_	_	_	_
57.6	62.500	8.51	3	—	_	_	_	_	_
115.2	125.000	8.51	1	—	_	_	—	_	_

		SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1											
BAUD	Fosc	= 40.000) MHz	Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fosc = 8.000 MHz			
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	
0.3	0.300	0.00	33332	0.300	0.00	16665	0.300	0.00	8332	0.300	-0.01	6665	
1.2	1.200	0.00	8332	1.200	0.02	4165	1.200	0.02	2082	1.200	-0.04	1665	
2.4	2.400	0.02	4165	2.400	0.02	2082	2.402	0.06	1040	2.400	-0.04	832	
9.6	9.606	0.06	1040	9.596	-0.03	520	9.615	0.16	259	9.615	-0.16	207	
19.2	19.193	-0.03	520	19.231	0.16	259	19.231	0.16	129	19.230	-0.16	103	
57.6	57.803	0.35	172	57.471	-0.22	86	58.140	0.94	42	57.142	0.79	34	
115.2	114.943	-0.22	86	116.279	0.94	42	113.636	-1.36	21	117.647	-2.12	16	

		SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1										
BAUD	Fos	c = 4.000	MHz	Fos	c = 2.000	MHz	Fosc = 1.000 MHz					
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)			
0.3	0.300	0.01	3332	0.300	-0.04	1665	0.300	-0.04	832			
1.2	1.200	0.04	832	1.201	-0.16	415	1.201	-0.16	207			
2.4	2.404	0.16	415	2.403	-0.16	207	2.403	-0.16	103			
9.6	9.615	0.16	103	9.615	-0.16	51	9.615	-0.16	25			
19.2	19.231	0.16	51	19.230	-0.16	25	19.230	-0.16	12			
57.6	58.824	2.12	16	55.555	3.55	8	—	_	_			
115.2	111.111	-3.55	8	_	—		—	—	—			

21.9 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 21-4. Since the analog pins are connected to a digital output, they have reverse biased diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this

range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up condition may occur. A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current.

FIGURE 21-4: COMPARATOR ANALOG INPUT MODEL

TABLE 21-1: REGISTERS ASSOCIATED WITH COMPARATOR MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	57
PIR2	OSCFIF	CMIF	_	_	BCLIF	LVDIF	TMR3IF	_	60
PIE2	OSCFIE	CMIE	_	_	BCLIE	LVDIE	TMR3IE	_	60
IPR2	OSCFIP	CMIP			BCLIP	LVDIP	TMR3IP		60
CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	59
CVRCON	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	59
PORTF	RF7	RF6	RF5	RF4	RF3	RF2	RF1	_	60
LATF	LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	_	60
TRISF	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	—	60

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the comparator module.

FIGURE 22-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

22.2 Voltage Reference Accuracy/Error

The full range of voltage reference cannot be realized due to the construction of the module. The transistors on the top and bottom of the resistor ladder network (Figure 22-1) keep CVREF from approaching the reference source rails. The voltage reference is derived from the reference source; therefore, the CVREF output changes with fluctuations in that source. The tested absolute accuracy of the voltage reference can be found in **Section 26.0 "Electrical Characteristics"**.

22.3 Operation During Sleep

When the device wakes up from Sleep through an interrupt or a Watchdog Timer time-out, the contents of the CVRCON register are not affected. To minimize current consumption in Sleep mode, the voltage reference should be disabled.

22.4 Effects of a Reset

A device Reset disables the voltage reference by clearing bit, CVREN (CVRCON<7>). This Reset also disconnects the reference from the RA2 pin by clearing bit, CVROE (CVRCON<6>) and selects the high-voltage range by clearing bit, CVRR (CVRCON<5>). The CVR value select bits are also cleared.

22.5 Connection Considerations

The voltage reference module operates independently of the comparator module. The output of the reference generator may be connected to the RF5 pin if the CVROE bit is set. Enabling the voltage reference output onto RA2 when it is configured as a digital input will increase current consumption. Connecting RF5 as a digital output with CVRSS enabled will also increase current consumption.

The RF5 pin can be used as a simple D/A output with limited drive capability. Due to the limited current drive capability, a buffer must be used on the voltage reference output for external connections to VREF. Figure 22-2 shows an example buffering technique.

23.2 Watchdog Timer (WDT)

For PIC18F85J90 family devices, the WDT is driven by the INTRC oscillator. When the WDT is enabled, the clock source is also enabled. The nominal WDT period is 4 ms and has the same stability as the INTRC oscillator.

The 4 ms period of the WDT is multiplied by a 16-bit postscaler. Any output of the WDT postscaler is selected by a multiplexor, controlled by the WDTPS bits in Configuration Register 2H. Available periods range from 4 ms to 131.072 seconds (2.18 minutes). The WDT and postscaler are cleared whenever a SLEEP or CLRWDT instruction is executed, or a clock failure (primary or Timer1 oscillator) has occurred.

- Note 1: The CLRWDT and SLEEP instructions clear the WDT and postscaler counts when executed.
 - 2: When a CLRWDT instruction is executed, the postscaler count will be cleared.

23.2.1 CONTROL REGISTER

The WDTCON register (Register 23-8) is a readable and writable register. The SWDTEN bit enables or disables WDT operation. This allows software to override the WDTEN Configuration bit and enable the WDT only if it has been disabled by the Configuration bit.

BRA Unconditional Branch									
Synta	ax:	BRA n							
Oper	ands:	-1024 ≤ n ≤	≤ 1023						
Oper	ation:	(PC) + 2 +	$2n \rightarrow PC$						
Statu	s Affected:	None							
Enco	ding:	1101	1101 Onnn nnnn nnnn						
Desc	ription:	Add the 2's to the PC. incremente instruction, PC + 2 + 2 two-cycle i	s compler Since the ed to fetch the new n. This in nstruction	nent n PC w the n addre structi	umb ill ha ext ss w on is	er, '2n', ave ill be s a			
Word	s:	1							
Cycle	es:	2							
QC	cle Activity:								
	Q1	Q2	Q3			Q4			
	Decode	Read literal 'n'	Proce Data	SS a	W	rite to PC			
	No operation	No operation	No operat	ion	ор	No eration			
Exam	nple: Before Instruc PC After Instructic PC	HERE tion = ac on = ac	BRA didress (1	Jump HERE) Jump)					
		ac		, amp)					

BSF		Bit Set f							
Synta	ax:	BSF f, b	BSF f, b {,a}						
Oper	ands:	$0 \le f \le 255$ $0 \le b \le 7$ $a \in [0,1]$	$\begin{array}{l} 0 \leq f \leq 255 \\ 0 \leq b \leq 7 \\ a \in [0,1] \end{array}$						
Oper	ation:	$1 \rightarrow \text{f}$							
Statu	s Affected:	None							
Enco	ding:	1000	bbba	ffff	ffff				
Desc	ription:	Bit 'b' in reg	gister 'f' i	s set.					
If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank.									
		If 'a' is '0' a set is enab in Indexed mode wher Section 24 Bit-Oriente Literal Offe	Ind the ex led, this i Literal O never f ≤ 9.2.3 "By ed Instru set Mode	xtended nstructi ffset Ad 95 (5Fh te-Orie ctions e" for de	l instruction on operates dressing i). See nted and in Indexed etails.				
Word	ls:	1							
Cycle	es:	1							
QC	ycle Activity:								
	Q1	Q2	Q3		Q4				
	Decode	Read	Proce	SS	Write				
		register 'f'	Data	a	register 't'				

Example:

Before Instruction FLAG_REG = 0Ah After Instruction FLAG_REG = 8Ah

BSF

FLAG_REG, 7, 1

BTFSC		Bit Test File, Skip if Clear		BTFS	S	Bit Test File			
Syntax:		BTFSC f, b	{,a}		Synta	IX:	BTFSS f, b {	,a}	
Operan	ds:	$\begin{array}{l} 0 \leq f \leq 255 \\ 0 \leq b \leq 7 \\ a \in [0,1] \end{array}$			Opera	ands:	0 ≤ f ≤ 255 0 ≤ b < 7 a ∈ [0,1]		
Operati	on:	skip if (f)	= 0		Opera	ation:	skip if (f)	= 1	
Status A	Affected:	None			Status	s Affected:	None		
Encodir	ng:	1011	bbba ff	ff ffff	Enco	ding:	1010	bbba ffi	f ffff
Descrip	tion:	If bit 'b' in reg instruction is the next instr current instru and a NOP is this a two-cy	gister 'f' is '0', t skipped. If bit ruction fetched uction executio executed instruction.	hen the next 'b' is '0', then during the n is discarded ead, making	Desc	ription:	If bit 'b' in rea instruction is the next instru- current instru- and a NOP is this a two-cy	gister 'f' is '1', t skipped. If bit ruction fetched uction executio executed inste cle instruction.	hen the next 'b' is '1', then during the n is discarded ead, making
		lf 'a' is '0', the 'a' is '1', the GPR bank.	e Access Bank BSR is used to	is selected. If select the			lf 'a' is '0', th 'a' is '1', the GPR bank.	e Access Bank BSR is used to	is selected. If select the
		If 'a' is '0' and is enabled, th Indexed Liter whenever f ≤ Section 24.2 Bit-Oriented Literal Offse	the extended nis instruction of ral Offset Addr 55 (5Fh). See 3.3 "Byte-Orie I Instructions at Mode" for d	instruction set opperates in essing mode nted and in Indexed etails.			If 'a' is '0' an set is enable Indexed Lite whenever f ≤ Section 24.2 Bit-Oriented Literal Offse	d the extended d, this instruction ral Offset Addre 95 (5Fh). See 2.3 "Byte-Orient I Instructions of Mode" for de	l instruction on operates in essing mode nted and in Indexed etails.
Words:		1			Word	S:	1		
Cycles:		1(2) Note: 3 cyc by a	cles if skip and 2-word instruc	followed tion.	Cycle	S:	1(2) Note: 3 cy by a	cles if skip and a 2-word instru	d followed ction.
Q Cycl	e Activity:				QCy	cle Activity:			
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4
	Decode	Read	Process	No		Decode	Read	Process	No
الأعادات		register 'f'	Data	operation	الأرمان		register 'f	Data	operation
IT SKIP:	01	02	03	04	IT SKI	p: 01	$\cap 2$	03	04
	No	No.	No	No.		No	No	No	No.
	operation	operation	operation	operation		operation	operation	operation	operation
If skip	and followed	by 2-word inst	ruction:	· · · · · · · · · · · · · · · · · · ·	lf ski	p and followed	by 2-word inst	truction:	
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4
	No	No	No	No		No	No	No	No
	operation	operation	operation	operation		operation	operation	operation	operation
	No	No	No	No		No	No	No	No
	operation	operation	operation	operation		operation	operation	operation	operation
<u>Exampl</u>	<u>e:</u>	HERE BI FALSE : TRUE :	FSC FLAG	, 1, 0	<u>Exam</u>	iple:	HERE BI FALSE : TRUE :	FSS FLAG	, 1, 0
Be Afi	fore Instruct PC ier Instruction If FLAG< PC If FLAG< PC	ion = add n = 0; l> = 0; l> = add l> = 1; = add	ress (HERE) ress (TRUE) ress (FALSE)	1	,	Before Instruc PC After Instructic If FLAG< PC If FLAG< PC	tion = add n 1> = 0; = add 1> = 1; = add	ress (HERE) ress (FALSE) ress (TRUE)	

25.7 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

25.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

25.9 MPLAB ICD 3 In-Circuit Debugger System

MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC[®] Flash microcontrollers and dsPIC[®] DSCs with the powerful, yet easyto-use graphical user interface of MPLAB Integrated Development Environment (IDE).

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

25.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express

The MPLAB PICkit 3 allows debugging and programming of PIC[®] and dsPIC[®] Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming[™].

The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

26.4 AC (Timing) Characteristics

26.4.1 TIMING PARAMETER SYMBOLOGY

The timing parameter symbols have been created following one of the following formats:

1. TppS2ppS		3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowercase le	tters (pp) and their meanings:		
рр			
сс	CCP1	osc	OSC1
ck	CLKO	rd	RD
CS	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T13CKI
mc	MCLR	wr	WR
Uppercase le	tters and their meanings:		
S			
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (High-Impedance)	V	Valid
L	Low	Z	High-Impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
TCC:ST (I ² C s	pecifications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	Stop condition
STA	Start condition		

Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
A01	NR	Resolution	—		10	bits	
A03	EIL	Integral Linearity Error	—	_	<±1	LSb	$\Delta \text{VREF} \geq 3.0 \text{V}$
A04	Edl	Differential Linearity Error	—	_	<±1	LSb	$\Delta \text{VREF} \geq 3.0 \text{V}$
A06	EOFF	Offset Error	—	_	<±3	LSb	$\Delta VREF \ge 3.0V$
A07	Egn	Gain Error	—	_	<±3	LSb	$\Delta VREF \ge 3.0V$
A10	—	Monotonicity	Gi	uarantee	d ⁽¹⁾		$VSS \le VAIN \le VREF$
A20	$\Delta VREF$	Reference Voltage Range (VREFH – VREFL)	2.0 3			V V	$\begin{array}{l} VDDD<3.0V\\ VDD\geq3.0V \end{array}$
A21	Vrefh	Reference Voltage High	VSS + Δ VREF		Vdd	V	
A22	Vrefl	Reference Voltage Low	Vss – 0.3V	_	Vdd - 3.0V	V	
A25	VAIN	Analog Input Voltage	VREFL	_	VREFH	V	
A30	ZAIN	Recommended Impedance of Analog Voltage Source	—	_	2.5	kΩ	
A50	IREF	VREF Input Current ⁽²⁾		_	5 150	μΑ μΑ	During VAIN acquisition. During A/D conversion cycle.

 TABLE 26-24:
 A/D CONVERTER CHARACTERISTICS:
 PIC18F85J90 FAMILY (INDUSTRIAL)

Note 1: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

2: VREFH current is from RA3/AN3/VREF+ pin or VDD, whichever is selected as the VREFH source. VREFL current is from RA2/AN2/VREF- pin or VSS, whichever is selected as the VREFL source.