

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, LVD, POR, PWM, WDT
Number of I/O	67
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f84j90t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	9				
2.0	Guidelines for Getting Started with PIC18FJ Microcontrollers	31				
3.0	Oscillator Configurations	35				
4.0	Power-Managed Modes	43				
5.0	Reset	51				
6.0	Memory Organization	63				
7.0	Flash Program Memory	87				
8.0	8 x 8 Hardware Multiplier	97				
9.0	Interrupts	99				
10.0	I/O Ports	. 115				
11.0	Timer0 Module	. 137				
12.0	Timer1 Module	. 141				
13.0	Timer2 Module	. 147				
14.0	Timer3 Module	. 149				
15.0	Capture/Compare/PWM (CCP) Modules	. 153				
16.0	Liquid Crystal Display (LCD) Driver Module	. 163				
17.0	Master Synchronous Serial Port (MSSP) Module					
18.0	Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)	. 235				
	Addressable Universal Synchronous Asynchronous Receiver Transmitter (AUSART)					
20.0	10-bit Analog-to-Digital Converter (A/D) Module	. 271				
21.0	Comparator Module					
22.0	Comparator Voltage Reference Module	. 287				
23.0	Special Features of the CPU	. 291				
24.0	Instruction Set Summary					
25.0	Development Support	. 355				
	Electrical Characteristics					
	Packaging Information					
	ndix A: Revision History					
Appe	ndix B: Migration Between High-End Device Families	. 400				
Index	· ·····	. 403				
	Aicrochip Web Site					
	ustomer Change Notification Service4					
	omer Support					
	er Response					
Produ	roduct Identification System					

1.0 DEVICE OVERVIEW

This document contains device-specific information for the following devices:

- PIC18F63J90 PIC18F83J90
- PIC18F64J90
- PIC18F84J90
- PIC18F65J90 PIC18F85J90

This family combines the traditional advantages of all PIC18 microcontrollers – namely, high computational performance and a rich feature set – with a versatile on-chip LCD driver, while maintaining an extremely competitive price point. These features make the PIC18F85J90 family a logical choice for many high-performance applications where price is a primary consideration.

1.1 Core Features

1.1.1 nanoWatt TECHNOLOGY

All of the devices in the PIC18F85J90 family incorporate a range of features that can significantly reduce power consumption during operation. Key items include:

- Alternate Run Modes: By clocking the controller from the Timer1 source or the internal RC oscillator, power consumption during code execution can be reduced by as much as 90%.
- Multiple Idle Modes: The controller can also run with its CPU core disabled but the peripherals still active. In these states, power consumption can be reduced even further, to as little as 4% of normal operation requirements.
- **On-the-Fly Mode Switching:** The power-managed modes are invoked by user code during operation, allowing the user to incorporate power-saving ideas into their application's software design.

1.1.2 OSCILLATOR OPTIONS AND FEATURES

All of the devices in the PIC18F85J90 family offer six different oscillator options, allowing users a range of choices in developing application hardware. These include:

- Two Crystal modes, using crystals or ceramic resonators.
- Two External Clock modes, offering the option of a divide-by-4 clock output.
- A Phase Lock Loop (PLL) frequency multiplier, available to the External Oscillator modes which allows clock speeds of up to 40 MHz.
- An internal oscillator block which provides an 8 MHz clock (±2% accuracy) and an INTRC source (approximately 31 kHz, stable over temperature and VDD), as well as a range of six user-selectable clock frequencies, between 125 kHz to 4 MHz, for a total of eight clock frequencies. This option frees the two oscillator pins for use as additional general purpose I/O.

The internal oscillator block provides a stable reference source that gives the family additional features for robust operation:

- Fail-Safe Clock Monitor: This option constantly monitors the main clock source against a reference signal provided by the internal oscillator. If a clock failure occurs, the controller is switched to the internal oscillator, allowing for continued low-speed operation or a safe application shutdown.
- **Two-Speed Start-up:** This option allows the internal oscillator to serve as the clock source from Power-on Reset, or wake-up from Sleep mode, until the primary clock source is available.

1.1.3 MEMORY OPTIONS

The PIC18F85J90 family provides a range of program memory options, from 8 Kbytes to 32 Kbytes of code space. The Flash cells for program memory are rated to last up to 1000 erase/write cycles. Data retention without refresh is conservatively estimated to be greater than 20 years.

The PIC18F85J90 family also provides plenty of room for dynamic application data, with up to 2048 bytes of data RAM.

1.1.4 EXTENDED INSTRUCTION SET

The PIC18F85J90 family implements the optional extension to the PIC18 instruction set, adding 8 new instructions and an Indexed Addressing mode. Enabled as a device configuration option, the extension has been specifically designed to optimize re-entrant application code originally developed in high-level languages, such as 'C'.

1.1.5 EASY MIGRATION

Regardless of the memory size, all devices share the same rich set of peripherals, allowing for a smooth migration path as applications grow and evolve.

The consistent pinout scheme used throughout the entire family also aids in migrating to the next larger device. This is true when moving between the 64-pin members, between the 80-pin members, or even jumping from 64-pin to 80-pin devices.

The PIC18F85J90 family is also largely pin compatible with other PIC18 families, such as the PIC18F8720 and PIC18F8722, as well as the PIC18F8490 family of microcontrollers with LCD drivers. This allows a new dimension to the evolution of applications, allowing developers to select different price points within Microchip's PIC18 portfolio, while maintaining a similar feature set.

Pin Name	Pin Number	Pin Type	Buffer	Description		
Fill Name	TQFP		Туре	Description		
				PORTJ is a bidirectional I/O port.		
RJ0	62	I/O	ST	Digital I/O.		
RJ1/SEG33 RJ1 SEG33	61	I/O O	ST Analog	Digital I/O. SEG33 output for LCD.		
RJ2/SEG34 RJ2 SEG34	60	I/O O	ST Analog	Digital I/O. SEG34 output for LCD.		
RJ3/SEG35 RJ3 SEG35	59	I/O O	ST Analog	Digital I/O. SEG35 output for LCD.		
RJ4/SEG39 RJ4 SEG39	39	I/O O	ST Analog	Digital I/O. SEG39 output for LCD.		
RJ5/SEG38 RJ5 SEG38	40	I/O O	ST Analog	Digital I/O SEG38 output for LCD.		
RJ6/SEG37 RJ6 SEG37	41	I/O O	ST Analog	Digital I/O. SEG37 output for LCD.		
RJ7/SEG36 RJ7 SEG36	42	I/O O	ST Analog	Digital I/O. SEG36 output for LCD.		
Vss	11, 31, 51, 70	Р		Ground reference for logic and I/O pins.		
Vdd	32, 48, 71	Ρ		Positive supply for logic and I/O pins.		
AVss	26	Р		Ground reference for analog modules.		
AVdd	25	Р	—	Positive supply for analog modules.		
ENVREG	24	Ι	ST	Enable for on-chip voltage regulator.		
Vddcore/Vcap Vddcore	12	Ρ	_	Core logic power or external filter capacitor connection. Positive supply for microcontroller core logic (regulator disabled).		
VCAP		Р		External filter capacitor connection (regulator enabled)		
	r	with C	MOS leve	CMOS = CMOS compatible input or output Analog = Analog input O = Output OD = Open-Drain (no P diode to VDD)		

TABLE 1-4:	PIC18F8XJ90 PINOUT I/O DESCRIPTIONS (CONTINUED))

Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set.

2: Alternate assignment for CCP2 when the CCP2MX Configuration bit is cleared.

NOTES:

2.2 Power Supply Pins

2.2.1 DECOUPLING CAPACITORS

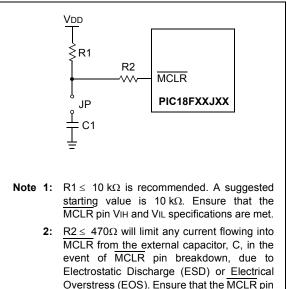
The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS, is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A 0.1 μ F (100 nF), 10-20V capacitor is recommended. The capacitor should be a low-ESR device, with a resonance frequency in the range of 200 MHz and higher. Ceramic capacitors are recommended.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is no greater than 0.25 inch (6 mm).
- Handling high-frequency noise: If the board is experiencing high-frequency noise (upward of tens of MHz), add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to each primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible (e.g., 0.1 μ F in parallel with 0.001 μ F).
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB trace inductance.

2.2.2 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits, including microcontrollers, to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.


2.3 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions: Device Reset, and Device Programming and Debugging. If programming and debugging are not required in the end application, a direct connection to VDD may be all that is required. The addition of other components, to help increase the application's resistance to spurious Resets from voltage sags, may be beneficial. A typical configuration is shown in Figure 2-1. Other circuit designs may be implemented, depending on the application's requirements.

During programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R1 and C1 will need to be adjusted based on the application and PCB requirements. For example, it is recommended that the capacitor, C1, be isolated from the MCLR pin during programming and debugging operations by using a jumper (Figure 2-2). The jumper is replaced for normal run-time operations.

Any components associated with the $\overline{\text{MCLR}}$ pin should be placed within 0.25 inch (6 mm) of the pin.

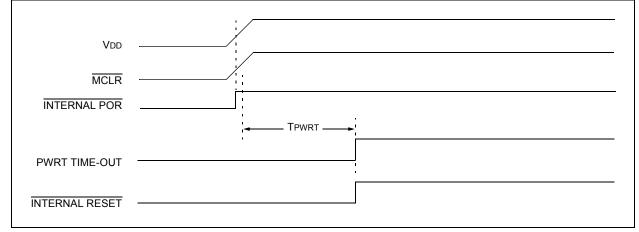
FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS

VIH and VIL specifications are met.

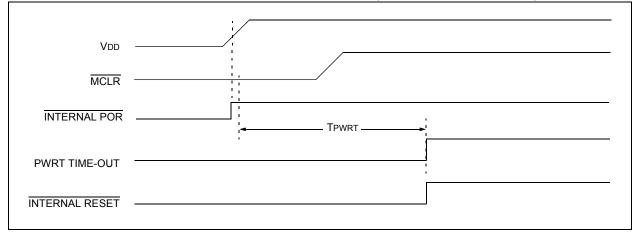
A CM Reset behaves similarly to a Master Clear Reset, RESET instruction, WDT time-out or Stack Event Resets. As with all hard and power Reset events, the device Configuration Words are reloaded from the Flash Configuration Words in program memory as the device restarts.

5.6 Power-up Timer (PWRT)

PIC18F85J90 family devices incorporate an on-chip Power-up Timer (PWRT) to help regulate the Power-on Reset process. The PWRT is always enabled. The main function is to ensure that the device voltage is stable before code is executed.


The Power-up Timer (PWRT) of the PIC18F85J90 family devices is an 11-bit counter which uses the INTRC source as the clock input. This yields an approximate time interval of 2048 x 32 μ s = 65.6 ms. While the PWRT is counting, the device is held in Reset. The power-up time delay depends on the INTRC clock and will vary from chip-to-chip due to temperature and process variation. See DC parameter 33 for details.

5.6.1 TIME-OUT SEQUENCE


If enabled, the PWRT time-out is invoked after the POR pulse has cleared. The total time-out will vary based on the status of the PWRT. Figure 5-3, Figure 5-4, Figure 5-5 and Figure 5-6 all depict time-out sequences on power-up with the Power-up Timer enabled.

Since the time-outs occur from the POR pulse, if MCLR is kept low long enough, the PWRT will expire. Bringing MCLR high will begin execution immediately (Figure 5-5). This is useful for testing purposes, or to synchronize more than one PIC18FXXXX device operating in parallel.

FIGURE 5-4: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1

6.3 Data Memory Organization

Note:	The operation of some aspects of data
	memory are changed when the PIC18
	extended instruction set is enabled. See
	Section 6.6 "Data Memory and the
	Extended Instruction Set" for more
	information.

The data memory in PIC18 devices is implemented as static RAM. Each register in the data memory has a 12-bit address, allowing up to 4096 bytes of data memory. The memory space is divided into as many as 16 banks that contain 256 bytes each. The PIC18FX3J90/X4J90 devices, with up to 16 Kbytes of program memory, implement 4 complete banks for a total of 1024 bytes. PIC18FX5J90 devices, with 32 Kbytes of program memory, implement 8 complete banks for a total of 2048 bytes. Figure 6-6 and Figure 6-7 show the data memory organization for the devices.

The data memory contains Special Function Registers (SFRs) and General Purpose Registers (GPRs). The SFRs are used for control and status of the controller and peripheral functions, while GPRs are used for data storage and scratchpad operations in the user's application. Any read of an unimplemented location will read as '0's.

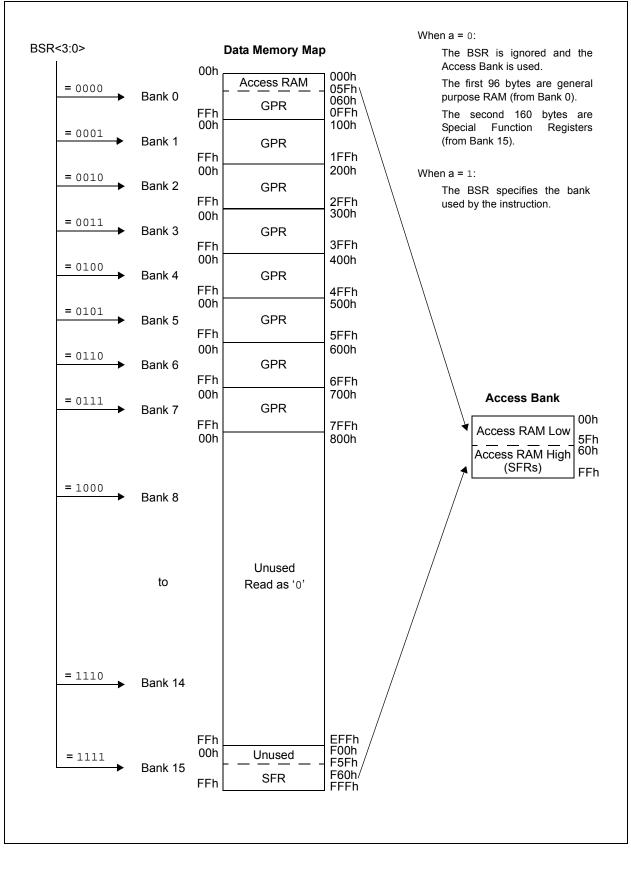
The instruction set and architecture allow operations across all banks. The entire data memory may be accessed by Direct, Indirect or Indexed Addressing modes. Addressing modes are discussed later in this section.

To ensure that commonly used registers (select SFRs and select GPRs) can be accessed in a single cycle, PIC18 devices implement an Access Bank. This is a 256-byte memory space that provides fast access to select SFRs and the lower portion of GPR Bank 0 without using the BSR. **Section 6.3.2 "Access Bank"** provides a detailed description of the Access RAM.

6.3.1 BANK SELECT REGISTER

Large areas of data memory require an efficient addressing scheme to make rapid access to any address possible. Ideally, this means that an entire address does not need to be provided for each read or write operation. For PIC18 devices, this is accomplished with a RAM banking scheme. This divides the memory space into 16 contiguous banks of 256 bytes. Depending on the instruction, each location can be addressed directly by its full 12-bit address, or an 8-bit low-order address and a 4-bit Bank Pointer.

Most instructions in the PIC18 instruction set make use of the Bank Pointer, known as the Bank Select Register (BSR). This SFR holds the 4 Most Significant bits (MSbs) of a location's address; the instruction itself includes the 8 Least Significant bits (LSbs). Only the four lower bits of the BSR are implemented (BSR<3:0>). The upper four bits are unused; they will always read '0' and cannot be written to. The BSR can be loaded directly by using the MOVLB instruction.


The value of the BSR indicates the bank in data memory. The 8 bits in the instruction show the location in the bank and can be thought of as an offset from the bank's lower boundary. The relationship between the BSR's value and the bank division in data memory is shown in Figure 6-8.

Since up to 16 registers may share the same low-order address, the user must always be careful to ensure that the proper bank is selected before performing a data read or write. For example, writing what should be program data to an 8-bit address of F9h while the BSR is 0Fh, will end up resetting the program counter.

While any bank can be selected, only those banks that are actually implemented can be read or written to. Writes to unimplemented banks are ignored, while reads from unimplemented banks will return '0's. Even so, the STATUS register will still be affected as if the operation was successful. The data memory map in Figure 6-6 indicates which banks are implemented.

In the core PIC18 instruction set, only the MOVFF instruction fully specifies the 12-bit address of the source and target registers. This instruction ignores the BSR completely when it executes. All other instructions include only the low-order address as an operand and must use either the BSR or the Access Bank to locate their target registers.

FIGURE 6-7: DATA MEMORY MAP FOR PIC18FX5J90 DEVICES

7.2.2 TABLE LATCH REGISTER (TABLAT)

The Table Latch (TABLAT) is an 8-bit register mapped into the SFR space. The Table Latch register is used to hold 8-bit data during data transfers between program memory and data RAM.

7.2.3 TABLE POINTER REGISTER (TBLPTR)

The Table Pointer (TBLPTR) register addresses a byte within the program memory. The TBLPTR is comprised of three SFR registers: Table Pointer Upper Byte, Table Pointer High Byte and Table Pointer Low Byte (TBLPTRU:TBLPTRH:TBLPTRL). These three registers join to form a 22-bit wide pointer. The low-order 21 bits allow the device to address up to 2 Mbytes of program memory space. The 22nd bit allows access to the device ID, the user ID and the Configuration bits.

The Table Pointer register, TBLPTR, is used by the TBLRD and TBLWT instructions. These instructions can update the TBLPTR in one of four ways based on the table operation. These operations are shown in Table 7-1. These operations on the TBLPTR only affect the low-order 21 bits.

7.2.4 TABLE POINTER BOUNDARIES

TBLPTR is used in reads, writes and erases of the Flash program memory.

When a TBLRD is executed, all 22 bits of the TBLPTR determine which byte is read from program memory into TABLAT.

When a TBLWT is executed, the seven LSbs of the Table Pointer register (TBLPTR<6:0>) determine which of the 64 program memory holding registers is written to. When the timed write to program memory begins (via the WR bit), the 12 MSbs of the TBLPTR (TBLPTR<21:10>) determine which program memory block of 1024 bytes is written to. For more detail, see **Section 7.5 "Writing to Flash Program Memory"**.

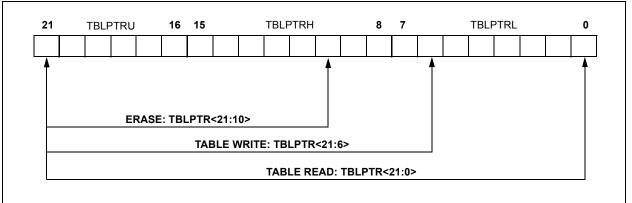

When an erase of program memory is executed, the 12 MSbs of the Table Pointer register point to the 1024-byte block that will be erased. The Least Significant bits are ignored.

Figure 7-3 describes the relevant boundaries of the TBLPTR based on Flash program memory operations.

TABLE 7-1: TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS

Example	Operation on Table Pointer						
TBLRD* TBLWT*	TBLPTR is not modified						
TBLRD*+ TBLWT*+	TBLPTR is incremented after the read/write						
TBLRD*- TBLWT*-	TBLPTR is decremented after the read/write						
TBLRD+* TBLWT+*	TBLPTR is incremented before the read/write						

FIGURE 7-3: TABLE POINTER BOUNDARIES BASED ON OPERATION

7.4 Erasing Flash Program Memory

The minimum erase block is 512 words or 1024 bytes. Only through the use of an external programmer, or through ICSP control, can larger blocks of program memory be Bulk Erased. Word erase in the Flash array is not supported.

When initiating an erase sequence from the microcontroller itself, a block of 1024 bytes of program memory is erased. The Most Significant 12 bits of the TBLPTR<21:10> point to the block being erased; TBLPTR<9:0> are ignored.

The EECON1 register commands the erase operation. The WREN bit must be set to enable write operations. The FREE bit is set to select an erase operation. For protection, the write initiate sequence for EECON2 must be used.

A long write is necessary for erasing the internal Flash. Instruction execution is halted while in a long write cycle. The long write will be terminated by the internal programming timer.

7.4.1 FLASH PROGRAM MEMORY ERASE SEQUENCE

The sequence of events for erasing a block of internal program memory location is:

- 1. Load the Table Pointer register with the address of the block being erased.
- 2. Set the WREN and FREE bits (EECON1<2,4>) to enable the erase operation.
- 3. Disable interrupts.
- 4. Write 55h to EECON2.
- 5. Write 0AAh to EECON2.
- 6. Set the WR bit; this will begin the erase cycle.
- The CPU will stall for the duration of the erase for TIE (see parameter D133B).
- 8. Re-enable interrupts.

EXAMPLE 7-2: ERASING A FLASH PROGRAM MEMORY BLOCK

	MOVLW MOVWF MOVLW MOVWF MOVLW MOVWF	CODE_ADDR_UPPER TBLPTRU CODE_ADDR_HIGH TBLPTRH CODE_ADDR_LOW TBLPTRL		load TBLPTR with the base address of the memory block
ERASE_BLOCK				
	BSF	EECON1, WREN	;	enable write to memory
	BSF	EECON1, FREE	;	enable Erase operation
	BCF	INTCON, GIE	;	disable interrupts
Required	MOVLW	55h		
Sequence	MOVWF	EECON2	;	write 55h
	MOVLW	0AAh		
	MOVWF	EECON2	;	write OAAh
	BSF	EECON1, WR	;	start erase (CPU stall)
	BSF	INTCON, GIE	;	re-enable interrupts

12.0 TIMER1 MODULE

The Timer1 timer/counter module incorporates these features:

- Software selectable operation as a 16-bit timer or counter
- Readable and writable 8-bit registers (TMR1H and TMR1L)
- Selectable clock source (internal or external) with device clock or Timer1 oscillator internal options
- Interrupt on overflow
- Reset on CCP Special Event Trigger
- Device clock status flag (T1RUN)

A simplified block diagram of the Timer1 module is shown in Figure 12-1. A block diagram of the module's operation in Read/Write mode is shown in Figure 12-2.

The module incorporates its own low-power oscillator to provide an additional clocking option. The Timer1 oscillator can also be used as a low-power clock source for the microcontroller in power-managed operation.

Timer1 can also be used to provide Real-Time Clock (RTC) functionality to applications with only a minimal addition of external components and code overhead.

Timer1 is controlled through the T1CON Control register (Register 12-1). It also contains the Timer1 Oscillator Enable bit (T1OSCEN). Timer1 can be enabled or disabled by setting or clearing control bit, TMR1ON (T1CON<0>).

R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N
bit 7							bit 0

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER

Legend:								
R = Reada	ble bit	W = Writable bit	U = Unimplemented bit	, read as '0'				
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				
bit 7	RD16: 16	B-Bit Read/Write Mode Enab	le bit					
		bles register read/write of TIr bles register read/write of Tir	•					
bit 6	T1RUN:	Timer1 System Clock Status	bit					
		ce clock is derived from Time ce clock is derived from ano						
bit 5-4	T1CKPS	<1:0>: Timer1 Input Clock P	rescale Select bits					
	==•	Prescale value						
		= 1:4 Prescale value						
		Prescale value Prescale value						
bit 3		N: Timer1 Oscillator Enable	bit					
	1 = Time	r1 oscillator is enabled						
		r1 oscillator is shut off						
			esistor are turned off to elimina	ate power drain.				
bit 2		: Timer1 External Clock Inpu	t Synchronization Select bit					
		<u>IR1CS = 1:</u> ot synchronize external clock	cinnut					
		hronize external clock input	(input					
	When TM	IR1CS = 0:						
	This bit is	ignored. Timer1 uses the in	ternal clock when TMR1CS =	0.				
bit 1	TMR1CS	: Timer1 Clock Source Select	ct bit					
		rnal clock from pin RC0/T1C nal clock (Fosc/4)	SO/T13CKI (on the rising edge	e)				
bit 0	TMR10N	I: Timer1 On bit						
	1 = Enat 0 = Stop	bles Timer1 s Timer1						

16.1 LCD Registers

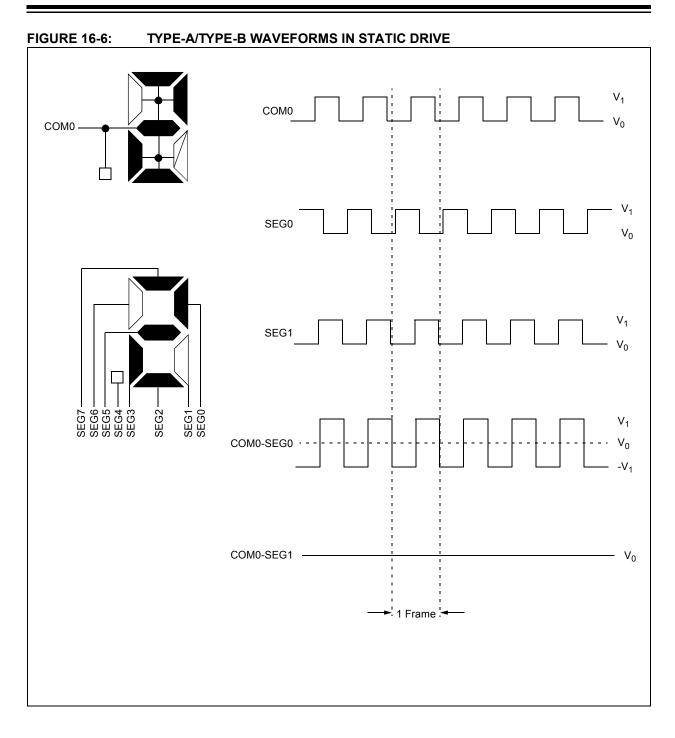
The LCD driver module has 33 registers:

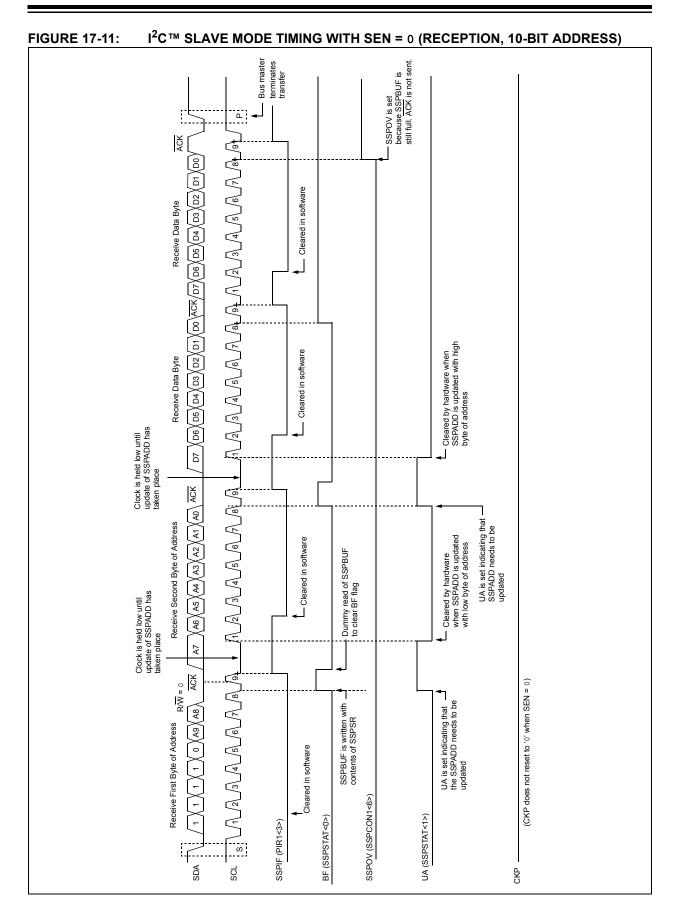
- LCD Control Register (LCDCON)
- LCD Phase Register (LCDPS)
- LCD Regulator Control Register (LCDREG)
- Six LCD Segment Enable Registers (LCDSE5:LCDSE0)
- 24 LCD Data Registers (LCDDATA23:LCDDATA0)

16.1.1 LCD CONTROL REGISTERS

The LCDCON register, shown in Register 16-1, controls the overall operation of the module. Once the module is configured, the LCDEN (LCDCON<7>) bit is used to enable or disable the LCD module. The LCD panel can also operate during Sleep by clearing the SLPEN (LCDCON<6>) bit.

The LCDPS register, shown in Register 16-2, configures the LCD clock source prescaler and the type of waveform: Type-A or Type-B. Details on these features are provided in Section 16.2 "LCD Clock Source", Section 16.3 "LCD Bias Generation" and Section 16.8 "LCD Waveform Generation".


The LCDREG register is described in Section 16.3 "LCD Bias Generation".


The LCD Segment Enable registers (LCDSEx) configure the functions of the port pins. Setting the segment enable bit for a particular segment configures that pin as an LCD driver. The prototype LCDSE register is shown in Register 16-3. There are six LCDSE registers (LCDSE5:LCDSE0) listed in Table 16-1.

REGISTER 16-1: LCDCON: LCD CONTROL REGISTER

R/W-0	R/W-0	R/C-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
LCDEN	SLPEN	WERR	—	CS1	CS0	LMUX1	LMUX0
bit 7	•						bit 0
Legend:		C = Clearable	bit				
R = Readab	ole bit	W = Writable	oit	U = Unimplem	nented bit, read	d as '0'	
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7	LCDEN: LCD	Driver Enable	bit				
		er module is en					
	0 = LCD drive	er module is dis	abled				
bit 6	SLPEN: LCD	Driver Enable	in Sleep mode	bit			
		er module is dis					
	0 = LCD drive	er module is ena	abled in Sleep	mode			
bit 5		Write Failed Er					
		Ax register writte	en while LCDP	S<4> = 0 (mus	t be cleared in	software)	
	0 = No LCD v						
bit 4	Unimplemen	ted: Read as '0)'				
bit 3-2		ock Source Sele	ect bits				
	1x = INTRC (
	01 = T13CKI	· /					
h:1 0	,	clock (Fosc/4)	at bita				
bit 1-0	LMUX<1:0>:	Commons Sele				1	
			м	aximum Numb	er of Pixels:		

	LMUX<1:0>	Multiplex Type	Maximum Nur	nber of Pixels:	Rise Type	
LIVIUX	1:0>	PIC18F6XJ		PIC18F8XJ90	Bias Type	
00		Static (COM0)	33	48	Static	
01		1/2 (COM1:COM0)	66	96	1/2 or 1/3	
10		1/3 (COM2:COM0)	99	144	1/2 or 1/3	
11		1/4 (COM3:COM0)	132	192	1/3	

17.4.6.1 I²C Master Mode Operation

The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I²C bus will not be released.

In Master Transmitter mode, serial data is output through SDA, while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted 8 bits at a time. After each byte is transmitted, an Acknowledge bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/\overline{W} bit. In this case, the R/\overline{W} bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate the receive bit. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received 8 bits at a time. After each byte is received, an Acknowledge bit is transmitted. Start and Stop conditions indicate the beginning and end of transmission.

The Baud Rate Generator used for the SPI mode operation is used to set the SCL clock frequency for either 100 kHz, 400 kHz or 1 MHz I^2 C operation. See **Section 17.4.7 "Baud Rate"** for more details.

A typical transmit sequence would go as follows:

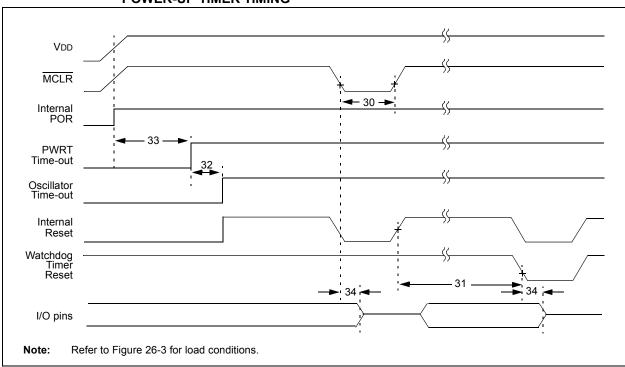
- 1. The user generates a Start condition by setting the Start Enable bit, SEN (SSPCON2<0>).
- 2. SSPIF is set. The MSSP module will wait the required start time before any other operation takes place.
- 3. The user loads the SSPBUF with the slave address to transmit.
- 4. The address is shifted out of the SDA pin until all 8 bits are transmitted.
- 5. The MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPCON2 register (SSPCON2<6>).
- 6. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- 7. The user loads the SSPBUF with eight bits of data.
- 8. Data is shifted out of the SDA pin until all 8 bits are transmitted.
- The MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPCON2 register (SSPCON2<6>).
- 10. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- 11. The user generates a Stop condition by setting the Stop Enable bit, PEN (SSPCON2<2>).
- 12. The interrupt is generated once the Stop condition is complete.

ADD W to f

24.1.1 STANDARD INSTRUCTION SET

ADDLW	ADD Litera	al to W	ADDWF		
Syntax:	ADDLW	k			Syntax:
Operands:	$0 \le k \le 255$		Operands:		
Operation:	$(W) + k \rightarrow $	W			
Status Affected:	N, OV, C, E	DC, Z	Operation:		
Encoding:	0000	1111 k	kkk ł	kkkk	Status Affected:
Description:		ts of W are a 'k' and the re			Encoding: Description:
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3	Q	24	
Decode	Read literal 'k'	Process Data	Write W		
<u>Example:</u> Before Instruc W =		15h			
After Instruction					Words:
W =	25h				Cycles:
					Q Cycle Activit
					Q1
					Decode
					Example:
					Before Ins W REG After Instru W REG

Syntax:	ADDWF	f {,d {,a}]	}		
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$				
Operation:	$(W) + (f) \rightarrow$	dest			
Status Affected:	N, OV, C, D)C, Z			
Encoding:	0010	01da	fff	f ffff	
Description:	result is sto	Add W to register 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.			
	,			k is selected. to select the	
		ed, this in Literal Of never f ≤ 9 .2.3 "Byt	nstructi fset Ad 95 (5Ff e-Orie	h). See ented and	
	Literal Offs				
Words:					
Words: Cycles:	Literal Offs				
	Literal Offs				
Cycles:	Literal Offs				
Cycles: Q Cycle Activity:	Literal Offs 1 1	set Mode	" for d	etails.	
Cycles: Q Cycle Activity: Q1 Decode <u>Example:</u>	Literal Offs 1 1 Q2 Read register 'f' ADDWF	Q3 Proces	ss	Q4 Write to	
Cycles: Q Cycle Activity: Q1 Decode	Literal Offs 1 1 2 Q2 Read register 'f' ADDWF tion = 17h = 0C2h	Q3 Proce: Data	ss	Q4 Write to	


Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in symbolic addressing. If a label is used, the instruction format then becomes: {label} instruction argument(s).

BCF	Bit Clear f	BN	Branch if N	legative	
Syntax:	BCF f, b {,a}	Syntax:	BN n		
Operands:	$0 \leq f \leq 255$	Operands:	$-128 \le n \le 127$		
	0 ≤ b ≤ 7 a ∈ [0,1]	Operation:	if Negative (PC) + 2 + 2		
Operation:	$0 \rightarrow f \le b >$	Status Affected:	None		
Status Affected:	None	Encoding:	1110	0110 nn	nn nnnn
Encoding:	1001 bbba ffff ffff	Description:	-	tive bit is '1', th	
Description:	Bit 'b' in register 'f' is cleared.	2000	program wi		
If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing			added to the incremente	d to fetch the	e PC will have next
			instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.		
	mode whenever f \leq 95 (5Fh). See	Words:	1		
	Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed	Cycles:	1(2)		
	Literal Offset Mode" for details.	Q Cycle Activity:			
Words:	1	If Jump:			
Cycles:	1	Q1	Q2	Q3	Q4
Q Cycle Activity:		Decode	Read literal 'n'	Process Data	Write to PC
Q1	Q2 Q3 Q4	No	No	No	No
Decode	Read Process Write	operation	operation	operation	operation
	register 'f' Data register 'f'	If No Jump:			
		Q1	Q2	Q3	Q4
Example:	BCF FLAG_REG, 7, 0	Decode	Read literal 'n'	Process Data	No operation
Before Instruc				Data	operation
After Instructio	EG = C7h on	Example:	HERE	BN Jump	
FLAG_REG = 47h		Before Instruction PC = address (HERE) After Instruction			
		If Negati	ve = 0;	. 1	
		PC	= ad	dress (HERE	+ 2)

TBLWT	Table Wri	te			
Syntax:	TBLWT (*	[;] ; *+; *-; +*	*)		
Operands:	None				
Operation:	if TBLWT*, (TABLAT) \rightarrow Holding Register; TBLPTR – No Change if TBLWT*+, (TABLAT) \rightarrow Holding Register; (TBLPTR) + 1 \rightarrow TBLPTR if TBLWT*-, (TABLAT) \rightarrow Holding Register; (TBLPTR) – 1 \rightarrow TBLPTR if TBLWT+*, (TBLPTR) + 1 \rightarrow TBLPTR;				
	(TABLAT)	\rightarrow Holding	g Register		
Status Affected:	None	r	1		
Encoding:	0000	0000	0000	11nn	
				nn=0 * =1 *+	
				=2 *-	
				=3 +*	
	This instruction uses the 3 LSBs of TBLPTR to determine which of the 8 holding registers the TABLAT is written to. The holding registers are used to program the contents of Program Memory (P.M.). (Refer to Section 6.0 "Memory Organization" for additional details on programming Flash memory.) The TBLPTR (a 21-bit pointer) points to				
	each byte in the program memory. TBLPTR has a 2-Mbyte address range. The LSb of the TBLPTR selects which byte of the program memory location to access. TBLPTR[0] = 0: Least Significant Byte of Program Memory Word TBLPTR[0] = 1: Most Significant Byte of Program Memory Word				
The TBLWT instruction can modify the value of TBLPTR as follows:					
	no char	nge			
	post-inc				
	•	crement			
Mordo	 pre-incr 	ement			
Words:	1				
Cycles:	2				
Q Cycle Activity:	<u></u>	00	00	0.1	
, ,		Q2	Q3	Q4	
	Q1	N1 -	N.L	NI -	
	Decode	No	No operation	No	
	-		No operation No	No operation No	

TBLWT Table Write (Continued)

Example 1: TH	BLWT *+;			
Before Instruction	on			
TABLAT TBLPTR HOI DING	REGISTER	= =	55h 00A356h	
(00A356h)		=	FFh	
After Instruction	s (table write	comp	letion)	
TABLAT		=	55h	
TBLPTR HOI DING	REGISTER	=	00A357h	
(00A356h)		=	55h	
Example 2: TH	BLWT +*;			
Before Instruction	on			
TABLAT		=	34h	
TBLPTR HOLDING	REGISTER	=	01389Ah	
(01389Ah)		=	FFh	
(01389Bh)		=	FFh	
After Instruction (table write completion)				
TABLAT		=	34h	
	REGISTER	=	01389Bh	
(01389Ah)		=	FFh	
(01389Bh)		=	34h	

FIGURE 26-6: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

TABLE 26-11: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND BROWN-OUT RESET REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
30	ТмсL	MCLR Pulse Width (low)	2 Tcy	10 Tcy	_		(Note 1)
31	Twdt	Watchdog Timer Time-out Period (no postscaler)	3.4	4.0	4.6	ms	
32	Tost	Oscillation Start-up Timer Period	1024 Tosc	_	1024 Tosc	_	Tosc = OSC1 period
33	TPWRT	Power-up Timer Period	45.8	65.5	85.2	ms	
34	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	—	2	_	μS	
38	Tcsd	CPU Start-up Time	_	10	_	μS	
			_	200	—	μS	Voltage regulator enabled and put to Sleep
39	TIOBST	Time for INTOSC to Stabilize	—	1	_	μS	

Note 1: To ensure device Reset, $\overline{\text{MCLR}}$ must be low for at least 2 TcY or 400 µs, whichever is lower.

Transition for Entry to SEC_RUN Mode45
Transition for Entry to Sleep Mode47
Transition for Two-Speed Start-up
(INTRC to HSPLL)
Transition for Wake From Idle to Run Mode
Transition for Wake From Sleep (HSPLL)
Transition From RC_RUN Mode to
PRI RUN Mode
Transition From SEC RUN Mode to
PRI_RUN Mode (HSPLL)
Transition to RC_RUN Mode
Type-A in 1/2 MUX, 1/2 Bias Drive
Type-A in 1/2 MUX, 1/3 Bias Drive
Type-A in 1/3 MUX, 1/2 Bias Drive
Type-A in 1/3 MUX, 1/3 Bias Drive
Type-A in 1/4 MUX, 1/3 Bias Drive
Type-A/Type-B in Static Drive
Type-B in 1/2 MUX, 1/2 Bias Drive
Type-B in 1/2 MUX, 1/3 Bias Drive
Type-B in 1/3 MUX, 1/2 Bias Drive
Type-B in 1/3 MUX, 1/3 Bias Drive
Type-B in 1/4 MUX, 1/3 Bias Drive
Timing Diagrams and Specifications
Capture/Compare/PWM Requirements
(CCP1, CCP2)
CLKU and I/U Reduirements
CLKO and I/O Requirements
EUSART/AUSART Synchronous Receive
EUSART/AUSART Synchronous Receive Requirements
EUSART/AUSART Synchronous Receive 390 Requirements 390 EUSART/AUSART Synchronous Transmission 390 Requirements 390 Example SPI Mode Requirements 382 Example SPI Mode Requirements 382
EUSART/AUSART Synchronous Receive 390 Requirements 390 EUSART/AUSART Synchronous Transmission 390 Requirements 390 Example SPI Mode Requirements 382 (Master Mode, CKE = 0) 382 Example SPI Mode Requirements 383
EUSART/AUSART Synchronous Receive 390 Requirements 390 EUSART/AUSART Synchronous Transmission 390 Requirements 390 Example SPI Mode Requirements 382 (Master Mode, CKE = 0) 382 Example SPI Mode Requirements 383 Example SPI Mode Requirements 383
EUSART/AUSART Synchronous Receive 390 Requirements 390 EUSART/AUSART Synchronous Transmission 390 Requirements 390 Example SPI Mode Requirements 382 (Master Mode, CKE = 0) 382 Example SPI Mode Requirements 383
EUSART/AUSART Synchronous Receive 390 Requirements 390 EUSART/AUSART Synchronous Transmission 390 Requirements 390 Example SPI Mode Requirements 382 (Master Mode, CKE = 0) 382 Example SPI Mode Requirements 383 (Master Mode, CKE = 1) 383 Example SPI Mode Requirements 384 Example SPI Slave Mode 384
EUSART/AUSART Synchronous Receive 390 Requirements 390 EUSART/AUSART Synchronous Transmission 390 Requirements 390 Example SPI Mode Requirements 382 (Master Mode, CKE = 0) 382 Example SPI Mode Requirements 383 (Master Mode, CKE = 1) 383 Example SPI Mode Requirements 383 (Master Mode, CKE = 0) 384
EUSART/AUSART Synchronous Receive 390 Requirements 390 EUSART/AUSART Synchronous Transmission 390 Requirements 390 Example SPI Mode Requirements 390 Example SPI Mode Requirements 382 Example SPI Mode Requirements 383 Example SPI Mode Requirements 383 Example SPI Mode Requirements 383 Example SPI Mode Requirements 384 Example SPI Slave Mode 384 Example SPI Slave Mode 385 External Clock Requirements 376 I ² C Bus Data Requirements (Slave Mode) 387
EUSART/AUSART Synchronous Receive 390 Requirements 390 EUSART/AUSART Synchronous Transmission 390 Requirements 390 Example SPI Mode Requirements 390 Example SPI Mode Requirements 382 Example SPI Mode Requirements 383 Example SPI Mode Requirements 383 Example SPI Mode Requirements 383 Example SPI Mode Requirements 384 Example SPI Slave Mode 385 Example SPI Slave Mode 385 External Clock Requirements 376
EUSART/AUSART Synchronous Receive 390 Requirements 390 EUSART/AUSART Synchronous Transmission 390 Requirements 390 Example SPI Mode Requirements 390 Example SPI Mode Requirements 382 Example SPI Mode Requirements 383 Example SPI Mode Requirements 383 Example SPI Mode Requirements 383 Example SPI Mode Requirements 384 Example SPI Slave Mode 384 Example SPI Slave Mode 385 External Clock Requirements 376 I ² C Bus Data Requirements (Slave Mode) 387
EUSART/AUSART Synchronous Receive 390 Requirements 390 EUSART/AUSART Synchronous Transmission 390 Requirements 390 Example SPI Mode Requirements 382 (Master Mode, CKE = 0) 382 Example SPI Mode Requirements 383 (Master Mode, CKE = 1) 383 Example SPI Mode Requirements 384 (Slave Mode, CKE = 0) 384 Example SPI Slave Mode 385 Requirements (CKE = 1) 385 External Clock Requirements 376 I ² C Bus Data Requirements (Slave Mode) 387 I ² C Bus Start/Stop Bits Requirements 386 Internal RC Accuracy 377
EUSART/AUSART Synchronous Receive 390 Requirements 390 EUSART/AUSART Synchronous Transmission 390 Requirements 390 Example SPI Mode Requirements 390 Example SPI Mode Requirements 382 Example SPI Mode Requirements 383 Example SPI Mode Requirements 383 Example SPI Mode Requirements 383 Example SPI Mode Requirements 384 Example SPI Slave Mode 384 Requirements (CKE = 0) 385 External Clock Requirements 376 I ² C Bus Data Requirements (Slave Mode) 387 I ² C Bus Start/Stop Bits Requirements 386 Internal RC Accuracy 377 MSSP I ² C Bus Data Requirements 389
EUSART/AUSART Synchronous Receive 390 Requirements 390 EUSART/AUSART Synchronous Transmission 390 Requirements 390 Example SPI Mode Requirements 390 Example SPI Mode Requirements 382 Example SPI Mode Requirements 383 Example SPI Mode Requirements 383 Example SPI Mode Requirements 383 Example SPI Mode Requirements 384 Example SPI Slave Mode 384 Example SPI Slave Mode 385 External Clock Requirements 376 I ² C Bus Data Requirements (Slave Mode) 387 I ² C Bus Start/Stop Bits Requirements 386

PLL Clock	377
Reset, Watchdog Timer, Oscillator Start-up	
Timer, Power-up Timer and Brown-out	
Reset Requirements	379
Timer0 and Timer1 External Clock	
Requirements	380
Top-of-Stack Access	65
TSTFSZ	345
Two-Speed Start-up	. 291, 300
Two-Word Instructions	
Example Cases	69
Timer0 and Timer1 External Clock Requirements Top-of-Stack Access TSTFSZ Two-Speed Start-up Two-Word Instructions	

۷

VDDCORE/VCAP Pin	299
Voltage Reference Specifications	373
Voltage Regulator (On-Chip)	299
Brown-out Reset (BOR)	300
Low-Voltage Detection (LVD)	299
Operation in Sleep Mode	300
Power-up Requirements	300

W

Watchdog Timer (WDT) Associated Registers	
Control Register	
During Oscillator Failure	
Programming Considerations	
WCOL	223, 224, 225, 228
WCOL Status Flag	223, 224, 225, 228
WWW Address	413
WWW, On-Line Support	7

Χ

XORLW	345
XORWF	346