

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Active
Core Processor	ARM® Cortex®-A53
Number of Cores/Bus Width	8 Core, 64-Bit
Speed	1.4GHz
Co-Processors/DSP	-
RAM Controllers	DDR4
Graphics Acceleration	-
Display & Interface Controllers	-
Ethernet	10GbE (2), 1GbE (8)
SATA	SATA 6Gbps (1)
USB	USB 3.0 (2) + PHY
Voltage - I/O	-
Operating Temperature	-40°C ~ 105°C
Security Features	Secure Boot, TrustZone®
Package / Case	780-BFBGA, FCBGA
Supplier Device Package	780-FBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/ls1088axe7pta

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Signal	Signal description	Package pin number	Pin type	Power supply	Notes
IRQ07/GPIO4_05/ TDMA_TSYNC/ UC1_RTSB_TXEN	External Interrupt	L5	I	DV _{DD}	1
IRQ08/GPIO4_06/ TDMB_RXD/UC3_RXD7/ TDMB_TXD	External Interrupt	M5	Ι	DV _{DD}	1
IRQ09/GPIO4_07/ TDMB_RSYNC/ UC3_CTSB_RXDV	External Interrupt	N5	Ι	DV _{DD}	1
IRQ10/GPIO4_08/ TDMB_RXD_EXC/ TDMB_TXD/UC3_TXD7	External Interrupt	P4	Ι	DV _{DD}	1
IRQ11/GPIO4_09	External Interrupt	W3	Ι	LV _{DD}	1
	Debug				
ASLEEP/GPIO1_28/ cfg_soc_use	Asleep	E9	0	OV _{DD}	1, 4
CKSTP_OUT_B	Checkstop Out	G15	0	OV _{DD}	1, 6, 7
CLK_OUT	Clock Out	G16	0	OV _{DD}	2
EVT0_B	Event 0	E10	10	OV _{DD}	9
EVT1_B	Event 1	E13	10	OV _{DD}	9
EVT2_B	Event 2	E8	Ю	OV _{DD}	9
EVT3_B	Event 3	E12	Ю	OV _{DD}	9
EVT4_B	Event 4	E11	Ю	OV _{DD}	9
EVT5_B/ IIC3_SCL /GPIO4_28/ USB2_DRVVBUS/BRGO4/ CLK11	Event 5	L4	IO	DV _{DD}	
EVT6_B/ IIC3_SDA /GPIO4_29/ USB2_PWRFAULT/BRGO1/ CLK12_CLK8	Event 6	M4	IO	DV _{DD}	
EVT7_B/ IIC4_SCL /GPIO4_30/ TDMA_RQ/UC1_CDB_RXER	Event 7	M3	IO	DV _{DD}	
EVT8_B/IIC4_SDA/GPIO4_31/ TDMB_RQ/UC3_CDB_RXER	Event 8	N3	Ю	DV _{DD}	
	Trust				
TA_BB_TMP_DETECT_B	Battery Backed Tamper Detect	H12	Ι	TA_BB_V _{DD}	
TA_TMP_DETECT_B	Tamper Detect	H20	Ι	OV _{DD}	
	System Con	trol		1	-
HRESET_B	Hard Reset	F8	IO	OV _{DD}	6, 7
PORESET_B	Power On Reset	F9	Ι	OV _{DD}	
RESET_REQ_B	Reset Request (POR or Hard)	F10	0	OV _{DD}	1, 5
	Clocking			1	
DIFF_SYSCLK	Single Source System Clock Differential (positive)	AA13	I	SV _{DD}	20

 Table 1. Pinout list by bus (continued)

Signal	Signal description	Package	Pin	Power supply	Notes
		pin number	type		
QSPI_A_DQS/I FC_A10 / GPIO2_04/IFC_RB3_B/ IFC_CS_B5	DQS	D14	I	OV _{DD}	1
QSPI_A_SCK/ IFC_A02 / GPIO1_18	SCK	C9	0	OV _{DD}	1, 5
QSPI_B_CS0/ IFC_A03 / GPIO1_19	Chip Select	D10	0	OV _{DD}	1, 5
QSPI_B_CS1/ IFC_A04 / GPIO1_20	CS1	C10	0	OV _{DD}	1, 5
QSPI_B_DATA0/ IFC_PAR0 / GPIO2_06/QSPI_A_DATA4	DATA0	B18	Ю	OV _{DD}	
QSPI_B_DATA1/I FC_PAR1 / GPIO2_07/QSPI_A_DATA5	DATA1	D17	IO	OV _{DD}	
QSPI_B_DATA2/ IFC_PERR_B/GPIO2_16/ QSPI_A_DATA6	DATA2	E17	IO	OV _{DD}	
QSPI_B_DATA3/ IFC_CS3_B / GPIO2_11/QSPI_A_DATA7	DATA3	C20	IO	OV _{DD}	
QSPI_B_DQS/I FC_A11 / GPIO2_05/IFC_CS_B6	DQS	C14	I	OV _{DD}	1
QSPI_B_SCK/ IFC_A05 / GPIO1_21/cfg_dram_type	SCK	C11	0	OV _{DD}	1, 4
	QUICC Eng	ine			
BRG01/ IIC3_SDA /GPIO4_29/ EVT6_B/USB2_PWRFAULT/ CLK12_CLK8	Baud Rate Generator Output	M4	0	DV _{DD}	1
BRGO2/ IIC2_SCL /GPIO3_12/ SDHC_CD_B/CLK9	Baud Rate Generator Output	K3	0	DV _{DD}	1
BRGO3/ IIC2_SDA /GPIO3_13/ SDHC_WP/CLK10	Baud Rate Generator Output	L3	0	DV _{DD}	1
BRGO4/ IIC3_SCL /GPIO4_28/ EVT5_B/USB2_DRVVBUS/ CLK11	Baud Rate Generator Output	L4	0	DV _{DD}	1
CLK10/ IIC2_SDA /GPIO3_13/ SDHC_WP/BRGO3	Clock	L3	I	DV _{DD}	1
CLK9/ IIC2_SCL /GPIO3_12/ SDHC_CD_B/BRGO2	Clock	K3	I	DV _{DD}	1
TDMA_RQ/ IIC4_SCL / GPIO4_30/EVT7_B/ UC1_CDB_RXER	RQ	М3	0	DV _{DD}	1
TDMB_RQ/ IIC4_SDA / GPIO4_31/EVT8_B/ UC3_CDB_RXER	RQ	N3	0	DV _{DD}	1
UC1_CDB_RXER/ IIC4_SCL / GPIO4_30/EVT7_B/TDMA_RQ	Receive Error	M3	I	DV _{DD}	1

 Table 1. Pinout list by bus (continued)

Signal	Signal description	Package pin number	Pin type	Power supply	Notes
GND097	Core, Platform and PLL Ground	N10			
GND098	Core, Platform and PLL Ground	N12			
GND099	Core, Platform and PLL Ground	N14			
GND100	Core, Platform and PLL Ground	N16			
GND101	Core, Platform and PLL Ground	N18			
GND102	Core, Platform and PLL Ground	N20			
GND103	Core, Platform and PLL Ground	N23			
GND104	Core, Platform and PLL Ground	N26			
GND105	Core, Platform and PLL Ground	P6			
GND106	Core, Platform and PLL Ground	P9			
GND107	Core, Platform and PLL Ground	P11			
GND108	Core, Platform and PLL Ground	P13			
GND109	Core, Platform and PLL Ground	P15			
GND110	Core, Platform and PLL Ground	P17			
GND111	Core, Platform and PLL Ground	P19			
GND112	Core, Platform and PLL Ground	P23			
GND113	Core, Platform and PLL Ground	R5			
GND114	Core, Platform and PLL Ground	R8			
GND115	Core, Platform and PLL Ground	R10			
GND116	Core, Platform and PLL Ground	R12			
GND117	Core, Platform and PLL Ground	R14			
GND118	Core, Platform and PLL Ground	R16			

 Table 1. Pinout list by bus (continued)

Pin assignments

4. This pin is a reset configuration pin. It has a weak (~20 k Ω) internal pull-up P-FET that is enabled only when the processor is in its reset state. This pull-up is designed such that it can be overpowered by an external 4.7 k Ω resistor. However, if the signal is intended to be high after reset, and if there is any device on the net that might pull down the value of the net at reset, a pull-up or active driver is needed.

5. Pin must **NOT** be pulled down during power-on reset. This pin may be pulled up, driven high, or, if there are any externally connected devices, left in tristate. If this pin is connected to a device that pulls down during reset, an external pull-up is required to drive this pin to a safe state during reset.

6. Recommend that a weak pull-up resistor (2-10 k Ω) be placed on this pin to the respective power supply.

7. This pin is an open-drain signal.

8. Recommend that a pull-up resistor (1 k Ω) be placed on this pin to the respective power supply.

9. This pin has a weak (~20 k Ω) internal pull-up P-FET that is always enabled.

10. These are test signals for factory use only and must be pulled up (100 Ω to 1 k Ω) to the respective power supply for normal operation.

11. This pin requires a 200 Ω pull-up to the respective power supply.

12. Do not connect. These pins should be left floating.

13. These pins must be pulled up to TV_{DD} through a 180 $\Omega \pm 1\%$ resistor for MDC and a 330 $\Omega \pm 1\%$ resistor for MDIO.

14. This pin requires an external 1 k Ω pull-down resistor to prevent PHY from seeing a valid Transmit Enable before it is actively driven.

15. These pins must be pulled to ground (GND).

16. This pin requires a 698 Ω pull-up to the respective power supply.

17. These pins should be tied to ground if the diode is not utilized for temperature monitoring.

18. SD_GND must be directly connected to GND.

19. For proper clock selection, terminate cfg_eng_use0 with a pull up or pull down of 4.7 $k\Omega$ to ensure that the signal will have a valid state as soon as the IO voltage reaches its operating condition.

Electrical characteristics

Figure 13. DDR4 output timing diagram

3.11 Dual universal asynchronous receiver/transmitter (DUART) interface

This section describes the DC and AC electrical characteristics for the DUART interface.

3.11.1 DUART DC electrical characteristics

This table provides the DC electrical characteristics for the DUART interface when operating at $DV_{DD} = 3.3$ V.

Parameter	Symbol	Min	Мах	Unit	Notes
Input high voltage	V _{IH}	0.7 x DVDD	-	V	2
Input low voltage	V _{IL}	-	0.2 x DVDD	V	2

Table 30. DUART DC electrical characteristics $(DV_{DD} = 3.3 V)^{1}$

		-		-			
Parameter	Symbol	Min	Max	Unit	Notes		
Input current ($V_{IN} = 0V$ or $V_{IN} = DV_{DD}$)	I _{IN}	-50	50	μA	3		
Output high voltage (I _{OH} = -2.0 mA)	V _{OH}	2.4	-	V	-		
Output low voltage (I _{OL} = 2.0 mA)	V _{OL}	-	0.4	V	-		
1. For recommended operating conditions	, see Table 3.						
2. Note that the min V_{IL} and max V_{IH} values are based on the respective min and max DV_{IN} values found in the Recommended Operating Conditions table.							
 Note that the symbol DV_{IN} represents the input voltage of the supply referenced in the Recommended Operating Conditions table. 							

Table 30. DUART DC electrical characteristics $(DV_{DD} = 3.3 \text{ V})^1$ (continued)

This table provides the DC electrical characteristics for the DUART interface when operating at $DV_{DD} = 1.8$ V.

Table 31. DUART DC electrical characteristics $(DV_{DD} = 1.8 V)^{1}$

Parameter	Symbol	Min	Max	Unit	Notes		
Input high voltage	V _{IH}	0.7 x DV _{DD}	-	V	2		
Input low voltage	VIL	-	0.3 x DV _{DD}	V	2		
Input current ($V_{IN} = 0V$ or $V_{IN} = DV_{DD}$)	I _{IN}	-50	50	μA	3		
Output high voltage (I _{OH} = -0.5 mA)	V _{OH}	1.35	-	V	-		
Output low voltage (I _{OL} = 0.5 mA)	V _{OL}	-	0.4	V	-		
1. For recommended operating conditions, see Table 3.							
2. Note that the min V_{IL} and max V_{IH} values are based on the respective min and max DV _{IN} values found in the Recommended Operating Conditions table.							

3. Note that the symbol DV_{IN} represents the input voltage of the supply referenced in the Recommended Operating Conditions table.

DUART AC timing specifications 3.11.2

This table provides the AC timing specifications for the DUART interface.

Table 32. DUART AC timing specifications

Parameter	Symbol	Min	Max	Unit	Notes
Minimum baud rate	baud	f _{PLAT} /(2 x 1,048,576)	-	baud	1, 2
Maximum baud rate	baud	-	f _{PLAT} /(2 x 16)	baud	1, 3
1 for an refers to the internal platform clock					

t_{PLAT} refers to the internal platform clock.

2. The middle of a start bit is detected as the 8th sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are sampled each 16th sample.

3. The actual attainable baud rate is limited by the latency of interrupt processing.

Electrical characteristics

 $VM = Midpoint voltage (EV_{DD}/2)$

Figure 16. eSDHC high-speed mode output AC timing diagram

This table provides the eSDHC AC timing specifications for SDR50 mode.

Parameter	Symbol	Min	Max	Unit	Notes
SDHC_CLK clock frequency	f _{SHSCK}	0	100	MHz	-
SDHC_CLK clock rise and fall times	t _{SHSCKR/}	-	2	ns	1
	t _{SHSCKF}				
Skew between SDHC_CLK_SYNC_OUT and SDHC_CLK	t _{SHSCSK}	-0.1	0.1	ns	1
Input setup times: SDHC_CMD, SDHC_DATx to SDHC_CLK_SYNC_IN	t _{SHSIVKH}	2.1	-	ns	1
Input hold times: SDHC_CMD, SDHC_DATx to SDHC_CLK_SYNC_IN	t _{SHSIXKH}	1.1	-	ns	1
Output hold time: SDHC_CLK to SDHC_CMD, SDHC_DATx valid, SDHC_DATx_DIR, SDHC_CMD_DIR	t _{SHSKHOX}	1.7	-	ns	1
Output delay time: SDHC_CLK to SDHC_CMD, SDHC_DATx valid, SDHC_DATx_DIR, SDHC_CMD_DIR	t _{SHSKHOV}	-	6.1	ns	1
Notes:	1				
1. $C_{CARD} \le 10 \text{ pF}$, (1 card), and $C_L = C_{BUS} + C_{HOST} + C_{CARD} \le 30 \text{ pF}$.					
2. For recommended operating conditions, see Table 3.					

Table 36. eSDHC AC timing specifications (SDR50)²

This figure provides the eSDHC clock input timing diagram for SDR50 mode.

Figure 19. eSDHC SDR50 mode output timing diagram

This table provides the eSDHC AC timing specifications for DDR50/DDR mode.

Parameter		Symbol	Min	Max	Units	Notes
SDHC_CLK clock frequency	SD/SDIO DDR50 mode	f _{SHCK}	—	50	MHz	—
	eMMC DDR mode			52		
Skew between SDHC_CLK_SYNC	C_OUT and SDHC_CLK	t _{SHSCSK}	-0.1	0.1	ns	—
SDHC_CLK clock rise and fall	SD/SDIO DDR50 mode	t _{SHCKR} /	_	4	ns	1, 2
times	eMMC DDR mode	t _{SHCKF}		2		1, 2
Input setup times: SDHC_DATx	SD/SDIO DDR50 mode	t _{SHDIVKH}	2.0	—	ns	1
to SDHC_CLK_SYNC_IN	eMMC DDR mode		1.6			2
Input hold times: SDHC_DATx to	SD/SDIO DDR50 mode	t _{SHDIXKH}	1.3	—	ns	1
SDHC_CLK_SYNC_IN	eMMC DDR mode		1.3			2, 4
Output hold time: SDHC_CLK to	SD/SDIO DDR50 mode	t _{SHDKHOX}	1.7	—	ns	1
SDHC_DATx valid, SDHC_DATx_DIR	eMMC DDR mode		3.4			2
Output delay time: SDHC_CLK to	SD/SDIO DDR50 mode	t _{SHDKHOV}	—	6.1	ns	1
SDHC_DATx valid, SDHC_DATx_DIR	eMMC DDR mode			6.2		2
Input setup times: SDHC_CMD to	SD/SDIO DDR50 mode	t _{SHCIVKH}	5.3	—	ns	1
SDHC_CLK_SYNC_IN	eMMC DDR mode		5			2
Input hold times: SDHC_CMD to	SD/SDIO DDR50 mode	t _{SHCIXKH}	1.2	—	ns	1
SDHC_CLK_SYNC_IN	eMMC DDR mode		1.2			2, 5
Output hold time: SDHC_CLK to	SD/SDIO DDR50 mode	t _{SHCKHOX}	1.7	—	ns	1
SDHC_CMD valid, SDHC_CMD_DIR	eMMC DDR mode		3.9			2
Output delay time: SDHC_CLK to	SD/SDIO DDR50 mode	t _{SHCKHOV}	_	15.3	ns	1
SDHC_CMD valid, SDHC_CMD_DIR	eMMC DDR mode			15.3		2

Table 37. eSDHC AC timing specifications (DDR50/DDR)³

Table continues on the next page...

QorIQ LS1088A Data Sheet, Rev. 0, 01/2018

Figure 21. eSDHC DDR50/DDR mode output AC timing diagram

This table provides the eSDHC AC timing specifications for SDR104/eMMC HS200 mode.

Table 38.	eSDHC AC timing	specifications	(SDR104/eMMC HS200)
-----------	-----------------	----------------	---------------------

Para	imeter	Symbol ¹	Min	Max	Unit	Notes		
SDHC_CLK clock frequency	SD/SDIO SDR104 mode	f _{SHCK}	-	167	MHz	-		
	eMMC HS200 mode			167		-		
SDHC_CLK clock rise and fall til	mes	t _{SHCKR} /t _{SHCKF}	-	1	ns	1		
Output hold time: SDHC_CLK	SD/SDIO SDR104 mode	Т _{ЅНКНОХ}	1.58	-	ns	1		
to SDHC_CMD, SDHC_DATx valid, SDHC_CMD_DIR, SDHC_DATx_DIR	eMMC HS200 mode		1.6					
Output delay time: SDHC_CLK	SD/SDIO SDR104 mode	Т _{SHKHOV}	-	3.94	ns	1		
to SDHC_CMD, SDHC_DATx valid, SDHC_CMD_DIR, SDHC_DATx_DIR	eMMC HS200 mode			3.92				
Input data window (UI)	SD/SDIO SDR104 mode	t _{SHIDV}	0.5	-	Unit	1		
	eMMC HS200 mode		0.475		Interval			
Notes:		·	•					
1. $C_L = C_{BUS} + C_{HOST} + C_{CARD} \le$: 15pF.							
2. For recommended operating (For recommended operating conditions, see Table 3							

3.13.1.2.2 EMI2 AC timing specifications

This table provides the AC timing specifications for the EMI2 interface.

Parameter	Symbol	Min	Мах	Unit	Notes
MDC frequency	f _{MDC}	-	2.5	MHz	1
MDC clock pulse width high	t _{MDCH}	160.0	-	ns	-
MDC to MDIO delay	t _{MDKHDX}	(5 x t _{enet_clk}) - 3	(5 x t _{enet_clk}) + 3	ns	2, 3
MDIO to MDC setup time	t _{MDDVKH}	8.0	-	ns	-
MDIO to MDC hold time	t _{MDDXKH}	2	-	ns	5

Table 45. EMI2 AC timing specifications⁴

1. This parameter is dependent on the Ethernet clock frequency. The MDIO_CFG [MDIO_CLK_DIV] field determines the clock frequency of the MgmtClk Clock EC_MDC.

2. This parameter is dependent on the Ethernet clock frequency. The delay is equal to 5 Ethernet clock periods \pm 3 ns. For example, with an Ethernet clock of 400 MHz, the min/max delay is 12.5 ns \pm 3 ns.

3. t_{enet clk} is the Ethernet clock period (Frame Manager clock period x 2).

4. The symbols used for timing specifications follow these patterns: $t_{(first two letters of functional block)(signal)(state)(reference)(state)}$ for inputs and $t_{(first two letters of functional block)(reference)(state)(signal)(state)}$ for outputs. For example, t_{MDKHDX} symbolizes management data timing (MD) for the time t_{MDC} from clock reference (K) high (H) until data outputs (D) are invalid (X) or data hold time. Also, t_{MDDVKH} symbolizes management data timing (MD) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MDC} clock reference (K) going to the high (H) state or setup time.

5. See "AN5144, LS1088A Design Checklist" for more details.

This figure shows the Ethernet management interface 2 timing diagram.

3.13.2 IEEE 1588 interface

This section describes the DC and AC electrical characteristics for the IEEE 1588 interface.

3.13.2.1 IEEE 1588 DC electrical characteristics

This table provides the IEEE 1588 DC electrical characteristics when operating at LV_{DD} = 2.5 V supply.

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x LVDD	-	-	V	2
Input low voltage	V _{IL}	-	-	0.2 x LVDD	V	2
Input current ($V_{IN} = 0$ or $V_{IN} = LV_{DD}$)	I _{IN}	-50.0	-	50.0	μA	3
Output high voltage ($LV_{DD} = min$, $I_{OH} = -1.0 mA$)	V _{OH}	2.0	-	-	V	-
Output low voltage ($LV_{DD} = min$, $I_{OL} = 1.0 mA$)	V _{OL}	-	-	0.4	V	-
1. For recommended operating con	ditions, see	Table 3.				
2. The min V_{IL} and max V_{IH} values	are based on	the respective m	in and max LV _{IN} val	ues found in Table 3.		
3. The symbol LV _{IN} represents the	input voltage	of the supply refe	erenced in Table 3.			

Table 46. IEEE 1588 DC electrical characteristics $(LV_{DD} = 2.5 V)^1$

This table provides the IEEE 1588 DC electrical characteristics when operating at LV_{DD} = 1.8 V supply.

Table 47. IEEE 1588 DC electrical characteristics $(LV_{DD} = 1.8 V)^{1}$

Parameter	Symbol	Min	Тур	Max	Unit	Notes		
Input high voltage	V _{IH}	0.7 x LVDD	-	-	V	2		
Input low voltage	V _{IL}	-	-	0.3 x LVDD	V	2		
Input current ($V_{IN} = 0$ or $V_{IN} = LV_{DD}$)	I _{IN}	-50.0	-	50.0	μA	3		
Output high voltage (LV _{DD} = min, I_{OH} = -0.5 mA)	V _{OH}	1.35	-	-	V	-		
Output low voltage ($LV_{DD} = min$, $I_{OL} = 0.5 mA$)	V _{OL}	-	-	0.4	V	-		
1. For recommended operating conditions, see Table 3.								
2. The min V_{IL} and max V_{IH} values are based on the respective min and max LV_{IN} values found in Table 3.								
3. The symbol LV_{IN} represents the i	nput voltage	of the supply referer	nced in Table 3.					

Table 51.	RGMII	AC 1	timing	specifications ⁷
-----------	-------	------	--------	-----------------------------

Parameter	Symbol	Min	Тур	Max	Unit	Notes
7. In general, the clock reference sy that the notation for rise (R) and fall skews, the subscript is skew (SK) for	mbol represe (F) times foll llowed by the	entation is based on ows the clock symbole clock that is being	the symbol RGT, wh ol that is being repre skewed (RGT).	nich represents RGN sented. For symbols	/II timing s represe	. Note nting

This figure shows the RGMII AC timing and multiplexing diagrams.

NOTE

NXP guarantees timings generated from the MAC. Board designers must ensure delays needed at the PHY or the MAC.

3.14 General purpose input/output (GPIO) interface

This section describes the DC and AC electrical characteristics for the GPIO interface.

Parameter	Symbol	Min	Typical	Мах	Units	Notes	
Deterministic jitter, data-data 5 UI	U _{SATA_RXDJ5UI}	_	_	0.25	UI p-p	1	
Deterministic jitter, data-data 250 UI	U _{SATA_RXDJ250UI}	—	_	0.35	UI p-p	1	
Notes:							
1. Measured at the receiver.							
2. For recommended operating conditions, see Table 3.							

 Table 89. Gen 1i/1m 1.5 G receiver AC specifications² (continued)

This table provides the differential receiver input AC characteristics for the SATA interface at Gen2i/2m or 3.0 Gbits/s transmission. The AC timing specifications do not include RefClk jitter.

Table 90. Gen 2i/2m 3 G receiver AC specifications²

Parameter	Symbol	Min	Typical	Max	Units	Notes	
Unit Interval	T _{UI}	333.2167	333.3333	335.1167	ps	—	
Total jitter $f_{C3dB} = f_{BAUD} \div 500$	U _{SATA_RXTJfB/500}	—	—	0.60	UI p-p	1	
Total jitter $f_{C3dB} = f_{BAUD} \div 1667$	U _{SATA_RXTJfB/1667}	—	_	0.65	UI p-p	1	
Deterministic jitter, $f_{C3dB} = f_{BAUD} \div 500$	U _{SATA_RXDJfB/500}	—	—	0.42	UI p-p	1	
Deterministic jitter, $f_{C3dB} = f_{BAUD} \div 1667$	U _{SATA_RXDJfB/1667}	—	_	0.35	UI p-p	1	
Notes:							
1. Measured at the receiver.							
2. For recommended operating conditions, see Table 3.							

This table provides the differential receiver input AC characteristics for the SATA interface at Gen 3i transmission The AC timing specifications do not include RefClk jitter.

Table 91. Gen 3i receiver AC specifications²

Parameter	Symbol	Min	Typical	Мах	Units	Notes
Total jitter after compliance interconnect channel	JT	—	—	0.60	UI p-p	1
Random jitter before compliance interconnect channel	J _R	—	—	0.18	UI p-p	1
Unit interval: 6.0 Gb/s	UI	166.6083	166.6667	167.5583	ps	—
Notes:		·			1	F
1. Measured at the receiver.						
2. The AC specifications do not inclu	ude RefClk jitter.					

Electrical characteristics

Figure 39. 4-wire AC-coupled SGMII serial link connection example

This figure shows the SGMII transmitter DC measurement circuit.

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Receiver baud rate	R _{BAUD}	5.000-100ppm	5.0	5.000+100ppm	Gb/s	-
Uncorrelated bounded high probability jitter	R _{DJ}	-	-	0.15	UI p-p	-
Correlated bounded high probability jitter	R _{CBHPJ}	-	-	0.3	UI p-p	The jitter (R_{CBHPJ}) and amplitude have to be correlated, for example, by a PCB trace.
Bounded high probability jitter	R _{BHPJ}	-	-	0.45	UI р-р	-
Sinusoidal jitter, maximum	R _{SJ-max}	-	-	5.0	UI р-р	-
Sinusoidal jitter, high frequency	R _{SJ-hf}	-	-	0.05	UI р-р	-
Total jitter (does not include sinusoidal jitter)	R _{TJ}	-	-	0.6	UI p-p	-

Table 101. QSGMII receiver AC timing specifications

The sinusoidal jitter may have any amplitude and frequency in the unshaded region of this figure.

Figure 43. QSGMII single-frequency sinusoidal jitter limits

QorIQ LS1088A Data Sheet, Rev. 0, 01/2018

Parameter	Symbol	Min	Тур	Max	Unit
Receiver baud rate	R _{BAUD}	10.3125-100ppm	10.3125	10.3125+100ppm	Gb/s
Total jitter tolerance	R _{TJ}	-	-	Per IEEE Std 802.3ap-2007, Annex 69a.	UI p-p
Random jitter	R _{RJ}	-	-	0.13	UI р-р
Sinusoidal jitter (maximum)	R _{SJ-max}	-	-	0.115	UI p-p
Duty cycle distortion	D _{CD}	-	-	0.035	UI p-p

 Table 113.
 10GBase-KR receiver AC timing specifications

3.17 I²C interface

This section describes the DC and AC electrical characteristics for the I²C interface.

3.17.1 I²C DC electrical characteristics

This table provides the DC electrical characteristics for the I²C interface when operating at $DV_{DD} = 3.3$ V.

Table 114. $I^{2}C$ DC electrical characteristics (DV_{DD} = 3.3 V)¹

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x DV _{DD}	-	V	2
Input low voltage	V _{IL}	-	0.2 x DV _{DD}	V	2
Output low voltage ($DV_{DD} = min$, $IOL = 3$ mA, $DV_{DD} > 2V$)	V _{OL}	-	0.4	V	3
Pulse width of spikes that must be suppressed by the input filter	t _{I2KHKL}	0.0	50.0	ns	4
Input current each I/O pin (input voltage is between 0.1 x $\rm DV_{\rm DD}$ (min) and 0.9 x $\rm DV_{\rm DD}$ (max))	l _i	-50.0	50.0	μA	5
Capacitance for each I/O pin	CI	-	10.0	pF	-

1. For recommended operating conditions, see Table 3.

2. The min V_{IL} and max V_{IH} values are based on the respective min and max DV_{IN} values found in Table 3.

3. The output voltage (open drain or open collector) condition = 3 mA sink current.

4. See the chip reference manual for information about the digital filter used.

5. I/O pins obstruct the SDA and SCL lines if DV_DD is switched off.

Figure 66. t_{ww} timings

This figure shows the t_{IBIXKH4} timings.

Figure 67. t_{IBIXKH4} timings

3.18.2.6 IFC-NAND NVDDR AC timing specification

The table below describes the AC timing specifications for the IFC-NAND NVDDR interface. These specifications are compliant to NVDDR mode of ONFI specification revision 3.0.

Table 125. Integrated flash controller IFC-NAND NVDDR interface AC timing specifications(OVDD = 1.8 V)

Parameter	Symbol	I/O	Min	Мах	Unit	Notes
Access window of DQ[7:0] from CLK	t _{AC}	I	3 - 150 (ps)	20 + 150 (ps)	ns	Figure 71
Address cycle to data loading time	t _{ADL}	I	TADL	-	t _{IP_CLK}	Figure 72

Table 125. Integrated flash controller IFC-NAND NVDDR interface AC timing specifications (OVDD = 1.8 V) (continued)

Parameter	Symbol	I/O	Min	Мах	Unit	Notes		
WP# transition to command cycle	t _{ww}	0	TWW - 150 (ps)	TWW + 150 (ps)	t _{IP_CLK}	Figure 77		
NOTE:								
1. t _{IP_CLK} is the clock period of IP clock (on which IFC IP is running). Note that that the IFC IP clock doesn't come out of device.								

The following diagrams show the AC timing for the IFC-NAND NVDDR interface.

Table 126. JTAG DC electrical characteristics $(OV_{DD} = 1.8 V)^1$ (continued)

Parameter	Symbol	Min	Мах	Unit	Notes		
1. For recommended operating conditions, see Table 3.							
2. Note that the min V_{IL} and max V_{IH} values are based on the respective min and max OV_{IN} values found in the Recommended Operating Conditions table.							
3. Note that the symbol V_{IN} , in this case, represents the OVIN symbol found in the Recommended Operating Conditions table.							
4. TDI, TMS, and TRST_B have internal pull-ups per the IEEE Std. 1149.1 specification.							

3.19.2 JTAG AC timing specifications

This table provides the JTAG AC timing specifications as defined in Figure 78, Figure 79, Figure 80, and Figure 81.

Parameter	Symbol	Min	Max	Unit	Notes
JTAG external clock frequency of operation	F _{JTG}	0.0	33.3	MHz	-
JTAG external clock cycle time	t _{JTG}	30.0	-	ns	-
JTAG external clock pulse width measured at 1.4 V	t _{JTKHKL}	15.0	-	ns	-
JTAG external clock rise and fall times	t _{JTGR} /t _{JTGF}	0.0	2.0	ns	-
TRST_B assert time	t _{TRST}	25.0	-	ns	TRST_B is an asynchronous level sensitive signal. The setup time is for test purposes only.
Input setup times	t _{JTDVKH}	4.0	-	ns	TA_BB_TMP_DETECT pin requires 13.5ns input setup time for the board JTAG test to go through runTESTIdle.
Input hold times	t _{JTDXKH}	10.0	-	ns	-
Output valid times: boundary- scan data	ţjtkldv	-	15.0	ns	All outputs are measured from the midpoint voltage of the falling edge of t_{TCLK} to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50- Ω load. Time-of- flight delays must be added for trace lengths, vias, and connectors in the system.
Output valid times: TDO	t _{JTKLDV}	-	10.0	ns	All outputs are measured from the midpoint voltage of the falling edge of t_{TCLK} to the midpoint of the signal in

Table 127. JTAG AC timing specifications¹

5.1 Recommended thermal model

Information about Flotherm models of the package or thermal data not available in this document can be obtained from your local NXP sales office.

5.2 Temperature diode

The chip has a temperature diode on the microprocessor that can be used in conjunction with other system temperature monitoring devices (such as Analog Devices, ADT7461A). These devices feature series resistance cancellation using three current measurements, where up to $1.5 \text{ k}\Omega$ of resistance can be automatically cancelled from the temperature result, allowing noise filtering and a more accurate reading.

The following are the specifications of the chip's on-board temperature diode:

Operating range: TBD

Ideality factor TBD; Temperature range TBD

5.3 Thermal management information

This section provides thermal management information for the flip-chip, plastic-ball, grid array (FC-PBGA) package for air-cooled applications. Proper thermal control design is primarily dependent on the system-level design-the heat sink, airflow, and thermal interface material.

The recommended attachment method to the heat sink is illustrated in Figure 95. The heat sink should be attached to the printed-circuit board with the spring force centered over the die. This spring force should not exceed 15 pounds force.