

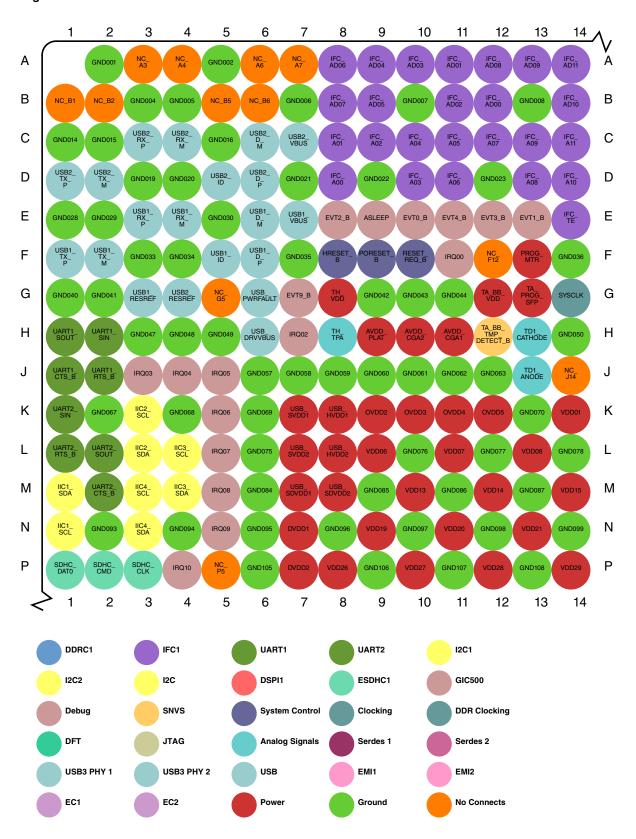
Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in


Details

Product Status	Active
Core Processor	ARM® Cortex®-A53
Number of Cores/Bus Width	8 Core, 64-Bit
Speed	1.6GHz
Co-Processors/DSP	-
RAM Controllers	DDR4
Graphics Acceleration	-
Display & Interface Controllers	-
Ethernet	10GbE (2), 1GbE (8)
SATA	SATA 6Gbps (1)
USB	USB 3.0 (2) + PHY
Voltage - I/O	-
Operating Temperature	-40°C ~ 105°C
Security Features	Secure Boot, TrustZone®
Package / Case	780-BFBGA, FCBGA
Supplier Device Package	780-FBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/ls1088axn7q1a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin assignments

Figure 3. Detail A

QorIQ LS1088A Data Sheet, Rev. 0, 01/2018

Signal	Signal description	Package pin number	Pin type	Power supply	Notes
D1_MDQ26	Data	L24	10	G1V _{DD}	
D1_MDQ27	Data	M24	10	G1V _{DD}	
D1_MDQ28	Data	J22	10	G1V _{DD}	
D1_MDQ29	Data	H23	10	G1V _{DD}	
D1_MDQ30	Data	K24	10	G1V _{DD}	
D1_MDQ31	Data	L25	10	G1V _{DD}	
D1_MDQ32	Data	V24	10	G1V _{DD}	
D1_MDQ33	Data	U26	10	G1V _{DD}	
D1_MDQ34	Data	AA26	10	G1V _{DD}	
D1_MDQ35	Data	W23	10	G1V _{DD}	
D1_MDQ36	Data	U24	10	G1V _{DD}	
D1_MDQ37	Data	U25	10	G1V _{DD}	
D1_MDQ38	Data	W24	10	G1V _{DD}	
D1_MDQ39	Data	Y25	10	G1V _{DD}	
D1_MDQ40	Data	AB24	10	G1V _{DD}	
D1_MDQ41	Data	AB25	10	G1V _{DD}	
D1_MDQ42	Data	AE25	10	G1V _{DD}	
D1_MDQ43	Data	AF25	10	G1V _{DD}	
D1_MDQ44	Data	Y24	10	G1V _{DD}	
D1_MDQ45	Data	AA25	10	G1V _{DD}	
D1_MDQ46	Data	AD25	10	G1V _{DD}	
D1_MDQ47	Data	AE26	10	G1V _{DD}	
D1_MDQ48	Data	AA22	10	G1V _{DD}	
D1_MDQ49	Data	AB23	10	G1V _{DD}	
D1_MDQ50	Data	AC22	10	G1V _{DD}	
D1_MDQ51	Data	AB22	10	G1V _{DD}	
D1_MDQ52	Data	Y22	10	G1V _{DD}	
D1_MDQ53	Data	AA23	0	G1V _{DD}	
D1_MDQ54	Data	AD22	10	G1V _{DD}	
D1_MDQ55	Data	AE22	10	G1V _{DD}	
D1_MDQ56	Data	AH25	Ю	G1V _{DD}	
D1_MDQ57	Data	AF24	Ю	G1V _{DD}	
D1_MDQ58	Data	AG22	Ю	G1V _{DD}	
D1_MDQ59	Data	AF22	10	G1V _{DD}	
D1_MDQ60	Data	AH26	10	G1V _{DD}	
D1_MDQ61	Data	AG25	10	G1V _{DD}	
D1_MDQ62	Data	AF23	Ю	G1V _{DD}	
D1_MDQ63	Data	AH22	Ю	G1V _{DD}	

Table 1. Pinout list by bus (continued)

Pin assignments

		pin number	type	Power supply	Notes	
IFC_RB1_B/GPIO2_15	IFC Ready/Busy CS1	D16	1	OV _{DD}	1, 6	
IFC_RB2_B/I FC_A09 / GPIO2_03/IFC_CS_B4/ QSPI_A_DATA3	IFC Ready/Busy CS 2	C13	I	OV _{DD}	1	
IFC_RB3_B/ IFC_A10 / GPIO2_04/IFC_CS_B5/ QSPI_A_DQS	IFC Ready/Busy CS 3	D14	I	OV _{DD}	1	
IFC_TE/GPIO1_23/cfg_ifc_te	IFC External Transceiver Enable	E14	0	OV _{DD}	1, 4	
IFC_WE0_B/GPIO1_22/ cfg_eng_use0	IFC Write Enable 0 / Start of Frame	C15	0	OV _{DD}	1, 4, 19	
IFC_WP0_B/GPIO1_27/ cfg_eng_use2	IFC Write Protect	D19	0	OV _{DD}	1, 5	
IFC_WP1_B/ IFC_A06 / GPIO2_00/QSPI_A_DATA0	IFC Write Protect	D11	0	OV _{DD}	1	
IFC_WP2_B/ IFC_A07 / GPIO2_01/QSPI_A_DATA1	IFC Write Protect	C12	0	OV _{DD}	1	
IFC_WP3_B/ IFC_A08 / GPIO2_02/QSPI_A_DATA2	IFC Write Protect	D13	0	OV _{DD}	1	
	DUART1					
UART1_CTS_B/GPIO3_10/ UART3_SIN	Clear To Send	J1	I	DV _{DD}	1	
UART1_RTS_B/GPIO3_08/ UART3_SOUT	Ready to Send	J2	0	DV _{DD}	1	
UART1_SIN	Receive Data	H2	I	DV _{DD}	1	
UART1_SOUT	Transmit Data	H1	0	DV _{DD}	1	
	DUART2	2				
UART2_CTS_B/GPIO3_11/ UART4_SIN	Clear To Send	M2	Ι	DV _{DD}	1	
UART2_RTS_B/GPIO3_09/ UART4_SOUT	Ready to Send	L1	0	DV _{DD}	1	
UART2_SIN/GPIO3_07	Receive Data	K1	I	DV _{DD}	1	
UART2_SOUT/GPIO3_06	Transmit Data	L2	0	DV _{DD}	1	
	DUART3 an	d 4		1	I	
UART3_SIN/ UART1_CTS_B / GPIO3_10	Receive Data	J1	I	DV _{DD}	1	
UART3_SOUT/ UART1_RTS_B/GPIO3_08	Transmit Data	J2	0	DV _{DD}	1	
UART4_SIN/ UART2_CTS_B / GPIO3_11	Receive Data	M2	I	DV _{DD}	1	
UART4_SOUT/ UART2_RTS_B/GPIO3_09	Transmit Data	L1	0	DV _{DD}	1	
	I2C1					

Table 1. Pinout list by bus (continued)

Signal	Signal description	Package pin number	Pin type	Power supply	Notes
GND119	Core, Platform and PLL Ground	R18			
GND120	Core, Platform and PLL Ground	R20			
GND121	Core, Platform and PLL Ground	R23			
GND122	Core, Platform and PLL Ground	R26			
GND123	Core, Platform and PLL Ground	T2			
GND124	Core, Platform and PLL Ground	T4			
GND125	Core, Platform and PLL Ground	Т6			
GND126	Core, Platform and PLL Ground	Т9			
GND127	Core, Platform and PLL Ground	T11			
GND128	Core, Platform and PLL Ground	T13			
GND129	Core, Platform and PLL Ground	T15			
GND130	Core, Platform and PLL Ground	T17			
GND131	Core, Platform and PLL Ground	T19			
GND132	Core, Platform and PLL Ground	T21			
GND133	Core, Platform and PLL Ground	T23			
GND134	Core, Platform and PLL Ground	T26			
GND135	Core, Platform and PLL Ground	U6			
GND136	Core, Platform and PLL Ground	U8			
GND137	Core, Platform and PLL Ground	U10			
GND138	Core, Platform and PLL Ground	U12			
GND139	Core, Platform and PLL Ground	U14			
GND140	Core, Platform and PLL Ground	U16			

Table 1. Pinout list by bus (continued)

Table 1.	Pinout list by	y bus ((continued)
----------	----------------	---------	-------------

Signal	Signal description	Package pin number	Pin type	Power supply	Notes	
SD_GND02	SerDes core logic, transceiver, and PLL ground	Y7			18	
SD_GND03	SerDes core logic, transceiver, and PLL ground	Y8			18	
SD_GND04	SerDes core logic, transceiver, and PLL ground	Y9			18	
SD_GND05	SerDes core logic, transceiver, and PLL ground	Y10			18	
SD_GND06	SerDes core logic, transceiver, and PLL ground	Y13			18	
SD_GND07	SerDes core logic, transceiver, and PLL ground	Y14			18	
SD_GND08	SerDes core logic, transceiver, and PLL ground	Y15			18	
SD_GND09	SerDes core logic, transceiver, and PLL ground	Y16			18	
SD_GND10	SerDes core logic, transceiver, and PLL ground	AA5			18	
SD_GND11	SerDes core logic, transceiver, and PLL ground	AA7			18	
SD_GND12	SerDes core logic, transceiver, and PLL ground	AA9			18	
SD_GND13	SerDes core logic, transceiver, and PLL ground	AA12			18	
SD_GND14	SerDes core logic, transceiver, and PLL ground	AA14			18	
SD_GND15	SerDes core logic, transceiver, and PLL ground	AA17			18	
SD_GND16	SerDes core logic, transceiver, and PLL ground	AA18			18	
SD_GND17	SerDes core logic, transceiver, and PLL ground	AA19			18	
SD_GND18	SerDes core logic, transceiver, and PLL ground	AB7			18	
SD_GND19	SerDes core logic, transceiver, and PLL ground	AB9			18	
SD_GND20	SerDes core logic, transceiver, and PLL ground	AB12			18	
SD_GND21	SerDes core logic, transceiver, and PLL ground	AB14			18	
SD_GND22	SerDes core logic, transceiver, and PLL ground	AB17			18	
SD_GND23	SerDes core logic, transceiver, and PLL ground	AB20			18	

Signal	Signal description	Package pin number	Pin type	Power supply	Notes
G1VDD18	DDR supply	AA27		G1V _{DD}	
G1VDD19	DDR supply	AC27		G1V _{DD}	
G1VDD20	DDR supply	AE27		G1V _{DD}	
G1VDD21	DDR supply	AG27		G1V _{DD}	
G1VDD22	DDR supply	AH27		G1V _{DD}	
SVDD1	SerDes transceiver supply	W7		SV _{DD}	
SVDD2	SerDes transceiver supply	W8		SV _{DD}	
SVDD3	SerDes transceiver supply	W9		SV _{DD}	
SVDD4	SerDes transceiver supply	W10		SV _{DD}	
SVDD5	SerDes transceiver supply	W13		SV _{DD}	
SVDD6	SerDes transceiver supply	W14		SV _{DD}	
SVDD7	SerDes transceiver supply	W15		SV _{DD}	
SVDD8	SerDes transceiver supply	W16		SV _{DD}	
XVDD1	SerDes transceiver supply	AC7		XV _{DD}	
XVDD2	SerDes transceiver supply	AC9		XV _{DD}	
XVDD3	SerDes transceiver supply	AC12		XV _{DD}	
XVDD4	SerDes transceiver supply	AC14		XV _{DD}	
XVDD5	SerDes transceiver supply	AC17		XV _{DD}	
XVDD6	SerDes transceiver supply	AC20		XV _{DD}	
FA_VL	Reserved	AB21		FA_VL	
PROG_MTR	Reserved	F13		PROG_MTR	
TA_PROG_SFP	SFP Fuse Programming Override supply	G13		TA_PROG_SFP	
TH_VDD	Thermal Monitor Unit supply	G8		TH_V _{DD}	
VDD01	Supply for cores and platform	K14		V _{DD}	
VDD02	Supply for cores and platform	K16		V _{DD}	
VDD03	Supply for cores and platform	K18		V _{DD}	
VDD04	Supply for cores and platform	K20		V _{DD}	
VDD05	Supply for cores and platform	K22		V _{DD}	
VDD06	Supply for cores and platform	L9		V _{DD}	
VDD07	Supply for cores and platform	L11		V _{DD}	
VDD08	Supply for cores and platform	L13		V _{DD}	
VDD09	Supply for cores and platform	L15		V _{DD}	
VDD10	Supply for cores and platform	L17		V _{DD}	
VDD11	Supply for cores and platform	L19		V _{DD}	
VDD12	Supply for cores and platform	L21		V _{DD}	
VDD13	Supply for cores and platform	M10		V _{DD}	
VDD14	Supply for cores and platform	M12		V _{DD}	

 Table 1. Pinout list by bus (continued)

Charac	teristic	Symbol	Min	Max	Unit	Notes
	3/4/5/6/7/8/9/10), USB control (DRVVBUS, PWRFAULT)					
	Ethernet management interface 2 (EMI2), GPIO2	TV _{IN}	-0.3	TV _{DD} + 0.3	V	13
USB PHY transceiver supply voltage	Transceiver supply for USB PHY	USB_HV _{IN}	-0.3	USB_HV _D _D + 0.3	V	10
	Analog and Digital HS supply for USB PHY	USB_SDV _{DD}	-0.3	USB_SDV _{DD} + 0.3	V	11
	Analog and Digital SS supply for USB PHY	USB_SV _{DD}	-0.3	USB_SV _D _D + 0.3	V	12
Storage temperature range		T _{STG}	-55	150	°C	

Table 2. Absolute maximum ratings¹ (continued)

Notes:

1. Functional operating conditions are given in Table 3. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.

2. **Caution:** MV_{IN} must not exceed GV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.

3. **Caution:** OV_{IN} must not exceed OV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.

4. **Caution:** LV_{IN} must not exceed LV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.

5. (D, G1, L, O, X, S, T, E)V_{IN} and USBn_HV_{IN} may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 7.

6. **Caution:** DV_{IN} must not exceed DV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.

7. **Caution:** EV_{IN} must not exceed EV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.

8. Supply voltage specified at the voltage sense pin. Voltage input pins should be regulated to provide specified voltage at the sense pin.

9. See the power supply column to determine which power supply rail is used for each interface.

10. Transceiver supply for USB PHY.

11. Analog and Digital SS supply for USB PHY.

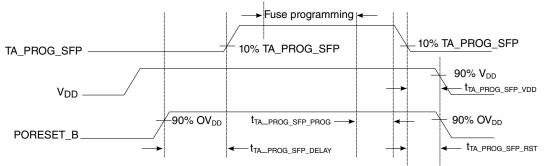
12. Analog and Digital HS supply for USB PHY.

13. **Caution:** TV_{IN} must not exceed TV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.

3.1.2 Recommended operating conditions

This table provides the recommended operating conditions for this chip.

QorIQ LS1088A Data Sheet, Rev. 0, 01/2018


Electrical characteristics

2. After fuse programming is completed, it is required to return TA_PROG_SFP = GND before the system is power cycled (PORESET_B assertion) or powered down (V_{DD} ramp down) per the required timing specified in Table 6. See Security fuse processor for additional details.

Warning

No activity other than that required for secure boot fuse programming is permitted while TA_PROG_SFP is driven to any voltage above GND, including the reading of the fuse block. The reading of the fuse block may only occur while TA_PROG_SFP = GND.

This figure shows the TA_PROG_SFP timing diagram.

NOTE: TA_PROG_SFP must be stable at 1.8 V prior to initiating fuse programming.

Figure 9. TA_PROG_SFP timing diagram

This table provides information on the power-down and power-up sequence parameters for TA_PROG_SFP.

Driver type	Min	Max	Unit	Notes
tta_prog_sfp_delay	100	—	SYSCLKs	1
t _{TA_PROG_SFP_PROG}	0	—	us	2
tta_prog_sfp_vdd	0	—	us	3
tta_prog_sfp_rst	0	—	us	4

Table 6. TA_PROG_SFP timing ⁵

Notes:

1. Delay required from the deassertion of PORESET_B to driving TA_PROG_SFP ramp up. Delay measured from PORESET_B deassertion at 90% OV_{DD} to 10% TA_PROG_SFP ramp up.

2. Delay required from fuse programming completion to TA_PROG_SFP ramp down start. Fuse programming must complete while TA_PROG_SFP is stable at 1.8 V. No activity other than that required for secure boot fuse programming is permitted while TA_PROG_SFP is driven to any voltage above GND, including the reading of the fuse block. The reading of the fuse block may only occur while TA_PROG_SFP = GND. After fuse programming is complete, it is required to return TA_PROG_SFP = GND.

3.7.1.1 SYSCLK DC electrical characteristics

This table provides the SYSCLK DC characteristics.

Table 12.	SYSCLK DC	electrical	characteristics
-----------	-----------	------------	-----------------

Parameter	Symbol	Min	Typical	Max	Unit	Notes	
Input high voltage	V _{IH}	0.7 X OV _{DD}	—	—	V	1	
Input low voltage	VIL	—	—	0.3 X OV _{DD}	V	1	
Input capacitance	C _{IN}	—	7	12	pF	—	
Input current (V_{IN} = 0 V or V_{IN} = OV _{DD})	I _{IN}	—	—	± 50	μA	2	
Notes:			•		•		
1. The min V_{IL} and max V_{IH} values are based on the respective min and max OV_{IN} values found in Table 3.							
2. At recommended operating conditions with OV _{DD} = 1.8 V. See Table 3.							

3.7.1.2 SYSCLK AC timing specifications

This table provides the SYSCLK AC timing specifications.

Parameter/condition	Symbol	Min	Тур	Max	Unit	Notes
SYSCLK frequency	f _{SYSCLK}	100.0	—	125/133.3	MHz	2, 6
SYSCLK cycle time	t _{SYSCLK}	7.5	—	10.0	ns	1, 2
SYSCLK duty cycle	t _{KHK} /t _{SYSCLK}	40	—	60	%	2
SYSCLK slew rate	—	1	—	4	V/ns	3
SYSCLK peak period jitter	—	_	—	± 150	ps	—
SYSCLK jitter phase noise at -56 dBc	—		—	500	kHz	4
AC Input Swing Limits at 1.8 V OV _{DD}	ΔV _{AC}	1.08	_	1.8	V	—

Table 13. SYSCLK AC timing specifications^{1, 5}

Notes:

1. **Caution:** The relevant clock ratio settings must be chosen such that the resulting SYSCLK frequencies do not exceed their respective maximum or minimum operating frequencies.

2. Measured at the rising edge and/or the falling edge at $OV_{DD}/2$.

3. Slew rate as measured from 0.35 x OV_{DD} to 0.65 x OV_{DD} .

4. Phase noise is calculated as FFT of TIE jitter.

5. At recommended operating conditions with $OV_{DD} = 1.8$ V. See Table 3.

6. The 125 MHz max frequency is limited to parts with 1200 MHz CPU frequency. The 133 MHz max frequency can be used for parts with 1600 MHz and 1400 MHz CPU frequency.

Electrical characteristics

Table 34. eSDHC interface DC electrical characteristics (E/D/OV_{DD}=1.8 V)³ (continued)

Characteristic Symbol Min Max Unit							
Input/output leakage current (I_{IN}/I_{OZ}) -10 10 μA 2							
Notes:				•			
1. The min V_{IL} and max V_{IH} values are bas	ed on the respe	ctive min and max E/D/	OV _{IN} values found in th	ne Table 3.			
2. Open-drain mode is for MMC cards only.							
3. At recommended operating conditions w	vith E/D/OV _{DD} =	1.8 V.					

3.12.2 eSDHC AC timing specifications

This section provides the AC timing specifications.

This table provides the eSDHC AC timing specifications as defined in Figure 14, Figure 15, and Figure 16.

	Table 35.	eSDHC AC timing	specifications	(full-speed/high-s	peed mode) ⁶
--	-----------	-----------------	----------------	--------------------	-------------------------

Parameter	Symbol ¹	Min	Max	Unit	Notes
SDHC_CLK clock frequency:	f _{sнscк}	0	25/50	MHz	2, 4
SD/SDIO (full-speed/high-speed mode)MMC (full-speed/high-speed mode)			20/52		
SDHC_CLK clock low time (full-speed/high-speed mode)	t _{SHSCKL}	10/7	-	ns	4
SDHC_CLK clock high time (full-speed/high-speed mode)	t _{sнscкн}	10/7	-	ns	4
SDHC_CLK clock rise and fall times	t _{SHSCKR/}	-	3	ns	4
	t _{SHSCKF}				
Input setup times: SDHC_CMD, SDHC_DATx, SDHC_CD to SDHC_CLK	t _{SHSIVKH}	2.5	-	ns	3, 4, 5
Input hold times: SDHC_CMD, SDHC_DATx, SDHC_CD to SDHC_CLK	t _{SHSIXKH}	2.5	-	ns	4, 5
Output hold time: SDHC_CLK to SDHC_CMD, SDHC_DATx valid	t _{SHSKHOX}	-3	-	ns	4, 5
Output delay time: SDHC_CLK to SDHC_CMD, SDHC_DATx valid	t _{SHSKHOV}	-	3	ns	4, 5

Notes:

1. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and _{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{SHKHOX} symbolizes eSDHC high-speed mode device timing (SH) clock reference (K) going to the high (H) state, with respect to the output (O) reaching the invalid state (X) or output hold time. Note that in general, the clock reference symbol is based on five letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2. In full-speed mode, the clock frequency value can be 0-25MHz for an SD/SDIO card and 0-20MHz for an MMC card. In high-speed mode, the clock frequency value can be 0-50MHz for an SD/SDIO card and 0-52MHz for an MMC card.

Table 37. eSDHC AC timing specifications (DDR50/DDR)³ (continued)

Parameter	Symbol	Min	Max	Units	Notes	
Notes:						
1. $C_{CARD} \leq 10 \text{ pF}$, (1 card).						
2. $C_L = C_{BUS} + C_{HOST} + C_{CARD} \le 20 \text{ pF}$ for MMC, $\le 25\text{pF}$ for Input Data of DDR50, $\le 30\text{pF}$ for Input CMD of DDR50.						
3. For recommended operating conditions, see Table 3.						
4. Total clock duty cycle and data and clock skew on the board should be limited to 0.2ns.						
5. Total clock duty cycle and command and clock skew on the board should be limited to 0.3ns.						

This figure provides the eSDHC DDR50/DDR mode input AC timing diagram.

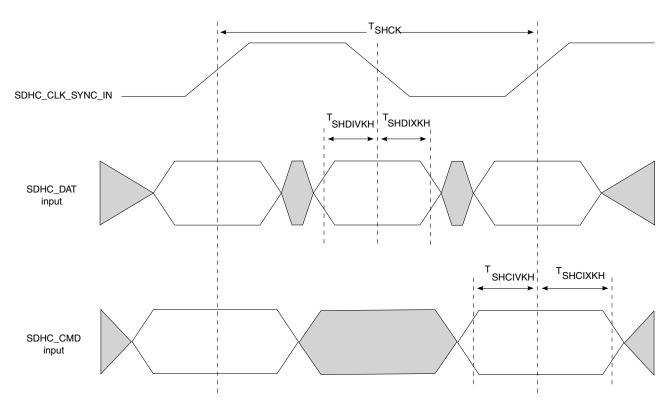


Figure 20. eSDHC DDR50/DDR mode input AC timing diagram

This figure provides the eSDHC DDR50/DDR mode output AC timing diagram.

Electrical characteristics

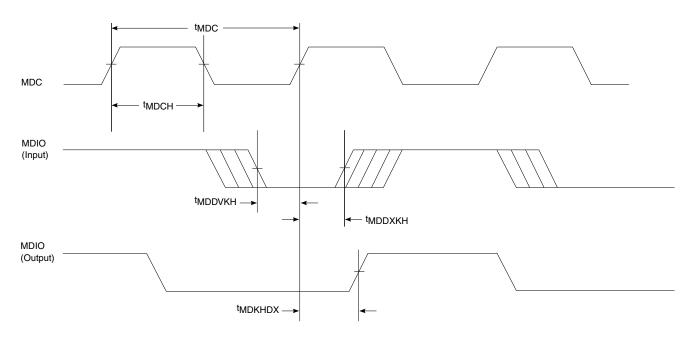


Figure 23. Ethernet management interface 1 timing diagram

3.13.1.2 Ethernet management interface 2 (EMI2)

This section describes the electrical characteristics for the EMI2 interface.

The EMI2 interface timing is compatible with IEEE Std 802.3TM clause 45.

3.13.1.2.1 EMI2 DC electrical characteristics

This section describes the DC electrical characteristics for EMI2_MDIO and EMI2_MDC. The pins are available on TV_{DD} . For operating voltages, see Table 3.

This table provides the EMI2 DC electrical characteristics when operating at $TV_{DD} = 2.5$ V.

Table 42. EMI2 D	C electrica	al characteristics	$(TV_{DD} = 2.5 V)^{1}$	
Parameter	Symbol	Min	Max	Unit

Parameter	Symbol	Min	Мах	Unit	Notes
Input high voltage	V _{IH}	0.7 x TVDD	-	-	2
Input low voltage	V _{IL}	-	0.2 x TVDD	-	2
Input current ($V_{IN} = 0$ or $V_{IN} = TV_{DD}$)	I _{IN}	-50.0	50.0	-	3, 4
Output high voltage (TV _{DD} = min, I _{OH} = -1.0 mA)	V _{OH}	2.0	-	-	4
Output low voltage (TV _{DD} = min, $I_{OL} = 1.0$ mA)	V _{OL}	-	0.4	-	4
					L

1. For recommended operating conditions, see Table 3.

2. The min VIL and max VIH values are based on the respective min and max TVIN values found in Table 3.

3.14.1 GPIO DC electrical characteristics

This table provides the DC electrical characteristics for the GPIO interface operating at $D/EV_{DD} = 3.3 \text{ V}.$

Table 52. GPIO DC electrical characteristics $(D/EV_{DD} = 3.3 V)^1$

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x D/EV _{DD}	-	V	2
Input low voltage	V _{IL}	-	0.2 x D/EV _{DD}	V	2
Input current ($V_{IN} = 0V$ or $V_{IN} = LV_{DD}$)	I _{IN}	-	±50	μA	3
Output high voltage (D/EV _{DD} = min, I_{OH} = -2 mA)	V _{OH}	2.4	-	V	-
Output low voltage (D/EV _{DD} = min, $I_{OL} = 2$ mA)	V _{OL}	-	0.4	V	-
1. For recommended operating conditions,	see Table 3.				
2. The min $V_{\rm IL}$ and max $V_{\rm IH}$ values are bas	ed on the resp	pective min and max DV_{IN}	/EV _{IN} values found ir	n Table 3.	
3. The symbol $\text{DV}_{\text{IN}}/\text{EV}_{\text{IN}}$ represents the in	put voltage of	the supply referenced in 1	Table 3.		

This table provides the DC electrical characteristics for the GPIO interface operating at $TV_{DD} = 2.5 V$.

Table 53. GPIO DC electrical characteristics $(TV_{DD} = 2.5 V)^1$

Parameter	Symbol	Min	Мах	Unit	Notes		
Input high voltage	V _{IH}	- V					
Input low voltage	V _{IL}	-	0.2 x TV _{DD}	V	2		
Input current ($V_{IN} = 0V$ or $V_{IN} = LV_{DD}$)	I _{IN}	-	±50	μA	3		
Output high voltage (TV _{DD} = min, $I_{OH} = -1$ mA)	$\Gamma V_{DD} = min, I_{OH} = -1$ V_{OH} 2.0 - V						
Output low voltage (TV _{DD} = min, $I_{OL} = 1$ mA)	V _{OL}	-	0.4	V	-		
1. For recommended operating conditions,	see Table 3.			-			
2. The min V_{IL} and max V_{IH} values are bas	ed on the resp	ective min and max TV	IN values found in Table	3.			
3. The symbol TV_{IN} represents the input vo	oltage of the su	pply referenced in Tab	le 3.				

This table provides the DC electrical characteristics for the GPIO interface operating at $D/E/TV_{DD} = 1.8 \text{ V}.$

Table 54. GPIO DC electrical characteristics $(D/E/TV_{DD} = 1.8 V)^{1}$

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x D/E/TV _{DD}	-	V	2

Table continues on the next page...

QorIQ LS1088A Data Sheet, Rev. 0, 01/2018

Table 79.	Gen1i/1m 1.5	G transmitter	DC specifications	$(XV_{DD} = 1.35 V)^3$
	••••••			

Parameter	Symbol	Min	Тур	Max	Units	Notes
Tx differential output voltage	V _{SATA_TXDIFF}	400	500	600	mV p-p	1
Tx differential pair impedance	Z _{SATA_TXDIFFIM}	85	100	115	Ω	2
Notes:					•	
1. Terminated by 50 Ω load.						
2. DC impedance.						
3. For recommended operating c	onditions, see Table 3	3.				

This table provides the differential transmitter output DC characteristics for the SATA interface at Gen2i/2m or 3.0 Gbits/s transmission.

Table 80. Gen 2i/2m 3 G transmitter DC specifications $(XV_{DD} = 1.35 V)^2$

Parameter	Symbol	Min	Тур	Max	Units	Notes
Transmitter differential output voltage	V _{SATA_TXDIFF}	400	—	700	mV p-p	1
Transmitter differential pair impedance	Z _{SATA_TXDIFFIM}	85	100	115	Ω	—
Notes:		•				
1. Terminated by 50 Ω load.						
2. For recommended operating conditions	s, see Table 3.					

This table provides the differential transmitter output DC characteristics for the SATA interface at Gen 3i transmission.

Table 81. Gen 3i transmitter DC specifications $(XV_{DD} = 1.35 V)^2$

Parameter	Symbol	Min	Тур	Max	Units	Notes	
Transmitter differential output voltage	V _{SATA_TXDIFF}	240	—	900	mV p-p	1	
Transmitter differential pair impedance	Z _{SATA_TXDIFFIM}	85	100	115	Ω	—	
Notes:							
1. Terminated by 50 Ω load.							
2. For recommended operating conditions, see Table 3.							

3.16.5.1.2 SATA DC receiver input characteristics

This table provides the Gen1i/1m or 1.5 Gbits/s differential receiver input DC characteristics for the SATA interface.

3.16.6 SGMII interface

Each SGMII port features a 4-wire AC-coupled serial link from the SerDes interface of the chip, as shown in Figure 39, where C_{TX} is the external (on board) AC-coupled capacitor. Each SerDes transmitter differential pair features 100 Ω output impedance. Each input of the SerDes receiver differential pair features 50 Ω on-die termination to XGND*n*. The reference circuit of the SerDes transmitter and receiver is shown in Figure 36.

3.16.6.1 SGMII clocking requirements for SDn_REF_CLK1_P and SDn_REF_CLK1_N

When operating in SGMII mode, the EC*n*_GTX_CLK125 clock is not required for this port. Instead, a SerDes reference clock is required on SD1_REF_CLK[1:2]_P and SD1_REF_CLK[1:2]_N pins. SerDes lanes may be used for SerDes SGMII configurations based on the RCW Configuration field SRDS_PRTCL.

For more information on these specifications, see SerDes reference clocks.

3.16.6.2 SGMII DC electrical characteristics

This section describes the electrical characteristics for the SGMII interface.

3.16.6.2.1 SGMII and SGMII 2.5 G transmit DC specifications

This table describes the SGMII SerDes transmitter AC-coupled DC electrical characteristics. Transmitter DC characteristics are measured at the transmitter outputs $(SDn_TXn_P \text{ and } SDn_TXn_N)$ as shown in Figure 40.

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Output high voltage	V _{OH}	-	-	1.5 x V _{OD} _{-max}	mV	1
Output low voltage	V _{OL}	V _{OD} _{-min} /2	-	-	mV	1
Output differential	V _{OD}	320	500.0	725.0	mV	TECR0[AMP_R ED]=0b000000
voltage ^{2, 3, 5} (XV _{DD-Typ} at		293.8	459.0	665.6		TECR0[AMP_R ED]=0b000001
1.35 V)		266.9	417.0	604.7		TECR0[AMP_R ED]=0b000011
		240.6	376.0	545.2		TECR0[AMP_R ED]=0b000010

Table 92. SGMII DC transmitter electrical characteristics $(XV_{DD} = 1.35 V)^4$

 Table 96.
 SGMII transmit AC timing specifications⁴ (continued)

Parameter	Symbol	Min	Тур	Max	Unit	Notes	
Notes:		-		-			
1. Each UI is 800 ps ± 100 ppm or 320 ps ± 100 ppm.							
2. See Figure 42 for single frequency sinusoidal jitter measurements.							
3. The external AC coupling capacitor is required. It is recommended that it be placed near the device transmitter output.							
4. For recommended operating conditions, see Table 3.							

3.16.6.3.2 SGMII AC measurement details

Transmitter and receiver AC characteristics are measured at the transmitter outputs $(SDn_TXn_P \text{ and } SDn_TXn_N)$ or at the receiver inputs $(SDn_RXn_P \text{ and } SDn_RXn_N)$ respectively, as shown in this figure.

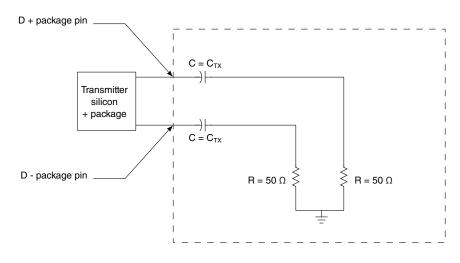


Figure 41. SGMII AC test/measurement load

3.16.6.3.3 SGMII and SGMII 2.5 G receiver AC timing specifications

This table provides the SGMII and SGMII 2.5 G receiver AC timing specifications. The AC timing specifications do not include RefClk jitter. Source synchronous clocking is not supported. Clock is recovered from the data.

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Deterministic jitter tolerance	J _D	-	-	0.37	UI p-p	1
Combined deterministic and random jitter tolerance	J _{DR}	-	-	0.55	UI p-p	1
Total jitter tolerance	J _T	-	-	0.65	UI p-p	1, 2

Table 97. SGMII receiver AC timing specifications³

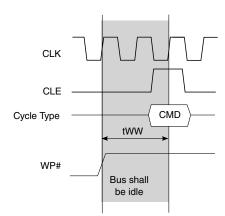


Figure 66. t_{ww} timings

This figure shows the t_{IBIXKH4} timings.

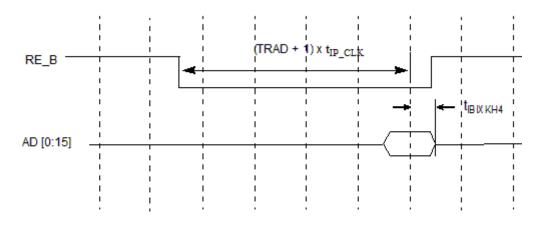
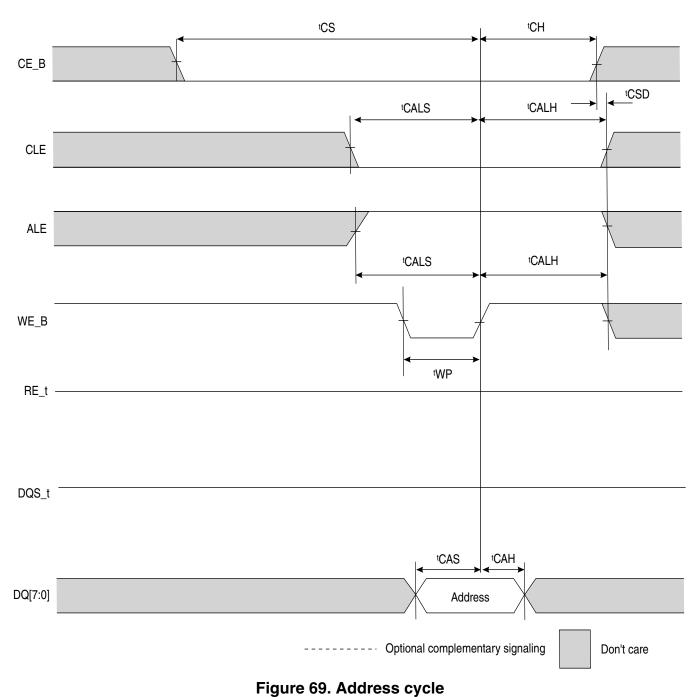


Figure 67. t_{IBIXKH4} timings


3.18.2.6 IFC-NAND NVDDR AC timing specification

The table below describes the AC timing specifications for the IFC-NAND NVDDR interface. These specifications are compliant to NVDDR mode of ONFI specification revision 3.0.

 Table 125. Integrated flash controller IFC-NAND NVDDR interface AC timing specifications (OVDD = 1.8 V)

Parameter	Symbol	I/O	Min	Мах	Unit	Notes
Access window of DQ[7:0] from CLK	t _{AC}	I	3 - 150 (ps)	20 + 150 (ps)	ns	Figure 71
Address cycle to data loading time	t _{ADL}	I	TADL	-	t _{IP_CLK}	Figure 72

Electrical characteristics

QorIQ LS1088A Data Sheet, Rev. 0, 01/2018

Table 141. USB 3.0 PHY transceiver supply DC voltage $(USB_HV_{DD} = 3.3 V)^1$

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	2.0	-	V	2
Input low voltage	V _{IL}	-	0.8	V	2
Input current (USB_HVIN = 0V or USB_HV _{IN} = USB_HV _{DD})	I _{IN}	-50.0	50.0	μA	3
Output high voltage (USB_HV _{DD} = min, I_{OH} = -2 mA)	V _{OH}	2.8	-	V	-
Output low voltage (USB_ $HV_{DD} = min, I_{OL} = 2 mA$)	V _{OL}	-	0.3	V	-
1. For recommended operating conditions,	see Table 3.				
2. The min V_{IL} and max V_{IH} values are bas	ed on the resp	pective min and max	USB_HV _{IN} values foun	d in Table 3.	
3. The symbol USB_HV _{IN} represents the ir	put voltage of	the supply reference	ed in Table 3.		

This table provides the USB 3.0 transmitter DC electrical characteristics at package pins.

Table 142.	USB 3.0 trai	nsmitter DC ele	ctrical characte	eristics'	
					1

Parameter	Symbol	Min	Тур	Max	Unit				
Differential output voltage	V _{tx-diff-pp}	800.0	1000.0	1200.0	mVp-p				
Low power differential output voltage	V _{tx-diff-pp-low}	400.0	-	1200.0	mVp-p				
Transmit de-emphasis	V _{tx-de-ratio}	3.0	-	4.0	dB				
Differential impedance	Z _{diffTX}	72.0	100.0	120.0	Ω				
Transmit common mode impedance	R _{TX-DC}	18.0	-	30.0	Ω				
Absolute DC common mode voltage between U1 and U0	T _{TX-CM-DC-} ACTIVEIDLE- DELTA	-	-	200.0	mV				
DC electrical idle differential output voltage	V _{TX-IDLE-} DIFF-DC	0.0	-	10.0	mV				
1. For recommended operating conditi	. For recommended operating conditions, see Table 3.								

This table provides the USB 3.0 transmitter DC electrical characteristics at receiver package pins.

Table 143. USB 3.0 receiver DC electrical characteristics¹

Parameter	Symbol	Min	Тур	Мах	Unit	Notes
Differential receiver input impedance	R _{RX-DIFF-DC}	72.0	100.0	120.0	Ω	-
Receiver DC common mode impedance	R _{RX-DC}	18.0	-	30.0	Ω	-
DC input CM input impedance for V > 0 during reset or power down	Z _{RX-HIGH-} IMP-DC	25000.0	-	-	Ω	-

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support

arm

Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. Arm, AMBA, Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and µVision are registered trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. Arm7, Arm9, Arm11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, Mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates.

© 2015-2018 NXP B.V.

Document Number LS1088A Revision 0, 01/2018

