

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

 \sim

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	13
Program Memory Size	12KB (12K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj12gp201-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33FJ12GP201/202 Product Families

The device names, pin counts, memory sizes, and peripheral availability of each family are listed below, followed by their pinout diagrams.

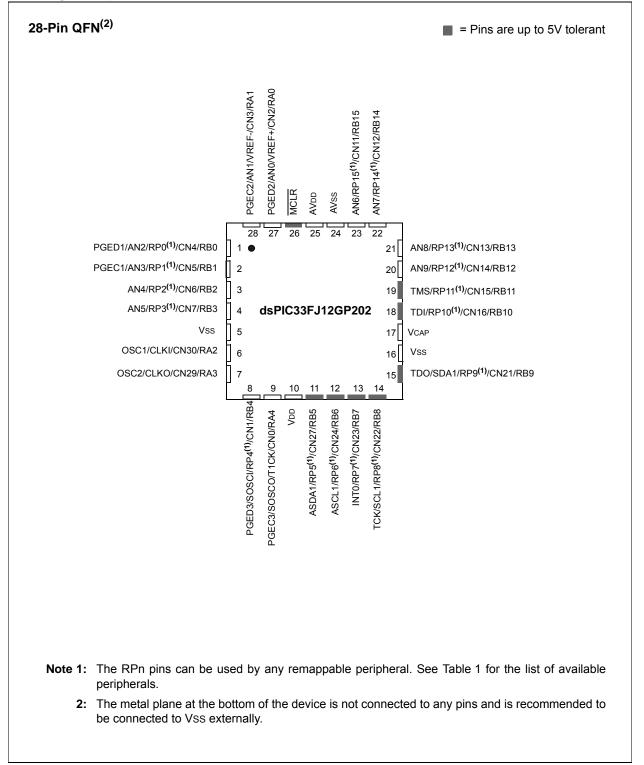

		ory			Ren	nappa	ble Per	ipher	als					
Device	Pins	Program Flash Memory (Kbyte)	RAM (Kbyte)	Remappable Pins	16-bit Timer	Input Capture	Output Compare Std. PWM	UART	External Interrupts ⁽²⁾	IdS	10-Bit/12-Bit ADC	I ² Стм	I/O Pins (Max)	Packages
dsPIC33FJ12GP201	18	12	1	8	3 ⁽¹⁾	4	2	1	3	1	1 ADC, 6 ch	1	13	PDIP SOIC
dsPIC33FJ12GP202	28	12	1	16	3 ⁽¹⁾	4	2	1	3	1	1 ADC, 10 ch	1	21	SPDIP SOIC SSOP QFN

TABLE 1: dsPIC33FJ12GP201/202 CONTROLLER FAMILIES

Note 1: Only two out of three timers are remappable.

2: Only two out of three interrupts are remappable.

Pin Diagrams (Continued)

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the dsPIC33FJ12GP201/202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 4. "Program Memory" (DS70202) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).

The dsPIC33FJ12GP201/202 architecture features separate program and data memory spaces and buses. This architecture also allows the direct access of program memory from the data space during code execution.

4.1 Program Address Space

The program address memory space of the dsPIC33FJ12GP201/202 devices is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit PC during program execution, or from table operation or data space remapping as described in Section 4.6 "Interfacing Program and Data Memory Spaces".

User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFFF). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

The memory map for the dsPIC33FJ12GP201/202 family of devices is shown in Figure 4-1.

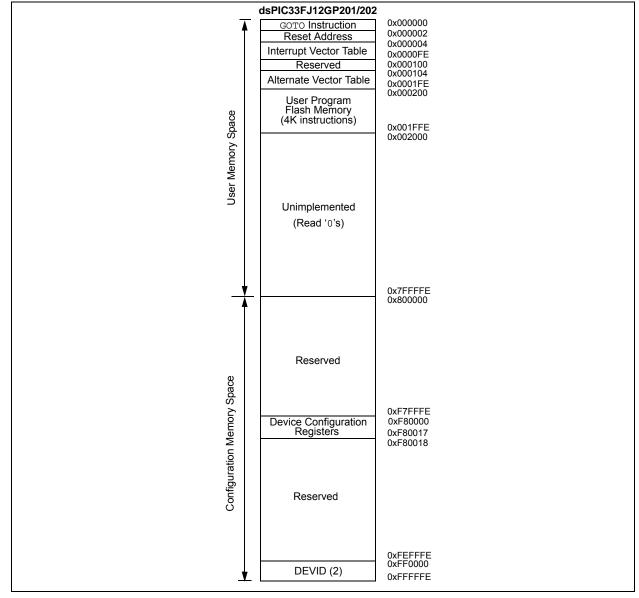


FIGURE 4-1: PROGRAM MEMORY FOR dsPIC33FJ12GP201/202 DEVICES

TABLE 4-1:	CPU CORE REGISTERS MAP
------------	-------------------------------

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREG0	0000		Working Register 0									0000						
WREG1	0002		Working Register 1									0000						
WREG2	0004		Working Register 2									0000						
WREG3	0006								Working Re	gister 3								0000
WREG4	0008		Working Register 4										0000					
WREG5	000A											0000						
WREG6	000C								Working Re	gister 6								0000
WREG7	000E								Working Re	gister 7								0000
WREG8	0010								Working Re	gister 8								0000
WREG9	0012								Working Re	gister 9								0000
WREG10	0014								Working Re	gister 10								0000
WREG11	0016								Working Re	gister 11								0000
WREG12	0018								Working Re	gister 12								0000
WREG13	001A		Working Register 13								0000							
WREG14	001C		Working Register 14								0000							
WREG15	001E		Working Register 15								0800							
SPLIM	0020		Stack Pointer Limit Register								xxxx							
ACCAL	0022		Accumulator A Low Word Register								0000							
ACCAH	0024							Accum	ulator A High	Word Regi	ster							0000
ACCAU	0026							Accumu	lator A Uppe	er Word Reg	jister							0000
ACCBL	0028							Accum	ulator B Low	Word Regi	ster							0000
ACCBH	002A							Accum	ulator B High	Word Regi	ster							0000
ACCBU	002C							Accumu	lator B Uppe	er Word Reg	jister							0000
PCL	002E							Program	Counter Lo	w Word Reg	gister							0000
PCH	0030	—	_	—	_	_	_	_	_			Progra	m Counter	High Byte R	legister			0000
TBLPAG	0032	—	—	_	—	_	—	_	—			Table F	Page Addre	ss Pointer R	Register			0000
PSVPAG	0034	_	_	_	_	_	_	-	_		Progra	am Memory	v Visibility P	age Address	s Pointer R	egister		0000
RCOUNT	0036							Repe	at Loop Cou	inter Registe	er							xxxx
DCOUNT	0038								DCOUNT	<15:0>								xxxx
DOSTARTL	003A							DOS	TARTL<15:	1>							0	xxxx
DOSTARTH	003C	_	_	_	_	_	_	_	_	—	_			DOSTAF	RTH<5:0>			00xx
DOENDL	003E							DOE	NDL<15:1	>							0	xxxx
DOENDH	0040	_	—	_	—	—	—	_	_	_	—			DOE	NDH			00xx
SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1	IPL0	RA	N	OV	Z	С	0000
CORCON	0044	_	—	_	US	EDT		DL<2:0>		SATA	SATB	SATDW	ACCSAT	IPL3	PSV	RND	IF	0020
MODCON	0046	XMODEN	YMODEN	_	_		BWN	/<3:0>			YWM	<3:0>			XWN	1<3:0>		0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn forms the Effective Address (EA.)
Register Indirect Post-Modified	The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

TABLE 4-22: FUNDAMENTAL ADDRESSING MODES SUPPORTED

4.3.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions and the DSP accumulator class of instructions provide a greater degree of addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note: For the MOV instructions, the addressing mode specified in the instruction can differ for the source and destination EA. However, the 4-bit Wb (Register Offset) field is shared by both source and destination (but typically only used by one).

In summary, the following addressing modes are supported by move and accumulator instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-bit Literal
- 16-bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

4.3.4 MAC INSTRUCTIONS

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY.N, MOVSAC, and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the data pointers through register indirect tables.

The two-source operand prefetch registers must be members of the set {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The effective addresses generated (before and after modification) must, therefore, be valid addresses within X data space for W8 and W9 and Y data space for W10 and W11.

Note:	Register	Indirect	with	Register	Offset				
	Addressing mode is available only for W9								
	(in X space) and W11 (in Y space).								

In summary, the following addressing modes are supported by the ${\tt MAC}$ class of instructions:

- Register Indirect
- Register Indirect Post-Modified by 2
- · Register Indirect Post-Modified by 4
- · Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

4.3.5 OTHER INSTRUCTIONS

In addition to the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ADD Acc, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands.

4.4.3 MODULO ADDRESSING APPLICABILITY

Modulo Addressing can be applied to the EA calculation associated with any W register.

Address boundaries check for addresses equal to:

- The upper boundary addresses for incrementing buffers
- The lower boundary addresses for decrementing buffers

It is important to realize that the address boundaries also check for addresses less than or greater than these addresses. Address changes can, therefore, jump beyond boundaries and still be adjusted correctly.

Note: The modulo corrected effective address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the effective address. When an address offset (such as [W7+W2]) is used, Modulo Address correction is performed, but the contents of the register remain unchanged.

4.5 Bit-Reversed Addressing

Bit-Reversed Addressing mode is intended to simplify data re-ordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.

The modifier, which can be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

4.5.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

Bit-Reversed Addressing mode is enabled in any of these situations:

- BWM bits (W register selection) in the MODCON register are any value other than '15' (the stack cannot be accessed using Bit-Reversed Addressing)
- The BREN bit is set in the XBREV register
- The addressing mode used is Register Indirect with Pre-Increment or Post-Increment

If the length of a bit-reversed buffer is $M = 2^{N}$ bytes, the last 'N' bits of the data buffer start address must be zeros.

XB<14:0> is the Bit-Reversed Address modifier, or 'pivot point,' which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note:	All bit-reversed EA calculations assume							
	word-sized data (LSB of every EA is							
	always clear). The XB value is scaled							
	accordingly to generate compatible (byte)							
	addresses.							

When enabled, Bit-Reversed Addressing is executed only for Register Indirect with Pre-Increment or Post-Increment Addressing, and word-sized data writes. It will not function for any other addressing mode or for byte-sized data, and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB), and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data is a requirement, the LSb of the EA is ignored (and always clear).

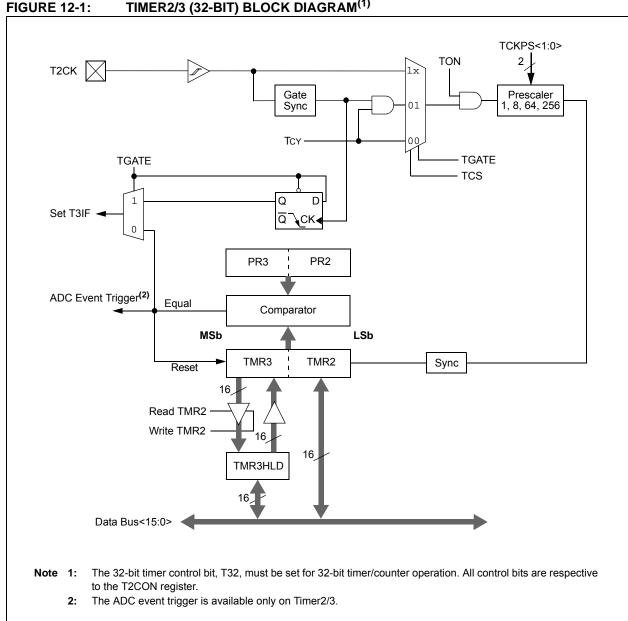
Note: Modulo Addressing and Bit-Reversed Addressing should not be enabled together. If an application attempts to do so, Bit-Reversed Addressing will assume priority when active for the X WAGU, and X WAGU Modulo Addressing will be disabled. However, Modulo Addressing will continue to function in the X RAGU.

If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV<15>) bit, a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the bit-reversed pointer.

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 1 BOR: Brown-out Reset Flag bit
 - 1 = A Brown-out Reset has occurred
 0 = A Brown-out Reset has not occurred
- bit 0 **POR:** Power-on Reset Flag bit
 - 1 = A Power-up Reset has occurred
 - 0 = A Power-up Reset has not occurred
- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	_	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF			
bit 15							bit			
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
T2IF	OC2IF	IC2IF	_	T1IF	OC1IF	IC1IF	INT0IF			
bit 7							bit			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'				
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	iown			
bit 15-14	Unimpleme	nted: Read as	' ∩'							
bit 13	-	1 Conversion (runt Elan Statu	s hit					
bit 10	1 = Interrupt	request has or request has no	curred	lupt hag otatu	5 51					
bit 12	•	RT1 Transmitte		a Status bit						
		request has or		5						
	0 = Interrupt	request has no	ot occurred							
bit 11		RT1 Receiver		Status bit						
		request has or request has no								
bit 10	SPI1IF: SPI1 Event Interrupt Flag Status bit									
		request has or								
bit 9	-	request has no		hit						
DIL 9		I1 Fault Interru		DIL						
		request has no								
bit 8	T3IF: Timer3	Interrupt Flag	Status bit							
		request has or request has no								
bit 7	T2IF: Timer2	Interrupt Flag	Status bit							
	1 = Interrupt	request has or	curred							
	•	request has no								
bit 6	-	out Compare Cl		upt Flag Status	bit					
		request has or request has no								
bit 5	-	Capture Chanr		Flag Status bit						
	-	request has or	•	lug olaldo oli						
		request has no								
bit 4	Unimpleme	nted: Read as	'0'							
bit 3	T1IF: Timer1	Interrupt Flag	Status bit							
		request has or request has no								
bit 2	OC1IF: Outp	out Compare Cl	nannel 1 Interr	upt Flag Status	bit					
	1 = Interrupt 0 = Interrupt	request has or								


REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0

U-0U-0U-0U-0U-0U-0bit 15U-0R/W-1R/W-0R/W-0U-0U-0-INT2IP<2:0>bit 7Legend: R = Readable bitW = Writable bitU = Unimplemented bit, read as '0' - n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknbit 15-7Unimplemented: Read as '0' bit 6-4INT2IP<2:0>: External Interrupt 2 Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>											
U-0 R/W-1 R/W-0 R/W-0 U-0 U-0 U-0 — INT2IP<2:0> — …	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
U-0 R/W-1 R/W-0 R/W-0 U-0 U-0 U-0 — INT2IP<2:0> — …	—	—	—	_		—	—	—			
INT2IP<2:0> - - - bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unkn bit 15-7 Unimplemented: Read as '0' bit 6-4 INT2IP<2:0>: External Interrupt 2 Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled	bit 15							bit 8			
INT2IP<2:0> - - - bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unkn bit 15-7 Unimplemented: Read as '0' bit 6-4 INT2IP<2:0>: External Interrupt 2 Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled											
bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unkn bit 15-7 Unimplemented: Read as '0' bit 6-4 INT2IP<2:0>: External Interrupt 2 Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled	U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0			
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unkn bit 15-7 Unimplemented: Read as '0' bit 6-4 INT2IP<2:0>: External Interrupt 2 Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled	—		INT2IP<2:0>			—	_	—			
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unkn bit 15-7 Unimplemented: Read as '0' bit 6-4 INT2IP<2:0>: External Interrupt 2 Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled	bit 7							bit 0			
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unkn bit 15-7 Unimplemented: Read as '0' bit 6-4 INT2IP<2:0>: External Interrupt 2 Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled											
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unkn bit 15-7 Unimplemented: Read as '0' bit 6-4 INT2IP<2:0>: External Interrupt 2 Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled	Legend:										
bit 15-7 Unimplemented: Read as '0' bit 6-4 INT2IP<2:0>: External Interrupt 2 Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • • • • • • • • • • • • • • • • •	R = Readable	e bit	W = Writable	Vritable bit U = Unimplemented bit, read as '0'							
bit 6-4 INT2IP<2:0>: External Interrupt 2 Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled	-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown				
bit 6-4 INT2IP<2:0>: External Interrupt 2 Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled											
<pre>111 = Interrupt is priority 7 (highest priority interrupt)</pre>	bit 15-7	Unimplemen	ted: Read as '	כ'							
• • 001 = Interrupt is priority 1 000 = Interrupt source is disabled	bit 6-4	INT2IP<2:0>:	External Interr	upt 2 Priority	bits						
000 = Interrupt source is disabled		111 = Interrup	ot is priority 7 (I	highest priorit	y interrupt)						
000 = Interrupt source is disabled		•									
000 = Interrupt source is disabled		•									
000 = Interrupt source is disabled		•									
				ahlad							
bit 5-0 Onimplemented. Neau as 0	hit 3_0	-									
	DIL 3-0	omplemen	ieu. Nedu as	J							

REGISTER 7-17: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7

U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
_	—	T3MD	T2MD	T1MD	_		_
bit 15							bit
R/W-0	U-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0
I2C1MD		U1MD	—	SPI1MD	—		AD1MD
bit 7							bit
Legend:							
R = Readabl		W = Writable		U = Unimplem			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown
bit 15-14	-	nted: Read as '					
bit 13		r3 Module Disal					
		nodule is enable					
bit 12		r2 Module Disal					
	1 = Timer2 r	module is disabl	ed				
	0 = Timer2 r	module is enable	ed				
bit 11	T1MD: Time	er1 Module Disal	ole bit				
	-	nodule is disabl					
		nodule is enable					
bit 10-8	-	nted: Read as '					
bit 7	-	C1 Module Disal					
		dule is enabled					
bit 6	Unimpleme	nted: Read as '	0'				
bit 5	-	T1 Module Disa					
	1 = UART1	module is disabl	ed				
	0 = UART1	module is enabl	ed				
bit 4	Unimpleme	nted: Read as '	0'				
bit 3		PI1 Module Disa					
		odule is disabled					
bit 2-1		nted: Read as '	0'				
bit 0	-	C1 Module Disa					
		nodule is disable					

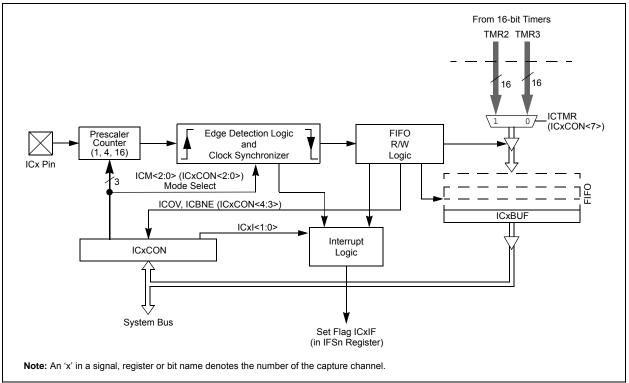
Note 1: PCFGx bits have no effect if the ADC module is disabled by setting this bit. When the bit is set, all port pins that have been multiplexed with ANx will be in Digital mode.

TIMER2/3 (32-BIT) BLOCK DIAGRAM⁽¹⁾ FIGURE 12-1:

13.0 INPUT CAPTURE

- Note 1: This data sheet summarizes the features of the dsPIC33FJ12GP201/202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 12. "Input Capture" (DS70198) of the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Input Capture module is useful in applications requiring frequency (period) and pulse measurement. The dsPIC33FJ12GP201/202 devices support up to eight input capture channels.


The Input Capture module captures the 16-bit value of the selected Time Base register when an event occurs at the ICx pin. The events that cause a capture event are listed below in three categories:

- Simple Capture Event modes:
 - Capture timer value on every falling edge of input at ICx pin
 - Capture timer value on every rising edge of input at ICx pin
- Capture timer value on every edge (rising and falling)
- Prescaler Capture Event modes:
 - Capture timer value on every 4th rising edge of input at ICx pin
 - Capture timer value on every 16th rising edge of input at ICx pin

Each Input Capture channel can select one of two 16-bit timers (Timer2 or Timer3) for the time base. The selected timer can use either an internal or external clock.

Other operational features include:

- Device wake-up from capture pin during CPU Sleep and Idle modes
- · Interrupt on Input Capture event
- · 4-word FIFO buffer for capture values
 - Interrupt optionally generated after 1, 2, 3, or 4 buffer locations are filled
- · Use of Input Capture to provide additional

FIGURE 13-1: INPUT CAPTURE BLOCK DIAGRAM

REGISTER 18-6: AD1CSSL: ADC1 INPUT SCAN SELECT REGISTER LOW^(1,2)

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	_	_	—	CSS9	CSS8
bit 15					•		bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0
bit 7			•	•	•		bit 0
Legend:							

Legena.			
R = Readable bit	U = Unimplemented bit, rea	ad as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9-0 CSS<9:0>: ADC Input Scan Selection bits

1 = Select ANx for input scan

0 = Skip ANx for input scan

2: CSSx = ANx, where x = 0 through 9.

REGISTER 18-7: AD1PCFGL: ADC1 PORT CONFIGURATION REGISTER LOW^(1,2,3)

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	_		—	PCFG9	PCFG8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0
Legend:							

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9-0

PCFG<9:0>: ADC Port Configuration Control bits

1 = Port pin in Digital mode, port read input enabled, ADC input multiplexer connected to AVss 0 = Port pin in Analog mode, port read input disabled, ADC samples pin voltage

Note 1: On devices without 10 analog inputs, all PCFG bits are R/W by user. However, PCFG bits are ignored on ports without a corresponding input on device.

- **2:** PCFGx = ANx, where x = 0 through 9.
- 3: PCFGx bits have no effect if the ADC module is disabled by setting the ADxMD bit in the PMDx register. When that bit is set, all port pins that have been multiplexed with ANx will be in Digital mode.

Note 1: On devices without 10 analog inputs, all AD1CSSL bits can be selected by user application. However, inputs selected for scan without a corresponding input on device converts VREFL.

TABLE 19-2:	USFICSSE	J12GP201/202 CONFIGURATION BITS DESCRIPTION		
Bit Field	Register	RTSP Effect	Description	
BWRP	FBS	Immediate	Boot Segment Program Flash Write Protection 1 = Boot segment may be written 0 = Boot segment is write-protected	
BSS<2:0>	FBS	Immediate	Boot Segment Program Flash Code Protection Size x11 = No Boot program Flash segment	
			Boot space is 256 Instruction Words (except interrupt vectors) 110 = Standard security; boot program Flash segment ends at 0x0003FE 010 = High security; boot program Flash segment ends at 0x0003FE	
			Boot space is 768 Instruction Words (except interrupt vectors) 101 = Standard security; boot program Flash segment, ends at 0x0007FE 001 = High security; boot program Flash segment ends at 0x0007FE	
			Boot space is 1792 Instruction Words (except interrupt vectors) 100 = Standard security; boot program Flash segment ends at 0x000FFE 000 = High security; boot program Flash segment ends at 0x000FFE	
GSS<1:0>	FGS	Immediate	General Segment Code-Protect bit 11 = User program memory is not code-protected 10 = Standard security 0x = High security	
GWRP	FGS	Immediate	General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected	
IESO	FOSCSEL	Immediate	 Two-speed Oscillator Start-up Enable bit 1 = Start-up device with FRC, then automatically switch to the user-selected oscillator source when ready 0 = Start-up device with user-selected oscillator source 	
FNOSC<2:0>	FOSCSEL	If clock switch is enabled, RTSP effect is on any device Reset; otherwise, Immediate	Initial Oscillator Source Selection bits 111 = Internal Fast RC (FRC) oscillator with postscaler 110 = Internal Fast RC (FRC) oscillator with divide-by-16 101 = LPRC oscillator 100 = Secondary (LP) oscillator 011 = Primary (XT, HS, EC) oscillator with PLL 010 = Primary (XT, HS, EC) oscillator 001 = Internal Fast RC (FRC) oscillator with PLL 000 = FRC oscillator	
FCKSM<1:0>	FOSC	Immediate	Clock Switching Mode bits 1x = Clock switching is disabled, fail-safe clock monitor is disabled 01 = Clock switching is enabled, fail-safe clock monitor is disabled 00 = Clock switching is enabled, fail-safe clock monitor is enabled	
IOL1WAY	FOSC	Immediate	Peripheral Pin Select Configuration 1 = Allow only one reconfiguration 0 = Allow multiple reconfigurations	
OSCIOFNC	FOSC	Immediate	OSC2 Pin Function bit (except in XT and HS modes) 1 = OSC2 is clock output 0 = OSC2 is general purpose digital I/O pin	
POSCMD<1:0>	FOSC	Immediate	Primary Oscillator Mode Select bits 11 = Primary oscillator disabled 10 = HS Crystal Oscillator mode 01 = XT Crystal Oscillator mode 00 = EC (External Clock) mode	

TABLE 19-2: dsPIC33FJ12GP201/202 CONFIGURATION BITS DESCRIPTION

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
48	MPY	MPY Wm*Wn,Ac	cc,Wx,Wxd,Wy,Wyd	Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		MPY Wm*Wm,Ac	cc,Wx,Wxd,Wy,Wyd	Square Wm to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
49	MPY.N	MPY.N Wm*Wn,Ac	cc,Wx,Wxd,Wy,Wyd	-(Multiply Wm by Wn) to Accumulator	1	1	None
50	MSC	MSC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd , AWB	Multiply and Subtract from Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
51	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None
52	NEG	NEG	Acc	Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
53	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
54	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
55	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
56	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
57	RCALL	RCALL	Expr	Relative Call	1	2	None
		RCALL	Wn	Computed Call	1	2	None
58	REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
59	RESET	RESET		Software device Reset	1	1	None
60	RETFIE	RETFIE		Return from interrupt	1	3 (2)	None
61	RETLW	RETLW	#lit10,Wn	Return with literal in Wn	1	3 (2)	None
62	RETURN	RETURN	с	Return from Subroutine	1	3 (2)	None
63	RLC	RLC	f uppg	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	f,WREG	WREG = Rotate Left through Carry Ms	1	1	C,N,Z
64	RLNC	RLC	Ws,Wd f	Wd = Rotate Left through Carry Ws f = Rotate Left (No Carry) f	1	1	C,N,Z N,Z
04	ILING	RLNC	I f,WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	I, WREG Ws, Wd	WREG = Rotate Left (No Carry) Ws	1	1	N,Z
65	RRC	RRC	f	f = Rotate Right through Carry f	1	1	C,N,Z
55		RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C,N,Z
		RRC	Ws,Wd	Web = Rotate Right through Carry Ws	1	1	C,N,Z

TABLE 20-2: INSTRUCTION SET OVERVIEW (CONTINUED)

22.1 DC Characteristics

Characteristic	VDD Range	Temp Range	Max MIPS
	(in Volts)	(in °C)	dsPIC33FJ12GP201/202
	3.0-3.6V	-40°C to +85°C	40
	3.0-3.6V	-40°C to +125°C	40

TABLE 22-1: OPERATING MIPS VS. VOLTAGE

TABLE 22-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range	TJ	-40	_	+140	°C
Operating Ambient Temperature Range	TA	-40	—	+125	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$	PD	I	Pint + Pi/c	D	W
I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$					
Maximum Allowed Power Dissipation	PDMAX	(TJ – TA)/θ.	IA	W

TABLE 22-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit	Notes
Package Thermal Resistance, 18-pin PDIP	θja	45	_	°C/W	1
Package Thermal Resistance, 28-pin SPDIP	θја	45	—	°C/W	1
Package Thermal Resistance, 18-pin SOIC	θја	60	_	°C/W	1
Package Thermal Resistance, 28-pin SOIC	θја	50	_	°C/W	1
Package Thermal Resistance, 28-pin SSOP	θја	71	—	°C/W	1
Package Thermal Resistance, 28-pin QFN	θја	35	—	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

DC CHARACT	ERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended				
Parameter No.	Typical ⁽¹⁾	Мах	Units	Conditions			
Idle Current (II	DLE): Core OF	F Clock ON	Base Curren	t ⁽²⁾			
DC40d	3	25	mA	-40°C			
DC40a	3	25	mA	+25°C		10 MIPS ⁽³⁾	
DC40b	3	25	mA	+85°C	3.3V	TU MIPS	
DC40c	3	25	mA	+125°C			
DC41d	4	25	mA	-40°C		16 MIPS ⁽³⁾	
DC41a	4	25	mA	+25°C	3.3V		
DC41b	5	25	mA	+85°C		10 MIPS(*)	
DC41c	5	25	mA	125°C			
DC42d	6	25	mA	-40°C		20 MIPS ⁽³⁾	
DC42a	6	25	mA	+25°C	2.21/		
DC42b	7	25	mA	+85°C	- 3.3V		
DC42c	7	25	mA	+125°C			
DC43d	9	25	mA	-40°C			
DC43a	9	25	mA	+25°C	- 3.3V	30 MIPS ⁽³⁾	
DC43b	9	25	mA	+85°C	3.3V	30 MIPS(*)	
DC43c	9	25	mA	+125°C]		
DC44d	10	25	mA	-40°C			
DC44a	10	25	mA	+25°C	2.21/		
DC44b	10	25	mA	+85°C	- 3.3V	40 MIPS	
DC44c	10	25	mA	+125°C	1		

TABLE 22-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

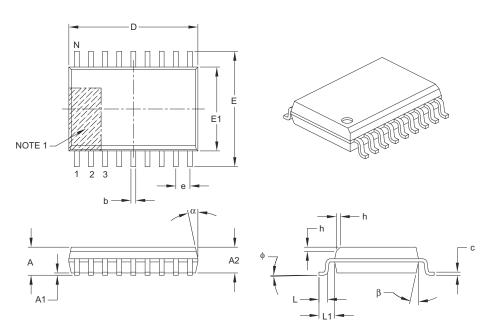
Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: Base IIDLE current is measured with core off, clock on and all modules turned off. Peripheral Module Disable SFR registers are zeroed. All I/O pins are configured as inputs and pulled to Vss.

3: These parameters are characterized, but are not tested in manufacturing.

TABLE 22-21: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SY10	ТмсL	MCLR Pulse-Width (low) ⁽¹⁾	2		_	μs	-40°C to +85°C
SY11	TPWRT	Power-up Timer Period ⁽¹⁾	_	2 4 16 32 64 128	_	ms	-40°C to +85°C User programmable
SY12	TPOR	Power-on Reset Delay ⁽³⁾	3	10	30	μs	-40°C to +85°C
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset ⁽¹⁾	0.68	0.72	1.2	μs	
SY20	Twdt1	Watchdog Timer Time-out Period ⁽¹⁾	_	_	_	ms	See Section 19.4 "Watchdog Timer (WDT)" and LPRC parameter F21a (Table 22-19).
SY30	Тоѕт	Oscillator Start-up Time	—	1024 Tosc	—	—	Tosc = OSC1 period
SY35	TFSCM	Fail-Safe Clock Monitor Delay ⁽¹⁾	—	500	900	μs	-40°C to +85°C


Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: These parameters are characterized, but are not tested in manufacturing.

18-Lead Plastic Small Outline (SO) – Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLMETERS			
Dim	ension Limits	MIN	NOM	MAX
Number of Pins	N		18	
Pitch	е		1.27 BSC	
Overall Height	A	-	-	2.65
Molded Package Thickness	A2	2.05	-	-
Standoff §	A1	0.10	-	0.30
Overall Width	E	10.30 BSC		
Molded Package Width	E1	7.50 BSC		
Overall Length	D	11.55 BSC		
Chamfer (optional)	h	0.25	-	0.75
Foot Length	L	0.40	-	1.27
Footprint	L1		1.40 REF	
Foot Angle	φ	0°	-	8°
Lead Thickness	С	0.20	-	0.33
Lead Width	b	0.31	-	0.51
Mold Draft Angle Top	α	5°	-	15°
Mold Draft Angle Bottom	β	5°	-	15°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-051B

SPIxCON1 (SPIx Control 1)	145
SPIxCON2 (SPIx Control 2)	147
SPIxSTAT (SPIx Status and Control)	
SR (CPU Status)	
T1CON (Timer1 Control)	
T2CON Control	
T3CON Control	135
UxMODE (UARTx Mode)	158
UxSTA (UARTx Status and Control)	
Reset	
Illegal Opcode	
Trap Conflict	
Uninitialized W Register	
Reset Sequence	
Resets	

S

143
191
175
182

Т

Temperature and Voltage Specifications	
AC	. 204
Timer1	. 129
Timer2/3	. 131
Timing Characteristics	
ČLKO and I/O	. 207
Timing Diagrams	
10-bit A/D Conversion	. 234
10-bit A/D Conversion (CHPS = 01, SIMSAM = 0, A	SAM
= 0, SSRC = 000)	. 234
12-bit A/D Conversion (ASAM = 0, SSRC = 000)	. 233
Brown-out Situations	
External Clock	. 205
I2Cx Bus Data (Master Mode)	. 226
I2Cx Bus Data (Slave Mode)	
I2Cx Bus Start/Stop Bits (Master Mode)	. 226
I2Cx Bus Start/Stop Bits (Slave Mode)	
Input Capture (CAPx)	. 212
OC/PWM	
Output Compare (OCx)	. 212
Reset, Watchdog Timer, Oscillator Start-up Timer	and
Power-up Timer	. 208
Timer1, 2 and 3 External Clock	. 210
Timing Requirements	
CLKO and I/O	. 207
DCI AC-Link Mode	
DCI Multi-Channel, I ² S Modes	. 230
External Clock	. 205
Input Capture	. 212
Timing Specifications	
10-bit A/D Conversion Requirements	. 235
12-bit A/D Conversion Requirements	. 233
I2Cx Bus Data Requirements (Master Mode)	. 226
I2Cx Bus Data Requirements (Slave Mode)	. 229
Output Compare Requirements	
PLL Clock	. 206

Reset, Watchdog Timer, Oscillator Start-up Timer, Pow- er-up Timer and Brown-out Reset Requirements 209
Simple OC/PWM Mode Requirements
Timer1 External Clock Requirements
Timer2 External Clock Requirements
Timer3 External Clock Requirements 211
U
UART Module UART1 Register Map 39
Using the RCON Status Bits
V
Voltage Regulator (On-Chip) 178
W
Watchdog Time-out Reset (WDTR)