

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	13
Program Memory Size	12KB (12K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj12gp201-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

High-Performance, 16-Bit Digital Signal Controllers

Operating Range:

- Up to 40 MIPS operation (at 3.0-3.6V):
 - Industrial temperature range (-40°C to +85°C)
 - Extended temperature range (-40°C to +125°C)

High-Performance DSC CPU:

- · Modified Harvard architecture
- · C compiler optimized instruction set
- · 16 bit wide data path
- 24 bit wide instructions
- Linear program memory addressing up to 4M instruction words
- · Linear data memory addressing up to 64 Kbytes
- · 83 base instructions, mostly one word/one cycle
- Sixteen 16-bit general purpose registers
- Two 40-bit accumulators with rounding and saturation options
- · Flexible and powerful addressing modes:
 - Indirect
 - Modulo
 - Bit-Reversed
- Software stack
- 16 x 16 fractional/integer multiply operations
- · 32/16 and 16/16 divide operations
- · Single-cycle multiply and accumulate:
- Accumulator write back for DSP operationsDual data fetch
- · Up to ±16-bit shifts for up to 40-bit data

Interrupt Controller:

- 5-cycle latency
- · Up to 21 available interrupt sources
- · Up to three external interrupts
- Seven programmable priority levels
- Four processor exceptions

On-Chip Flash and SRAM:

- Flash program memory (12 Kbytes)
- Data SRAM (1024 bytes)
- Boot and General Security for Program Flash

Digital I/O:

- · Peripheral Pin Select Functionality
- Up to 21 programmable digital I/O pins
- · Wake-up/interrupt-on-change for up to 21 pins
- · Output pins can drive from 3.0V to 3.6V
- Up to 5V output with open drain configurations on 5V tolerant pins
- 4 mA sink on all I/O pins

System Management:

- · Flexible clock options:
 - External, crystal, resonator, internal RC
 - Fully integrated Phase-Locked Loop (PLL)
 - Extremely low-jitter PLL
- Power-up Timer
- Oscillator Start-up Timer/Stabilizer
- · Watchdog Timer with its own RC oscillator
- · Fail-Safe Clock Monitor
- · Reset by multiple sources

Power Management:

- · On-chip 2.5V voltage regulator
- · Switch between clock sources in real time
- · Idle, Sleep and Doze modes with fast wake-up

Timers/Capture/Compare:

- · Timer/Counters, up to three 16-bit timers:
 - Can pair up to make one 32-bit timer
 - One timer runs as Real-Time Clock with external 32.768 kHz oscillator
 - Programmable prescaler
- Input Capture (up to four channels):
 - Capture on up, down, or both edges
 - 16-bit capture input functions
 - 4-deep FIFO on each capture
- Output Compare (up to two channels):
 - Single or Dual 16-bit Compare mode
 - 16-bit Glitchless PWM Mode

REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

bit 8		DC: MCU ALU Half Carry/Borrow bit
		1 = A carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data) of the result occurred
		 0 = No carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data) of the result occurred
bit 7-	5	IPL<2:0>: CPU Interrupt Priority Level Status bits ⁽²⁾
		<pre>111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)</pre>
bit 4		RA: REPEAT Loop Active bit
		1 = REPEAT loop in progress 0 = REPEAT loop not in progress
bit 3		N: MCU ALU Negative bit
		 1 = Result was negative 0 = Result was non-negative (zero or positive)
bit 2		OV: MCU ALU Overflow bit
		This bit is used for signed arithmetic (2's complement). It indicates an overflow of a magnitude that causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred
bit 1		Z: MCU ALU Zero bit
		 1 = An operation that affects the Z bit has set it at some time in the past 0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)
bit 0		C: MCU ALU Carry/Borrow bit
		 1 = A carry-out from the MSb of the result occurred 0 = No carry-out from the MSb of the result occurred
Note	1:	This bit can be read or cleared (not set).
	2:	The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1 . User interrupts are disabled when

3: The IPL<2:0> Status bits are read only when NSTDIS = 1 (INTCON1<15>).

IPL<3> = 1.

					11.0	U-0	11.0			
R/W-0	R-0	U-0	U-0	U-0	U-0	0-0	U-0			
ALTIVT	DISI	—		_	—	_	<u> </u>			
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
	—	_			INT2EP	INT1EP	INT0EP			
bit 7 bit 0										
Legend:										
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'										
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown			
bit 15	ALTIVT: Enab	le Alternate Inf	errupt Vector	Table bit						
		ate vector tabl	-							
		lard (default) ve								
bit 14		struction Status								
	1 = DISI instruction is active 0 = DISI instruction is not active									
bit 13-3										
	-	ted: Read as '(4 L H					
bit 2		rnal Interrupt 2	-	Polarity Selec	t Dit					
 1 = Interrupt on negative edge 0 = Interrupt on positive edge 										
bit 1	-			Polarity Selec	t bit					
	INT1EP: External Interrupt 1 Edge Detect Polarity Select bit 1 = Interrupt on negative edge									
0 = Interrupt on positive edge										
bit 0	INT0EP: Exte	rnal Interrupt 0	Edge Detect	Polarity Selec	t bit					
		n negative edg	•	-						
		on positive edge								

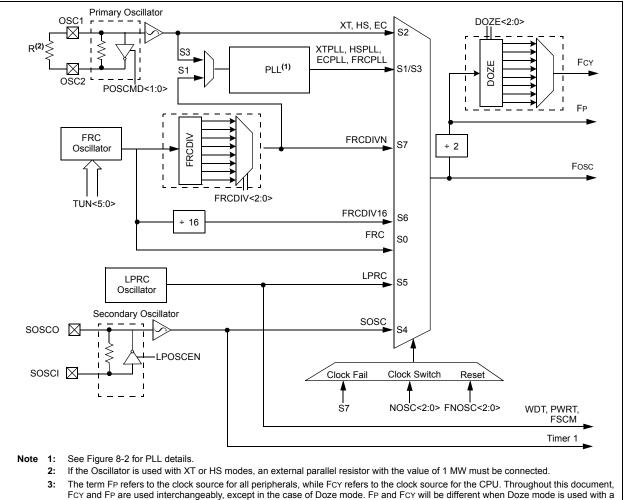
REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

REGISTER 7-10: IEC4: INTERRUPT ENABLE CONTROL REGISTER 0

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	_	—	—	—	
bit 15	bit 15						bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
—	—	—	_	—		U1EIE	—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown				
bit 15-2	Unimplemen	ted: Read as '	כ'				
bit 1	U1EIE: UART	1 Error Interru	pt Enable bit				
	1 = Interrupt request enabled						
	0 = Interrupt r	equest not ena	bled				

bit 0 Unimplemented: Read as '0'

8.0 OSCILLATOR CONFIGURATION


- Note 1: This data sheet summarizes the features of the dsPIC33FJ12GP201/202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 7.** "Oscillator" (DS70186) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The dsPIC33FJ12GP201/202 oscillator system provides:

- External and internal oscillator options as clock sources
- An on-chip PLL to scale the internal operating frequency to the required system clock frequency
- An internal FRC oscillator that can also be used with the PLL, thereby allowing full-speed operation without any external clock generation hardware
- Clock switching between various clock sources
- Programmable clock postscaler for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and takes fail-safe measures
- An Oscillator Control register (OSCCON)
- Nonvolatile Configuration bits for main oscillator selection.

A simplified diagram of the oscillator system is shown in Figure 8-1.

FIGURE 8-1: dsPIC33FJ12GP201/202 OSCILLATOR SYSTEM DIAGRAM

Doze ratio of 1:2 or lower.

REGISTER 8-2: CLKDIV: CLOCK DIVISOR REGISTER ⁽²⁾

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	
ROI		DOZE<2:0>		DOZEN ⁽¹⁾		FRCDIV<2:0>		
bit 15	•						bit 8	
R/W-0	R/W-1	U-0	R/W-0	R/W-0		R/W-0	R/W-0	
		0-0	R/W-U	R/W-0	R/W-0		R/W-U	
bit 7	OST<1:0>	_			PLLPRE<4:0	>	bit (
DIL 7							bit (
Legend:		y = Value set	from Configu	ration bits on PC)R			
R = Readabl	e bit	W = Writable	bit	U = Unimplem	ented bit, read	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown	
bit 15	1 = Interrupt	r on Interrupt bi s will clear the I s have no effec	DOZEN bit ar	nd the processor EN bit	clock/periphe	ral clock ratio is	set to 1:1	
bit 14-12	DOZE<2:0>: Processor Clock Reduction Select bits 111 = Fcy/128 110 = Fcy/64 101 = Fcy/32 100 = Fcy/16 011 = Fcy/8 (default) 010 = Fcy/4 001 = Fcy/2 000 = Fcy/1							
bit 11	DOZEN: DOZE Mode Enable bit ⁽¹⁾ 1 = DOZE<2:0> field specifies the ratio between the peripheral clocks and the processor clocks 0 = Processor clock/peripheral clock ratio forced to 1:1							
bit 10-8	111 = FRC d 110 = FRC d 101 = FRC d 100 = FRC d 011 = FRC d 010 = FRC d 001 = FRC d	ivide by 256 ivide by 64 ivide by 32 ivide by 16 ivide by 8 ivide by 4		r Postscaler bits				
bit 7-6	PLLPOST<1:0>: PLL VCO Output Divider Select bits (also denoted as 'N2', PLL postscaler) 11 = Output/8 10 = Reserved 01 = Output/4 (default) 00 = Output/2							
bit 5	Unimplemen	ted: Read as '	0'					
bit 4-0	PLLPRE<4:0 11111 = Inpu 00001 = Inpu	ut/33	Detector Inpu	t Divider bits (al	so denoted as	'N1', PLL presc	caler)	
	00001 = Inpt 00000 = Inpt							

- Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.
 - 2: This register is reset only on a Power-on Reset (POR).

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0 ⁽¹⁾	
	—	—	—	—	—	—	PLLDIV<8>	
bit 15							bit 8	
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	
			PLLD	IV<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-9	Unimplemen	ted: Read as '	0'					
bit 8-0	PLLDIV<8:0>	PLL Feedbac	k Divisor bits	(also denoted	as 'M', PLL mul	tiplier)		
	111111111 =	= 513						
	•							
	•							
	•							
000110000 = 50 (default)								
	•							
	•							
	• 000000010 =	- 1						
	000000010 =							
	000000000							

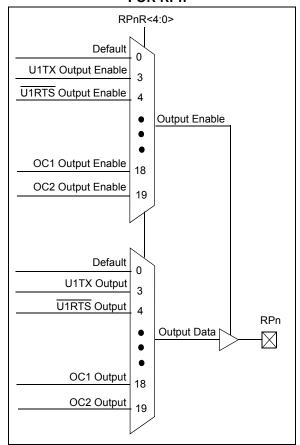
REGISTER 8-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER⁽¹⁾

Note 1: This register is reset only on a Power-on Reset (POR).

TABLE 10-1:	SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION) ⁽¹⁾
-------------	--

Input Name	Function Name	Register	Configuration Bits
External Interrupt 1	INT1	RPINR0	INT1R<4:0>
External Interrupt 2	INT2	RPINR1	INT2R<4:0>
Timer2 External Clock	T2CK	RPINR3	T2CKR<4:0>
Timer3 External Clock	T3CK	RPINR3	T3CKR<4:0>
Input Capture 1	IC1	RPINR7	IC1R<4:0>
Input Capture 2	IC2	RPINR7	IC2R<4:0>
Input Capture 7	IC7	RPINR10	IC7R<4:0>
Input Capture 8	IC8	RPINR10	IC8R<4:0>
Output Compare Fault A	OCFA	RPINR11	OCFAR<4:0>
UART1 Receive	U1RX	RPINR18	U1RXR<4:0>
UART1 Clear To Send	U1CTS	RPINR18	U1CTSR<4:0>
SPI1 Data Input	SDI1	RPINR20	SDI1R<4:0>
SPI1 Clock Input	SCK1IN	RPINR20	SCK1R<4:0>
SPI1 Slave Select Input	SS1IN	RPINR21	SS1R<4:0>

Note 1: Unless otherwise noted, all inputs use the Schmitt input buffers.


10.4.2.2 Output Mapping

In contrast to inputs, the outputs of the peripheral pin select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Like the RPINRx registers, each register contains sets of 5-bit fields, with each set associated with one RPn pin (see Register 10-10 through Register 10-17). The value of the bit field corresponds to one of the peripherals, and that peripheral's output is mapped to the pin (see Table 10-2 and Figure 10-2).

The list of peripherals for output mapping also includes a null value of '00000' because of the mapping technique. This permits any given pin to remain unconnected from the output of any of the pin selectable peripherals.

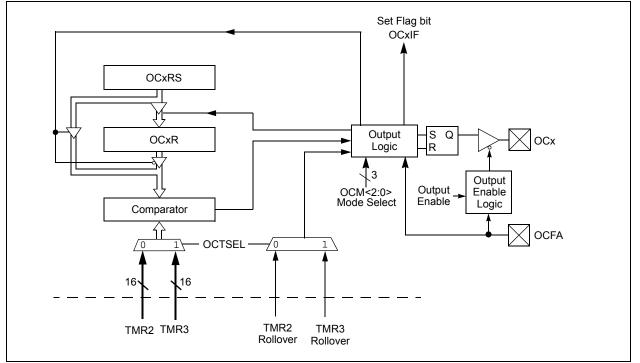
FIGURE 10-3:

MULTIPLEXING OF REMAPPABLE OUTPUT FOR RPn

REGISTER 12-1: T2CON CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
TON	—	TSIDL	_	_	_		_				
bit 15							bit 8				
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0				
	TGATE	TCKP	S<1:0>	Т32	T32 — TCS						
bit 7							bit (
Legend:											
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'					
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkno	own				
bit 15	TON: Timer2	On hit									
DIL 15	When $T32 = 2$										
	1 = Starts 32-										
	0 = Stops 32-	bit Timer2/3									
	When T32 = 0:										
	1 = Starts 16-bit Timer2 0 = Stops 16-bit Timer2										
bit 14	-	ited: Read as	0'								
bit 13	-										
	TSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode										
		module opera									
bit 12-7	Unimplemen	ted: Read as	0'								
bit 6	TGATE: Timer2 Gated Time Accumulation Enable bit										
	When TCS = 1:										
	This bit is ignored. When TCS = 0:										
	1 = Gated time accumulation enabled										
	0 = Gated time accumulation disabled										
bit 5-4	TCKPS<1:0>	: Timer2 Input	Clock Presca	ale Select bits							
	11 = 1:256										
	10 = 1:64 01 = 1:8										
	00 = 1:1										
bit 3	T32: 32-bit Timer Mode Select bit										
	1 = Timer2 and Timer3 form a single 32-bit timer 0 = Timer2 and Timer3 act as two 16-bit timers										
bit 2	Unimplemen	ted: Read as	0'								
bit 1	TCS: Timer2	Clock Source	Select bit								
		clock from pin	T2CK (on the	rising edge)							
	0 = Internal c		- 1								
bit 0	Unimplemen	ted: Read as	0'								

14.0 OUTPUT COMPARE


- Note 1: This data sheet summarizes the features of the dsPIC33FJ12GP201/202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 13. "Output Compare" (DS70209) of the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Output Compare module can select either Timer2 or Timer3 for its time base. The module compares the value of the timer with the value of one or two compare registers depending on the operating mode selected. The state of the output pin changes when the timer value matches the compare register value. The Output Compare module generates either a single output pulse or a sequence of output pulses, by changing the state of the output pin on the compare match events. The Output Compare module can also generate interrupts on compare match events.

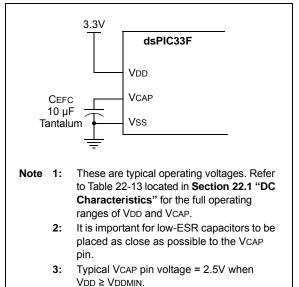
The Output Compare module has multiple operating modes:

- Active-Low One-Shot mode
- Active-High One-Shot mode
- Toggle mode
- · Delayed One-Shot mode
- Continuous Pulse mode
- PWM mode without fault protection
- PWM mode with fault protection

FIGURE 14-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM

NOTES:

19.2 On-Chip Voltage Regulator


The dsPIC33FJ12GP201/202 devices power their core digital logic at a nominal 2.5V. This can create a conflict for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, both devices in the dsPIC33FJ12GP201/202 family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. When the regulator is enabled, a low ESR (less than 5 ohms) capacitor (such as tantalum or ceramic) must be connected to the VCAP pin (Figure 19-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 22-13 located in **Section 22.1** "**DC Characteristics**".

Note:	It is important for low-ESR capacitors to
	be placed as close as possible to the VCAP
	pin.

On a POR, it takes approximately 20 µs for the on-chip voltage regulator to generate an output voltage. During this time, designated as TSTARTUP, code execution is disabled. TSTARTUP is applied every time the device resumes operation after any power-down.

FIGURE 19-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR^(1,2,3)

19.3 BOR Module

The BOR module is based on an internal voltage reference circuit that monitors the regulated voltage VCAP. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines, or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR generates a Reset pulse, which resets the device. The BOR selects the clock source, based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>).

If an oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON<5>) is '1'.

Concurrently, the PWRT time-out (TPWRT) will be applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, a nominal delay of TFSCM = 100 is applied. The total delay in this case is TFSCM.

The BOR Status bit (RCON<1>) is set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle modes and resets the device should VDD fall below the BOR threshold voltage.

TABLE 20-2: INSTRUCTION SET OVERVIEW

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
1	ADD	ADD Acc		Add Accumulators	1	1	OA,OB,SA,SB
		ADD	f	f = f + WREG	1	1	C,DC,N,OV,Z
		ADD	f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z
		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z
		ADD	Wso,#Slit4,Acc	16-bit Signed Add to Accumulator	1	1	OA,OB,SA,SB
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	f,WREG	WREG = $f + WREG + (C)$	1	1	C,DC,N,OV,Z
2 ADDC 3 AND 4 ASR 5 BCLR		ADDC	#lit10,Wn	Wd = Iit10 + Wd + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,Z
3	AND	AND	f	f = f .AND. WREG	1	1	N,Z
		AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z
3 AND 4 ASR 5 BCL		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z
		AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z
4	ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C,N,OV,Z
		Assembly Syntax Add Accu ADD Acc Add Accu ADD f f=f+WF ADD f,WREG WREG = ADD #litl0,Wn Wd = Wb ADD Wb,Ws,Wd Wd = Wb ADD Wb,#lit5,Wd Wd = Wb ADD Wso,#Slit4,Acc 16-bitSig ADDC f F=f+WF ADDC f,WREG WREG = ADDC f,WREG WREG = ADDC #litl0,Wn Wd = Wb ADDC Wb,Ws,Wd Wd = Wb ADD Wb,Ws,Wd Wd = Wb ADD #litl0,Wn Wd = Wb AND f,WREG WREG = AND f,WREG WREG = AND #lit10,Wn Wd = Wb AND #lit10,Wn Wd = Mt ASR f #arth ASR f #stritt ASR f #arth ASR fWbWns,Wd Wd = Arth	Wd = Arithmetic Right Shift Ws	1	1	C,N,OV,Z	
		ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1 1 1 1	N,Z
		ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N,Z
5	BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
		BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
6	BRA	BRA	C,Expr	Branch if Carry	1	1 (2)	None
		BRA	GE, Expr	Branch if greater than or equal	1	1 1 1 1 1 1 (2) 1 1 (2) 1 1 (2) 1 1 (2) 1 1 (2)	None
		BRA	GEU,Expr	Branch if unsigned greater than or equal	1	1 (2)	None
		BRA	GT, Expr	Branch if greater than	1	1 (2)	None
		BRA		Branch if unsigned greater than	1	1 (2)	None
		BRA	LE, Expr	Branch if less than or equal	1	1 (2)	None
		BRA	LEU,Expr	Branch if unsigned less than or equal	1	1 (2)	None
		BRA		Branch if less than	1 1 1 1 (2)	None	
		BRA		Branch if unsigned less than	1	1 (2)	None
		BRA		Branch if Negative	1	1 (2)	None
		BRA		Branch if Not Carry	1	. ,	None
				Branch if Not Negative	1		None
		BRA		Branch if Not Overflow	1	1 (2)	None
				Branch if Not Zero	1	. ,	None
				Branch if Accumulator A overflow	1		None
				Branch if Accumulator B overflow	1		None
			_	Branch if Overflow	1		None
				Branch if Accumulator A saturated	1		None
				Branch if Accumulator B saturated			None
				Branch Unconditionally			None
				Branch if Zero			None
				Computed Branch			None
7	BSET						None
				Bit Set Ws		1 1	None
8	BSW			Write C bit to Ws <wb></wb>			None
-				Write Z bit to Ws <wb></wb>	1		None
9	BTG				1		None
-					1		None

TABLE 20-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Base Instr #	Instr Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
66	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
67	SAC	SAC	Acc,#Slit4,Wdo	Store Accumulator	1	1	None
		SAC.R	Acc,#Slit4,Wdo	Store Rounded Accumulator	1	1	None
68	SE	SE	Ws,Wnd	Wnd = sign-extended Ws	1	1	C,N,Z
69	SETM	SETM	f	f = 0xFFFF	1	1	None
		SETM	WREG	WREG = 0xFFFF	1	1	None
		SETM	Ws	Ws = 0xFFFF	1	1	None
70	SFTAC	SFTAC	Acc,Wn	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB, SA,SB,SAB
		SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB, SA,SB,SAB
71	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
72	SUB	SUB	Асс	Subtract Accumulators	1	1	OA,OB,OAB, SA,SB,SAB
		SUB	f	f = f – WREG	1	1	C,DC,N,OV,Z
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,Z
		SUB	#lit10,Wn	Wn = Wn - lit10	1	1	C,DC,N,OV,Z
		SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C,DC,N,OV,Z
		SUB	Wb,#lit5,Wd	Wd = Wb - lit5	1	1	C,DC,N,OV,Z
73	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	f,WREG	WREG = f – WREG – (\overline{C})	1	1	C,DC,N,OV,Z
		SUBB	#lit10,Wn	$Wn = Wn - Iit10 - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,Z
74	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C,DC,N,OV,Z
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z
75	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	f,WREG	WREG = WREG – f – (\overline{C})	1	1	C,DC,N,OV,Z
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
76	SWAP	SWAP.b	Wn	Wn = nibble swap Wn	1	1	None
		SWAP	Wn	Wn = byte swap Wn	1	1	None
77	TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None
78	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
79	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
80	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
81	ULNK	ULNK		Unlink Frame Pointer	1	1	None
82	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
83	ZE	ZE	Ws,Wnd	Wnd = Zero-extend Ws	1	1	C,Z,N

21.7 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

21.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

21.9 MPLAB ICD 3 In-Circuit Debugger System

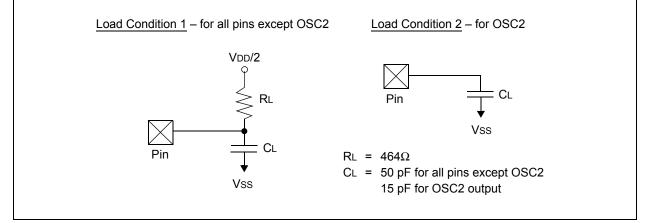
MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC[®] Flash microcontrollers and dsPIC[®] DSCs with the powerful, yet easyto-use graphical user interface of MPLAB Integrated Development Environment (IDE).

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

21.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express

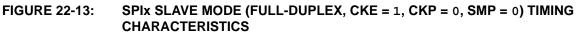
The MPLAB PICkit 3 allows debugging and programming of PIC[®] and dsPIC[®] Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming[™].

The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.


22.2 AC Characteristics and Timing Parameters

The information contained in this section defines dsPIC33FJ12GP201/202 AC characteristics and timing parameters.

TABLE 22-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC


	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)					
AC CHARACTERISTICS	Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended Operating voltage VDD range as described in Section 22.1 "DC Characteristics ".					

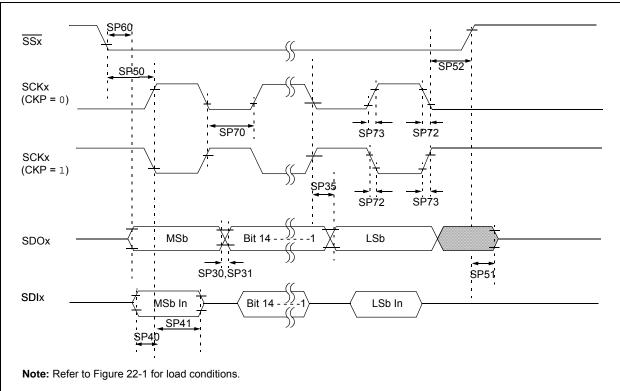

FIGURE 22-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

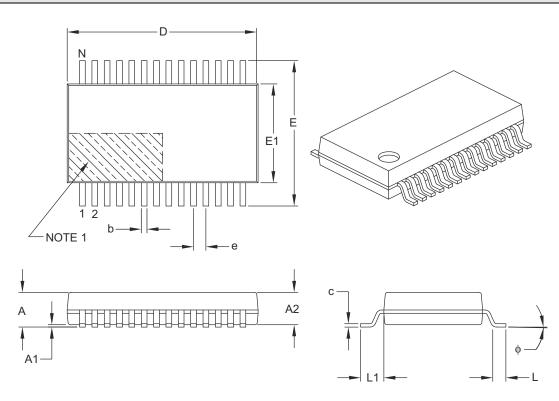
TABLE 22-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
DO50	Cosc2	OSC2/SOSC2 pin	_	—	15		In XT and HS modes when external clock is used to drive OSC1
DO56	Сю	All I/O pins and OSC2	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	_	_	400	pF	In I ² C™ mode

TABLE 22-38: ADC MODULE SPECIFICATIONS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended						
Param No.	Symbol Characteristic		Min.	Тур	Max.	Units	Conditions	
	-	·	Devic	e Suppl	y			
AD01	AVDD	Module VDD Supply ⁽²⁾	Greater of VDD – 0.3 or 3.0	_	Lesser of VDD + 0.3 or 3.6	V	_	
AD02	AVss	Module Vss Supply ⁽²⁾	Vss – 0.3	_	Vss + 0.3	V	_	
			Referer	nce Inpu	its			
AD05	Vrefh	Reference Voltage High	AVss + 2.5	_	AVdd	V	See Note 1	
AD05a			3.0	_	3.6	V	VREFH = AVDD VREFL = AVSS = 0, see Note 2	
AD06	VREFL	Reference Voltage Low	AVss	—	AVDD - 2.5	V	See Note 1	
AD06a			0	_	0	V	VREFH = AVDD VREFL = AVSS = 0, see Note 2	
AD07	VREF	Absolute Reference Voltage ⁽²⁾	2.5		3.6	V	VREF = VREFH - VREFL	
AD08	IREF	Current Drain		250 —	550 10	μΑ μΑ	ADC operating, See Note 1 ADC off, See Note 1	
AD08a	Iad	Operating Current		7.0 2.7	9.0 3.2	mA mA	10-bit ADC mode, See Note 2 12-bit ADC mode, See Note 2	
		·	Analo	og Input				
AD12	Vinh	Input Voltage Range VINH ⁽²⁾	Vinl	_	VREFH	V	This voltage reflects Sample and Hold Channels 0, 1, 2, and 3 (CH0-CH3), positive input	
AD13	VINL	Input Voltage Range _{VINL} (2)	Vrefl	_	AVss + 1V	V	This voltage reflects Sample and Hold Channels 0, 1, 2, and 3 (CH0-CH3), negative input	
AD17	Rin	Recommended Imped- ance of Analog Voltage Source ⁽³⁾	_	_	200 200	Ω Ω	10-bit ADC 12-bit ADC	

Note 1: These parameters are not characterized or tested in manufacturing.


2: These parameters are characterized, but are not tested in manufacturing.

3: These parameters are assured by design, but are not characterized or tested in manufacturing.

NOTES:

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS			
Dimension	Dimension Limits			MAX			
Number of Pins	Ν	28					
Pitch	е	0.65 BSC					
Overall Height	Α	—	-	2.00			
Molded Package Thickness	A2	1.65	1.75	1.85			
Standoff	A1	0.05	-	-			
Overall Width	E	7.40	7.80	8.20			
Molded Package Width	E1	5.00	5.30	5.60			
Overall Length	D	9.90	10.20	10.50			
Foot Length	L	0.55	0.75	0.95			
Footprint	L1	1.25 REF					
Lead Thickness	с	0.09	-	0.25			
Foot Angle	φ	0°	4°	8°			
Lead Width	b	0.22	_	0.38			

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B