

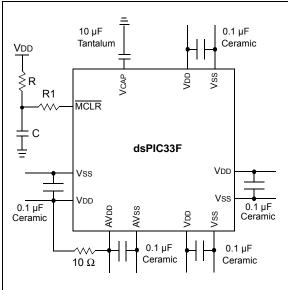
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E-XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	12KB (12K x 8)
Program Memory Type	FLASH
EEPROM Size	<u>.</u>
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj12gp202-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION

2.2.1 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

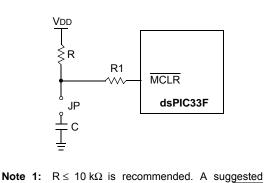
2.3 CPU Logic Filter Capacitor Connection (VCAP)

A low-ESR (< 5 Ohms) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD, and must have a capacitor between 4.7 μ F and 10 μ F, 16V connected to ground. The type can be ceramic or tantalum. Refer to **Section 22.0** "**Electrical Characteristics**" for additional information.

The placement of this capacitor should be close to the VCAP. It is recommended that the trace length not exceed one-quarter inch (6 mm). Refer to **Section 19.2 "On-Chip Voltage Regulator"** for details.

2.4 Master Clear (MCLR) Pin


The $\overline{\text{MCLR}}$ pin provides for two specific device functions:


- Device Reset
- · Device Programming and Debugging.

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the $\overline{\text{MCLR}}$ pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor C, be isolated from the $\overline{\text{MCLR}}$ pin during programming and debugging operations.

Place the components shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

- - 2: $\underline{R1} \leq 470\Omega$ will limit any current flowing into \underline{MCLR} from the external capacitor C, in the event of \underline{MCLR} pin breakdown, due to Electrostatic Discharge (ESD) or <u>Electrical</u> Overstress (EOS). Ensure that the \underline{MCLR} pin VIH and VIL specifications are met.

3.0 CPU

- Note 1: This data sheet summarizes the features of the dsPIC33FJ12GP201/202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 2.** "CPU" (DS70204) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The dsPIC33FJ12GP201/202 CPU module has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for DSP. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M by 24 bits of user program memory space. The actual amount of program memory implemented varies by device. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

The dsPIC33FJ12GP201/202 devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can serve as a data, address or address offset register. The 16th working register (W15) operates as a software Stack Pointer (SP) for interrupts and calls.

The dsPIC33FJ12GP201/202 instruction set has two classes of instructions: MCU and DSP. These two instruction classes are seamlessly integrated into a single CPU. The instruction set includes many addressing modes and is designed for optimum C compiler efficiency. For most instructions. dsPIC33FJ12GP201/202 devices are capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing A + B = C operations to be executed in a single cycle.

A block diagram of the CPU is shown in Figure 3-1. The programmer's model for the dsPIC33FJ12GP201/202 is shown in Figure 3-2.

3.1 Data Addressing Overview

The data space can be addressed as 32K words or 64 Kbytes and is split into two blocks, referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear data space. Certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y data space boundary is device-specific.

Overhead-free circular buffers (Modulo Addressing mode) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. Furthermore, the X AGU circular addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms.

The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K program word boundary defined by the 8-bit Program Space Visibility Page (PSVPAG) register. The program to data space mapping feature lets any instruction access program space as if it were data space.

3.2 DSP Engine Overview

The DSP engine features a high-speed 17-bit by 17-bit multiplier, a 40-bit ALU, two 40-bit saturating accumulators and a 40-bit bidirectional barrel shifter. The barrel shifter is capable of shifting a 40-bit value up to 16 bits right or left, in a single cycle. The DSP instructions operate seamlessly with all other instructions and have been designed for optimal real-time performance. The MAC instruction and other associated instructions can concurrently fetch two data operands from memory while multiplying two W registers and accumulating and optionally saturating the result in the same cycle. This instruction functionality requires that the RAM data space be split for these instructions and linear for all others. Data space partitioning is achieved in a transparent and flexible manner through dedicating certain working registers to each address space.

3.3 Special MCU Features

The dsPIC33FJ12GP201/202 features a 17-bit by 17-bit single-cycle multiplier that is shared by both the MCU ALU and DSP engine. The multiplier can perform signed, unsigned and mixed-sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication not only allows you to perform mixed-sign multiplication, it also achieves accurate results for special operations, such as (-1.0) x (-1.0).

4.6 Interfacing Program and Data **Memory Spaces**

The dsPIC33FJ12GP201/202 architecture uses a 24-bit-wide program space and a 16-bit-wide data space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the Microchip dsPIC33FJ12GP201/202 architecture provides two methods by which program space can be accessed during operation:

- · Using table instructions to access individual bytes, or words, anywhere in the program space
- · Remapping a portion of the program space into the data space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for lookups from a large table of static data. The application can only access the lsw of the program word.

4.6.1 ADDRESSING PROGRAM SPACE

Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used.

For table operations, the 8-bit Table Page register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the MSb of TBLPAG is used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1).

For remapping operations, the 8-bit Program Space Visibility register (PSVPAG) is used to define a 16K word page in the program space. When the MSb of the EA is '1', PSVPAG is concatenated with the lower 15 bits of the EA to form a 23-bit program space address. Unlike table operations, this limits remapping operations strictly to the user memory area.

Table 4-24 and Figure 4-7 show how the program EA is created for table operations and remapping accesses from the data EA.

TABLE 4-24:	PROGR	AM SPACE ADDRE	ESS CONSTRUCTION
		Access	Program Sr

	Access	Program Space Address					
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>	
Instruction Access	User	0 PC<22:1>				0	
(Code Execution)		0xx xxxx xxxx xxxx xxxx xxx0					
TBLRD/TBLWT (Byte/Word Read/Write)	User	TB	LPAG<7:0>	Data EA<15:0>			
		0	xxx xxxx	xxxx xx	xx xxxx xxxx		
	Configuration	TB	LPAG<7:0> Data EA<15:0		Data EA<15:0>		
		1	xxx xxxx	XXXX X	xxx xxxx xxxx		
Program Space Visibility	User	0	PSVPAG<7	G<7:0> Data EA<14:0> ⁽¹⁾		0>(1)	
(Block Remap/Read)		0	XXXX XXXX	2	xxx xxxx xxxx	xxxx	

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

EXAMPLE 5-2: LOADING THE WRITE BUFFERS

;	Set up NVMCO	N for row programming opera	ations
	MOV	#0x4001, W0	;
	MOV	W0, NVMCON	; Initialize NVMCON
;	Set up a poi	nter to the first program r	memory location to be written
;	program memo:	ry selected, and writes ena	abled
	MOV	#0x0000, W0	;
	MOV	W0, TBLPAG	; Initialize PM Page Boundary SFR
	MOV	#0x6000, W0	; An example program memory address
;	Perform the '	TBLWT instructions to write	e the latches
;	0th_program_	word	
	MOV	#LOW_WORD_0, W2	;
	MOV	<pre>#HIGH_BYTE_0, W3</pre>	;
	TBLWTL	W2, [W0]	; Write PM low word into program latch
	TBLWTH	W3, [W0++]	; Write PM high byte into program latch
;	lst_program_	word	
	MOV	#LOW_WORD_1, W2	;
	MOV	#HIGH_BYTE_1, W3	;
	TBLWTL	W2, [W0]	; Write PM low word into program latch
	TBLWTH	W3, [W0++]	; Write PM high byte into program latch
;	2nd_program	_word	
	MOV	#LOW_WORD_2, W2	;
		#HIGH_BYTE_2, W3	;
	TBLWTL	W2, [W0]	; Write PM low word into program latch
	TBLWTH	W3, [W0++]	; Write PM high byte into program latch
	•		
	•		
	•		
;	63rd_program	—	
	MOV	#LOW_WORD_31, W2	;
		#HIGH_BYTE_31, W3	;
		W2, [W0]	; Write PM low word into program latch
	TBLWTH	W3, [W0++]	; Write PM high byte into program latch

EXAMPLE 5-3: INITIATING A PROGRAMMING SEQUENCE

DISI		; Block all interrupts with priority <7 ; for next 5 instructions
MOV	#0x55, W0	
MOV	W0, NVMKEY	; Write the 55 key
MOV	#0xAA, W1 ;	;
MOV	W1, NVMKEY ;	Write the AA key
BSET	NVMCON, #WR	Start the erase sequence
NOP	;	; Insert two NOPs after the
NOP	;	erase command is asserted

7.3 Interrupt Control and Status Registers

Microchip dsPIC33FJ12GP201/202 devices implement a total of 17 registers for the interrupt controller:

- Interrupt Control Register 1 (INTCON1)
- Interrupt Control Register 2 (INTCON2)
- Interrupt Flag Status Registers (IFSx)
- Interrupt Enable Control Registers (IECx)
- Interrupt Priority Control Registers (IPCx)
- Interrupt Control and Status Register (INTTREG)

7.3.1 INTCON1 AND INTCON2

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table.

7.3.2 IFSx

The IFS registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared via software.

7.3.3 IECx

The IEC registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

7.3.4 IPCx

The IPC registers are used to set the interrupt priority level for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

7.3.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU interrupt priority level, which are latched into vector number (VECNUM<6:0>) and interrupt level (ILR<3:0>) bit fields in the INTTREG register. The new interrupt priority level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx, and IPCx registers in the same sequence that they are listed in Table 7-1. For example, the INT0 (External Interrupt 0) is shown as having vector number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0>, and the INT0IP bits in the first positions of IPC0 (IPC0<2:0>).

7.3.6 STATUS REGISTERS

Although they are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality:

- The CPU STATUS register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU interrupt priority level. The user can change the current CPU priority level by writing to the IPL bits.
- The CORCON register contains the IPL3 bit which, together with IPL<2:0>, also indicates the current CPU priority level. IPL3 is a read-only bit, so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-1 through Register 7-19.

REGISTER 8-2: CLKDIV: CLOCK DIVISOR REGISTER ⁽²⁾

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
ROI		DOZE<2:0>		DOZEN ⁽¹⁾		FRCDIV<2:0>	
bit 15	•						bit 8
R/W-0	R/W-1	U-0	R/W-0	R/W-0		R/W-0	R/W-0
		0-0	R/W-U	R/W-0	R/W-0		R/W-U
bit 7	OST<1:0>	_			PLLPRE<4:0	>	bit (
DIL 7							bit (
Legend:		y = Value set	from Configu	ration bits on PC)R		
R = Readabl	e bit	W = Writable	bit	U = Unimplem	ented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15	1 = Interrupt	r on Interrupt bi s will clear the I s have no effec	DOZEN bit ar	nd the processor EN bit	clock/periphe	ral clock ratio is	set to 1:1
bit 14-12	DOZE<2:0>: 111 = FcY/12 110 = FcY/62 101 = FcY/32 100 = FcY/16 011 = FcY/8 010 = FcY/4 001 = FcY/2 000 = FcY/1	4 2 3	ck Reduction	Select bits			
bit 11	1 = DOZE<2	ZE Mode Enabl 2:0> field specifi or clock/periphe	es the ratio b	etween the peri o forced to 1:1	pheral clocks a	and the process	or clocks
bit 10-8	111 = FRC d 110 = FRC d 101 = FRC d 100 = FRC d 011 = FRC d 010 = FRC d 001 = FRC d	ivide by 256 ivide by 64 ivide by 32 ivide by 16 ivide by 8 ivide by 4		r Postscaler bits			
bit 7-6	PLLPOST<1 11 = Output/8 10 = Reserve 01 = Output/2 00 = Output/2	3 ed 4 (default)	Output Divide	er Select bits (als	o denoted as	'N2', PLL posts	caler)
bit 5	Unimplemen	ted: Read as '	0'				
bit 4-0	PLLPRE<4:0 11111 = Inpu 00001 = Inpu	ut/33	Detector Inpu	t Divider bits (al	so denoted as	'N1', PLL presc	caler)
	00001 = Inpt 00000 = Inpt						

- Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.
 - 2: This register is reset only on a Power-on Reset (POR).

10.4 Peripheral Pin Select

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. The challenge is even greater on low-pin count devices. In an application where more than one peripheral must be assigned to a single pin, inconvenient workarounds in application code or a complete redesign may be the only option.

Peripheral pin select configuration enables peripheral set selection and placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, programmers can better tailor the device to their entire application, rather than trimming the application to fit the device.

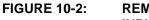
The peripheral pin select configuration feature operates over a fixed subset of digital I/O pins. Programmers can independently map the input and/or output of most digital peripherals to any one of these I/O pins. Peripheral pin select is performed in software, and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping, when it has been established.

10.4.1 AVAILABLE PINS

The peripheral pin select feature is used with a range of up to 16 pins. The number of available pins depends on the particular device and its pin count. Pins that support the peripheral pin select feature include the designation "RPn" in their full pin designation, where "RP" designates a remappable peripheral and "n" is the remappable pin number.

10.4.2 CONTROLLING PERIPHERAL PIN SELECT

Peripheral pin select features are controlled through two sets of special function registers: one to map peripheral inputs, and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.


The association of a peripheral to a peripheral selectable pin is handled in two different ways, depending on whether an input or output is being mapped.

10.4.2.1 Input Mapping

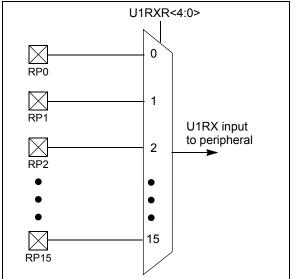

The inputs of the peripheral pin select options are mapped on the basis of the peripheral. A control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 10-1 through Register 10-9). Each register contains sets of 5-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 5-bit value maps the RPn pin with that value to that peripheral. For any given device, the valid range of values for any bit field corresponds to the maximum number of peripheral pin selections supported by the device.

Figure 10-2 Illustrates remappable pin selection for U1RX input.

Note:	For input mapping only, the Peripheral Pin
	Select (PPS) functionality does not have
	priority over the TRISx settings. There-
	fore, when configuring the RPn pin for
	input, the corresponding bit in the TRISx
	register must also be configured for input
	(i.e., set to '1').

2: REMAPPABLE MUX INPUT FOR U1RX

REGISTER 10-8: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

_	_			SCK1R<4:0	、 <u> </u>				
				001111.4.0	-				
						bit 8			
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
—	—			SDI1R<4:0	5DI1R<4:0>				
						bit C			
			•						
OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkı	nown			
-									
•									
11111 = Inpu 01111 = Inpu •	t tied to Vss t tied to RP15	ata Input (SD	11) to the corre	sponaing KPr	i pin dits				
	Unimplemen SCK1R<4:0> 11111 = Inpu 01111 = Inpu • • • • • • • • • • • • • • • • • • •	Unimplemented: Read as '0 SCK1R<4:0>: Assign SPI1 (11111 = Input tied to Vss 01111 = Input tied to RP15 • • • 00001 = Input tied to RP1 00000 = Input tied to RP0 Unimplemented: Read as '0 SDI1R<4:0>: Assign SPI1 D 11111 = Input tied to Vss 01111 = Input tied to RP15	Unimplemented: Read as '0' SCK1R<4:0>: Assign SPI1 Clock Input (S 11111 = Input tied to Vss 01111 = Input tied to RP15 • • • 00001 = Input tied to RP1 00000 = Input tied to RP0 Unimplemented: Read as '0' SDI1R<4:0>: Assign SPI1 Data Input (SD 11111 = Input tied to Vss 01111 = Input tied to RP15 • • • • •	<pre>DR '1' = Bit is set '0' = Bit is cle Unimplemented: Read as '0' SCK1R<4:0>: Assign SPI1 Clock Input (SCK1IN) to the 11111 = Input tied to Vss 01111 = Input tied to RP15</pre>	DR '1' = Bit is set '0' = Bit is cleared Unimplemented: Read as '0' SCK1R<4:0>: Assign SPI1 Clock Input (SCK1IN) to the corresponding 1111 = Input tied to Vss 01111 = Input tied to RP15 • 00001 = Input tied to RP1 00000 = Input tied to RP0 Unimplemented: Read as '0' SD11R<4:0>: Assign SPI1 Data Input (SDI1) to the corresponding RPr 1111 = Input tied to RP15 • 00001 = Input tied to RP1 00001 = Input tied to RP1 01111 = Input tied to RP15 • • 00001 = Input tied to RP15	DR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown Unimplemented: Read as '0' SCK1R<4:0>: Assign SPI1 Clock Input (SCK1IN) to the corresponding RPn pin bits 11111 = Input tied to Vss 01111 = Input tied to RP15 • • 00001 = Input tied to RP1 00000 = Input tied to RP0 Unimplemented: Read as '0' SDI1R<4:0>: Assign SPI1 Data Input (SDI1) to the corresponding RPn pin bits 1111 = Input tied to Vss 01111 = Input tied to RP15 • 00001 = Input tied to RP1 00001 = Input tied to RP1 00001 = Input tied to RP15			

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	
FRMEN	SPIFSD	FRMPOL		—		—	_	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	
						FRMDLY		
pit 7						TRADET	bit (
_egend:								
R = Readable	e bit	W = Writable I	oit	U = Unimplemented bit, read as '0'				
n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unkno			own	
bit 15 bit 14	1 = Framed S 0 = Framed S SPIFSD : Fran 1 = Frame syn	ned SPIx Supp PIx support en PIx support dis ne Sync Pulse nc pulse input (nc pulse output	abled (SSx p abled Direction Cor slave)	in used as fram ntrol bit	e sync pulse in	put/output)		
bit 13		ame Sync Pulse	e Polarity bit					
		nc pulse is activ						
bit 12-2	0 = Frame sy		ve-low					
bit 12-2 bit 1	0 = Frame syn Unimplemen FRMDLY: Fra 1 = Frame syn	nc pulse is activ	ve-low)' Edge Select des with first	bit clock				

REGISTER 15-3: SPIxCON2: SPIx CONTROL REGISTER 2

R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
ADON		ADSIDL	_	—	AD12B	FORM	/<1:0>			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/C-0			
						HC,HS	HC, HS			
	SSRC<2:0>		—	SIMSAM	ASAM	SAMP	DONE			
bit 7							bit 0			
Legend:		HC = Cleared b	y hardware	HS = Set by h	nardware					
R = Readabl	e bit	W = Writable b	it	U = Unimplen	nented bit, rea	d as '0'				
-n = Value at	POR	'1' = Bit is set	'0' = Bit is cle	ared	x = Bit is unki	nown				
bit 15	ADON: ADC	Operating Mode	e bit							
	1 = ADC module is operating 0 = ADC is off									
bit 14	Unimplemen	ted: Read as '0	,							
bit 13	ADSIDL: Sto	p in Idle Mode b	it							
		ue module operation			e mode					
bit 12-11	Unimplemen	ted: Read as '0	3							
oit 10	AD12B: 10-bit or 12-bit Operation Mode bit									
		 1 = 12-bit, 1-channel ADC operation 0 = 10-bit, 4-channel ADC operation 								
bit 9-8	FORM<1:0>: Data Output Format bits									
	For 10-bit operation: 11 = Signed fractional (Dout = sddd dddd dd00 0000, where s = .NOT.d<9>)									
					, where $s = .N$	OT.d<9>)				
	10 = Fractional (Dout = dddd dddd dd00 0000) 01 = Signed integer (Dout = ssss sssd dddd dddd, where s = .NOT.d<9>)									
	00 = Integer (Dout = 0000 00dd dddd dddd)									
	For 12-bit operation:									
	11 = Signed fractional (Dout = sddd dddd dddd 0000, where s = .NOT.d<11>) 10 = Fractional (Dout = dddd dddd dddd 0000)									
	01 = Signed Integer (DOUT = ssss sddd dddd dddd, where s = .NOT.d<11>)									
	00 = Integer	(DOUT = 0000 d	lddd dddd	dddd)						
bit 7-5		Sample Clock S								
	111 = Internal counter ends sampling and starts conversion (auto-convert)									
	 110 = Reserved 101 = Motor Control PWM2 interval ends sampling and starts conversion 									
	101 = Motor Control PWW2 Interval ends sampling and starts conversion 100 = Reserved									
	011 = Motor Control PWM1 interval ends sampling and starts conversion 010 = GP timer 3 compare ends sampling and starts conversion									
		transition on IN				n				
		ng sample bit en	•			-				
bit 4	Unimplemen	ted: Read as '0	3							
bit 3	SIMSAM: Sir	nultaneous Sam	ple Select b	it (applicable onl	y when CHPS	<1:0> = 01 or 1	Lx)			
		B = 1, SIMSAM		•						
	•	CH0, CH1, CH2		• •		= 1x); or				
	•	CH0 and CH1 s multiple channe		•	<1.0~ = 0⊥)					
				,						

REGISTER 18-1: AD1CON1: ADC1 CONTROL REGISTER 1

REGISTER 18-3: AD1CON3: ADC1 CONTROL REGISTER 3

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
ADRC					SAMC<4:0>(1)				
bit 15							bit			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
10/00-0	17.00-0	1000-0		<7:0> ⁽²⁾	10/00-0	10,00-0	10.00-0			
bit 7				-			bit			
Legend:										
R = Readable	e bit	W = Writable bi	t	U = Unimpler	nented bit, rea	ad as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is cleared				x = Bit is unkr	nown					
				0 200000						
bit 15	ADRC: ADC	Conversion Cloc	k Source bit							
	1 = ADC internal RC clock									
	0 = Clock der	ived from system	n clock							
bit 14-13	-	ted: Read as '0'								
bit 12-8	SAMC<4:0>: Auto Sample Time bits ⁽¹⁾									
	11111 = 31 TAD									
	•									
	•									
	00001 = 1 TA	ND.								
	00000 = 0 TA									
bit 7-0	ADCS<7:0>: ADC Conversion Clock Select bits ⁽²⁾									
	11111111 = Reserved									
	•									
	•									
	•									
	•									
	01000000 = Reserved 00111111 = Tcy · (ADCS<7:0> + 1) = 64 · Tcy = Tad									
	•	Υ.	,							
	•									
	•									
	00000010 =	TCY · (ADCS<7:	0> + 1) = 3	TCY = TAD						
	0000001 -	T	(1) + (1) = 2	$T_{CY} = T_{AD}$						
		TCY · (ADCS<7: TCY · (ADCS<7:								

2: These bits are not used if the ADRC bit (AD1CON3<15>) = 1.

19.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of the dsPIC33FJ12GP201/202 devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual sections.

Microchip dsPIC33FJ12GP201/202 devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard[™] Security
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™]) programming capability
- In-Circuit emulation

19.1 Configuration Bits

dsPIC33FJ12GP201/202 devices provide nonvolatile memory implementation for device configuration bits. Refer to **Section 25. "Device Configuration"** (DS70194) of the *"dsPIC33F/PIC24H Family Reference Manual"*, for more information on this implementation.

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location 0xF80000.

The Device Configuration register map is shown in Table 19-1.

The individual Configuration bit descriptions for the Configuration registers are shown in Table 19-2.

Note that address 0xF80000 is beyond the user program memory space. It belongs to the configuration memory space (0x800000-0xFFFFFF), which can only be accessed using table reads and table writes.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0xF80000	FBS	—	—	—	—		BSS<2:0>	3SS<2:0>	
0xF80002	Reserved	_	—	_	—	_	_		
0xF80004	FGS		—		—		GSS<1	GSS<1:0>	
0xF80006	FOSCSEL	IESO	—			-	FNC	FNOSC<2:0>	
0xF80008	FOSC	FCKSM	<1:0>	IOL1WAY	—		OSCIOFNC POSCMD<1:0		1D<1:0>
0xF8000A	FWDT	FWDTEN	WINDIS		WDTPRE	WDTPOST<3:0>			
0xF8000C	FPOR	Reserved ⁽¹⁾			ALTI2C		FPWRT<2:0>		
0xF8000E	FICD	Reserved ⁽²⁾ JTAGEN			—	-	_	ICS<	:1:0>
0xF80010	FUID0		User Unit ID Byte 0						
0xF80012	FUID1	User Unit ID Byte 1							
0xF80014	FUID2		User Unit ID Byte 2						
0xF80016	FUID3		User Unit ID Byte 3						

TABLE 19-1: DEVICE CONFIGURATION REGISTER MAP

Legend: — = unimplemented bit, read as '0'.

Note 1: Reserved bits read as '1' and must be programmed as '1'.

2: These bits are reserved for use by development tools and must be programmed as '1'.

TABLE 19-2:	USFICSSE		7202 CONFIGURATION BITS DESCRIPTION
Bit Field	Register	RTSP Effect	Description
BWRP	FBS	Immediate	Boot Segment Program Flash Write Protection 1 = Boot segment may be written 0 = Boot segment is write-protected
BSS<2:0>	FBS	Immediate	Boot Segment Program Flash Code Protection Size x11 = No Boot program Flash segment
			Boot space is 256 Instruction Words (except interrupt vectors) 110 = Standard security; boot program Flash segment ends at 0x0003FE 010 = High security; boot program Flash segment ends at 0x0003FE
			Boot space is 768 Instruction Words (except interrupt vectors) 101 = Standard security; boot program Flash segment, ends at 0x0007FE 001 = High security; boot program Flash segment ends at 0x0007FE
			Boot space is 1792 Instruction Words (except interrupt vectors) 100 = Standard security; boot program Flash segment ends at 0x000FFE 000 = High security; boot program Flash segment ends at 0x000FFE
GSS<1:0>	FGS	Immediate	General Segment Code-Protect bit 11 = User program memory is not code-protected 10 = Standard security 0x = High security
GWRP	FGS	Immediate	General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected
IESO	FOSCSEL	Immediate	 Two-speed Oscillator Start-up Enable bit 1 = Start-up device with FRC, then automatically switch to the user-selected oscillator source when ready 0 = Start-up device with user-selected oscillator source
FNOSC<2:0>	FOSCSEL	If clock switch is enabled, RTSP effect is on any device Reset; otherwise, Immediate	Initial Oscillator Source Selection bits 111 = Internal Fast RC (FRC) oscillator with postscaler 110 = Internal Fast RC (FRC) oscillator with divide-by-16 101 = LPRC oscillator 100 = Secondary (LP) oscillator 011 = Primary (XT, HS, EC) oscillator with PLL 010 = Primary (XT, HS, EC) oscillator 001 = Internal Fast RC (FRC) oscillator with PLL 000 = FRC oscillator
FCKSM<1:0>	FOSC	Immediate	Clock Switching Mode bits 1x = Clock switching is disabled, fail-safe clock monitor is disabled 01 = Clock switching is enabled, fail-safe clock monitor is disabled 00 = Clock switching is enabled, fail-safe clock monitor is enabled
IOL1WAY	FOSC	Immediate	Peripheral Pin Select Configuration 1 = Allow only one reconfiguration 0 = Allow multiple reconfigurations
OSCIOFNC	FOSC	Immediate	OSC2 Pin Function bit (except in XT and HS modes) 1 = OSC2 is clock output 0 = OSC2 is general purpose digital I/O pin
POSCMD<1:0>	FOSC	Immediate	Primary Oscillator Mode Select bits 11 = Primary oscillator disabled 10 = HS Crystal Oscillator mode 01 = XT Crystal Oscillator mode 00 = EC (External Clock) mode

TABLE 19-2: dsPIC33FJ12GP201/202 CONFIGURATION BITS DESCRIPTION

21.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

21.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

21.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- · Integration into MPLAB IDE projects
- User-defined macros to streamline
 assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

21.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

21.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- · Rich directive set
- · Flexible macro language
- · MPLAB IDE compatibility

22.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33FJ12GP201/202 electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33FJ12GP201/202 family are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽⁴⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 3.0V^{(4)}$	0.3V to +5.6V
Voltage on any 5V tolerant pin with respect to Vss when $VDD < 3.0V^{(4)}$	0.3V to (VDD + 0.3V)
Maximum current out of Vss pin	
Maximum current into Vod pin ⁽²⁾	250 mA
Maximum output current sunk by any I/O pin ⁽³⁾	4 mA
Maximum output current sourced by any I/O pin ⁽³⁾	4 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports ⁽²⁾	200 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" can cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods can affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 22-2).
 - **3:** Exceptions are CLKOUT, which is able to sink/source 25 mA, and the VREF+, VREF-, SCLx, SDAx, PGECx, and PGEDx pins, which are able to sink/source 12 mA.
 - 4: See the "Pin Diagrams" section for 5V tolerant pins.

TABLE 22-33:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING
REQUIREMENTS

AC CHARACTERISTICS			Standard Op (unless othe Operating ter	rwise st				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Min Typ ⁽²⁾ Max		Units	Conditions	
SP70	TscP	Maximum SCK Input Frequency	_		11	MHz	See Note 3	
SP72	TscF	SCKx Input Fall Time	—			ns	See parameter DO32 and Note 4	
SP73	TscR	SCKx Input Rise Time	—			ns	See parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—			ns	See parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	—		_	ns	See parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30			ns	—	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30			ns	—	
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	Ι		ns	—	
SP51	TssH2doZ	SSx	10	_	50	ns	—	
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40			ns	See Note 4	
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge		—	50	ns	—	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCK clock generated by the Master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

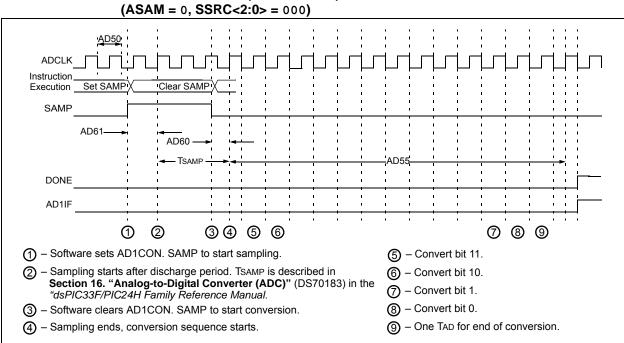
AC CHA	RACTERI			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended				
Param	Symbol	Characte	eristic ⁽²⁾	Min Max		Units	Conditions	
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	_	μs	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	1.3	—	μs	Device must operate at a minimum of 10 MHz	
			1 MHz mode ⁽¹⁾	0.5		μs	—	
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μs	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	0.6		μs	Device must operate at a minimum of 10 MHz	
			1 MHz mode ⁽¹⁾	0.5		μs	_	
IS20	TF:SCL	SDAx and SCLx	100 kHz mode		300	ns	CB is specified to be from	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾		100	ns		
IS21	TR:SCL	SDAx and SCLx	100 kHz mode		1000	ns	CB is specified to be from	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	—	300	ns		
IS25	TSU:DAT	Data Input	100 kHz mode	250		ns	—	
		Setup Time	400 kHz mode	100		ns		
			1 MHz mode ⁽¹⁾	100		ns		
IS26	THD:DAT	Data Input Hold Time	100 kHz mode	0		μs	—	
			400 kHz mode	0	0.9	μs		
			1 MHz mode ⁽¹⁾	0	0.3	μs		
IS30	TSU:STA	Start Condition	100 kHz mode	4.7		μs	Only relevant for Repeated	
		Setup Time	400 kHz mode	0.6		μs	Start condition	
			1 MHz mode ⁽¹⁾	0.25		μs		
IS31	THD:STA	Start Condition	100 kHz mode	4.0	—	μs	After this period, the first	
		Hold Time	400 kHz mode	0.6	—	μs	clock pulse is generated	
			1 MHz mode ⁽¹⁾	0.25	—	μs		
IS33	TSU:STO	otop oonanton	100 kHz mode	4.7	—	μs		
		Setup Time	400 kHz mode	0.6	—	μs		
			1 MHz mode ⁽¹⁾	0.6	—	μs		
IS34	THD:ST	Stop Condition	100 kHz mode	4000	—	ns		
	0	Hold Time	400 kHz mode	600	—	ns		
			1 MHz mode ⁽¹⁾	250		ns		
IS40	TAA:SCL	Output Valid	100 kHz mode	0	3500	ns		
	From Clock	400 kHz mode	0	1000	ns			
			1 MHz mode ⁽¹⁾	0	350	ns		
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	Time the bus must be free	
			400 kHz mode	1.3	—	μS	before a new transmission can start	
			1 MHz mode ⁽¹⁾	0.5	—	μs	Can Start	
IS50	Св	Bus Capacitive Lo	ading	—	400	pF	—	

TABLE 22-37: I²Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

2: These parameters are characterized by similarity, but are not tested in manufacturing.

AC CH	ARACTERI	STICS	Standard C (unless oth Operating	nerwise	ture -40°C	≤Ta ≤+8	0V to 3.6V ≤+85°C for Industrial ≤+125°C for Extended			
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions			
	ADC Accuracy (12-bit Mode) – Measurements with external VREF+/VREF- ⁽³⁾									
AD20a	Nr	Resolution ⁽⁴⁾	1	2 data bi	ts	bits	—			
AD21a	INL	Integral Nonlinearity	-2	-	+2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
AD22a	DNL	Differential Nonlinearity	>-1	—	<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
AD23a	Gerr	Gain Error	—	3.4	10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
AD24a	EOFF	Offset Error	—	0.9	5.0	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
AD25a	—	Monotonicity	_	—	_		Guaranteed ⁽¹⁾			
		ADC Accuracy (12-bit Mode	e) – Measure	ements v	vith internal	VREF+/	VREF- ⁽³⁾			
AD20a	Nr	Resolution ⁽⁴⁾	12 data bits		bits	—				
AD21a	INL	Integral Nonlinearity	-2	-	+2	LSb	VINL = AVSS = 0V, AVDD = 3.6V			
AD22a	DNL	Differential Nonlinearity	>-1	-	<1	LSb	VINL = AVSS = 0V, AVDD = 3.6V			
AD23a	Gerr	Gain Error	—	10.5	20	LSb	VINL = AVSS = 0V, AVDD = 3.6V			
AD24a	EOFF	Offset Error	—	3.8	10	LSb	VINL = AVSS = 0V, AVDD = 3.6V			
AD25a	_	Monotonicity		_		_	Guaranteed ⁽¹⁾			
		Dynamic	Performanc	e (12-bit	Mode) ⁽²⁾					
AD30a	THD	Total Harmonic Distortion	—		-75	dB	_			
AD31a	SINAD	Signal to Noise and Distortion	68.5	69.5		dB	_			
AD32a	SFDR	Spurious Free Dynamic Range	80	—	_	dB	_			
AD33a	Fnyq	Input Signal Bandwidth			250	kHz				
AD34a	ENOB	Effective Number of Bits	11.09	11.3	_	bits	_			


TABLE 22-39: ADC MODULE SPECIFICATIONS (12-BIT MODE)

Note 1: The A/D conversion result never decreases with an increase in the input voltage, and has no missing codes.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

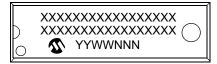
3: These parameters are characterized, but are tested at 20 ksps only.

4: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

FIGURE 22-21: ADC CONVERSION (12-BIT MODE) TIMING CHARACTERISTICS

TABLE 22-41: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS

AC CHA		(unless o	dard Operating Conditions: 3.0V to 3.6Vess otherwise stated)rating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended				
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions
		Clock	Paramete	ers ⁽¹⁾			
AD50	Tad	ADC Clock Period	117.6			ns	
AD51	tRC	ADC Internal RC Oscillator Period	—	250	—	ns	
		Con	version R	ate			·
AD55	tCONV	Conversion Time		14 Tad		ns	
AD56	FCNV	Throughput Rate	—	—	500	Ksps	
AD57	TSAMP	Sample Time	3.0 Tad	—	—	—	
		Timin	ig Parame	ters			
AD60	tPCS	Conversion Start from Sample Trigger ⁽²⁾	2.0 Tad	—	3.0 Tad	—	Auto Convert Trigger not selected
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽²⁾	2.0 Tad	—	3.0 Tad	_	_
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾	—	0.5 Tad	—	_	_
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽²⁾	—	—	20	μs	—


Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

2: These parameters are characterized but not tested in manufacturing.

23.0 PACKAGING INFORMATION

23.1 Package Marking Information

18-Lead PDIP

Example

28-Lead SPDIP

Example

18-Lead SOIC

Example

28-Lead SOIC

Example

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (@3) can be found on the outer packaging for this package.
		Aicrochip part number cannot be marked on one line, it is carried over to the next imiting the number of available characters for customer-specific information.