

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	12KB (12K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj12gp202-e-so

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Pin Type	Buffer Type	PPS	Description
AN0-AN9	I	Analog	No	Analog input channels.
CLKI CLKO	I O	ST/CMOS —	No No	External clock source input. Always associated with OSC1 pin function. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.
OSC1 OSC2	I I/O	ST/CMOS	No No	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscilla tor mode. Optionally functions as CLKO in RC and EC modes.
SOSCI SOSCO	I O	ST/CMOS	No No	32.768 kHz low-power oscillator crystal input; CMOS otherwise. 32.768 kHz low-power oscillator crystal output.
CN0-CN7 CN11-CN15 CN21-CN24 CN27 CN29-CN30	I	ST	No No No No	Change notification inputs. Can be software programmed for internal weak pull-ups on all inputs.
IC1-IC2 IC7-IC8	I	ST	Yes Yes	Capture inputs 1/2 Capture inputs 7/8
OCFA OC1-OC2	I O	ST —	Yes Yes	Compare Fault A input (for Compare Channels 1 and 2). Compare outputs 1 through 2.
INT0 INT1 INT2	 	ST ST ST	No Yes Yes	External interrupt 0. External interrupt 1. External interrupt 2.
RA0-RA4	I/O	ST	No	PORTA is a bidirectional I/O port.
RB0-RB15	I/O	ST	No	PORTB is a bidirectional I/O port.
T1CK T2CK T3CK		ST ST ST	No Yes Yes	Timer1 external clock input. Timer2 external clock input. Timer3 external clock input.
U1CTS U1RTS U1RX U1TX	 0 0	ST — ST —	Yes Yes Yes Yes	UART1 clear to send. UART1 ready to send. UART1 receive. UART1 transmit.
SCK1 SDI1 SDO1 SS1	I/O I O I/O	ST ST 	Yes Yes Yes Yes	Synchronous serial clock input/output for SPI1. SPI1 data in. SPI1 data out. SPI1 slave synchronization or frame pulse I/O.
SCL1 SDA1 ASCL1 ASDA1	I/O I/O I/O I/O	ST ST ST ST	No No No No	Synchronous serial clock input/output for I2C1. Synchronous serial data input/output for I2C1. Alternate synchronous serial clock input/output for I2C1. Alternate synchronous serial data input/output for I2C1.
TMS TCK TDI TDO	 0	ST ST ST —	No No No No	JTAG Test mode select pin. JTAG test clock input pin. JTAG test data input pin. JTAG test data output pin.
S	Γ = Schn		nput wit	apput or outputAnalog = Analog inputP = Powerh CMOS levelsO = OutputI = Input

TABLE 1-1: **PINOUT I/O DESCRIPTIONS**

ST = Schmitt Trigger input with CMOS levels PPS = Peripheral Pin Select

TABLE 4-1:	CPU CORE REGISTERS MAP
------------	-------------------------------

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREG0	0000								Working Re	gister 0								0000
WREG1	0002								Working Re	gister 1								0000
WREG2	0004								Working Re	gister 2								0000
WREG3	0006								Working Re	gister 3								0000
WREG4	0008								Working Re	gister 4								0000
WREG5	000A								Working Re	gister 5								0000
WREG6	000C								Working Re	gister 6								0000
WREG7	000E								Working Re	gister 7								0000
WREG8	0010								Working Re	gister 8								0000
WREG9	0012								Working Re	gister 9								0000
WREG10	0014								Working Re	gister 10								0000
WREG11	0016								Working Re	gister 11								0000
WREG12	0018								Working Re	gister 12								0000
WREG13	001A								Working Re	gister 13								0000
WREG14	001C							,	Working Re	gister 14								0000
WREG15	001E								Working Re	gister 15								0800
SPLIM	0020							Stad	ck Pointer Li	mit Register	•							xxxx
ACCAL	0022							Accum	ulator A Low	Word Regi	ster							0000
ACCAH	0024							Accum	ulator A High	Word Regi	ster							0000
ACCAU	0026							Accumu	lator A Uppe	er Word Reg	jister							0000
ACCBL	0028							Accum	ulator B Low	Word Regi	ster							0000
ACCBH	002A							Accum	ulator B High	Word Regi	ster							0000
ACCBU	002C							Accumu	lator B Uppe	er Word Reg	jister							0000
PCL	002E							Program	Counter Lo	w Word Reg	gister							0000
PCH	0030	—	_	—	_	_	_	_	_			Progra	m Counter	High Byte R	legister			0000
TBLPAG	0032	—	—	_	—	_	_	_	—			Table F	Page Addre	ss Pointer R	Register			0000
PSVPAG	0034	_	_	_	_	_	_	-	_		Progra	am Memory	v Visibility P	age Address	s Pointer R	egister		0000
RCOUNT	0036							Repe	at Loop Cou	inter Registe	er							xxxx
DCOUNT	0038								DCOUNT	<15:0>								xxxx
DOSTARTL	003A							DOS	TARTL<15:	1>							0	xxxx
DOSTARTH	003C	_	_	_	_	_	_	_	_	—	_			DOSTAF	RTH<5:0>			00xx
DOENDL	003E							DOE	NDL<15:1	>							0	xxxx
DOENDH	0040	_	—	_	—	—	—	_	_	_	—			DOE	NDH			00xx
SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1	IPL0	RA	N	OV	Z	С	0000
CORCON	0044	_	—	_	US	EDT		DL<2:0>		SATA	SATB	SATDW	ACCSAT	IPL3	PSV	RND	IF	0020
MODCON	0046	XMODEN	YMODEN	_	_		BWN	/<3:0>			YWM	<3:0>			XWN	1<3:0>		0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-1: CPU CORE REGISTERS MAP (CONTINUED)

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
XMODSRT	0048							>	(S<15:1>								0	xxxx
XMODEND	004A							>	(E<15:1>								1	xxxx
YMODSRT	004C							١	/S<15:1>								0	xxxx
YMODEND	004E							١	′E<15:1>								1	xxxx
XBREV	0050	BREN							>	(B<14:0>								xxxx
DISICNT	0052	—	Disable Interrupts Counter Register									xxxx						

gend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-2: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJ12GP202

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE				CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	_	CN30IE	CN29IE		CN27IE		_	CN24IE	CN23IE	CN22IE	CN21IE		_	_	_	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE		_	_	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	_	CN30PUE	CN29PUE	_	CN27PUE	_		CN24PUE	CN23PUE	CN22PUE	CN21PUE	_		_	_	CN16PUE	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-3: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJ12GP201

SFF Nan		SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNE	N1	0060	_	_	_	CN12IE	CN11IE	_		_	_		CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNE	N2	0062	_	CN30IE	CN29IE	_	_	_		_	CN23IE	CN22IE	CN21IE	-	_	_	_	-	0000
CNP	U1	0068	_	—	_	CN12PUE	CN11PUE	_	_	_	_	_	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNP	U2	006A	_	CN30PUE	CN29PUE	_	_	_	_	_	CN23PUE	CN22PUE	CN21PUE	_	_				0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-4:	INTERRUPT CONTROLLER REGISTER MAP
------------	-----------------------------------

				••••••									-	-				
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	-	MATHERR	ADDRERR	STKERR	OSCFAIL	_	0000
INTCON2	0082	ALTIVT	DISI	_	_	_	_	_	_	_	_	_	_	_	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	—	_	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	—	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0086	_		INT2IF	_	_	_	_	_	IC8IF	IC7IF	_	INT1IF	CNIF	_	MI2C1IF	SI2C1IF	0000
IFS4	008C	—	_	_	_	_	-	—		—	_	_	—	_		U1EIF	_	0000
IEC0	0094	—	_	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	—	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0096	—	_	INT2IE	_	_	-	—		IC8IE	IC7IE	_	INT1IE	CNIE		MI2C1IE	SI2C1IE	0000
IEC4	009C		_	_	_			—		—	_		—	_		U1EIE		0000
IPC0	00A4			T1IP<2:0>	•		Ú	OC1IP<2:()>	—		IC1IP<2:0>		_	11	NT0IP<2:0>	•	4444
IPC1	00A6			T2IP<2:0>	•		Ú	OC2IP<2:()>	—		IC2IP<2:0>		_				4440
IPC2	00A8	_	ι	J1RXIP<2:()>			SPI1IP<2:0)>	—	:	SPI1EIP<2:0	>	_		T3IP<2:0>		4444
IPC3	00AA		_	_	_			—		—		AD1IP<2:0>	>	_	U	1TXIP<2:0	>	0044
IPC4	00AC	_		CNIP<2:0>	>			_		—		MI2C1IP<2:0)>	_	SI	2C1IP<2:0	>	4044
IPC5	00AE	—		IC8IP<2:0>	>	—		IC7IP<2:0	>	—	—	-	—	—	11	NT1IP<2:0>	•	4404
IPC7	00B2		_	_	_			—		—		INT2IP<2:0	>	_				0040
IPC16	00C4	_	_	_	_	_		_		—		U1EIP<2:0>	>	_	_		_	0040
INTTREG	00E0	_	_	_	_		ILR<3	:0>>		_			VE	CNUM<6:0>				0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 5-1: NVMCON: FLASH MEMORY CONTROL REGISTER

R/SO-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	U-0	U-0	U-0	U-0	U-0
WR	WREN	WRERR	—	—	—	—	—
bit 15							bit 8

U-0	R/W-0 ⁽¹⁾	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
_	ERASE	—	—		NVMOF	9<3:0> (2)	
bit 7							bit 0

Legend:	SO = Settable only bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	WR: Write Control bit
	1 = Initiates a Flash memory program or erase operation. The operation is self-timed and the bit is
	cleared by hardware when operation is complete.
	0 = Program or erase operation is complete and inactive
bit 14	WREN: Write Enable bit
	1 = Enable Flash program/erase operations
	0 = Inhibit Flash program/erase operations
bit 13	WRERR: Write Sequence Error Flag bit
	1 = An improper program or erase sequence attempt or termination has occurred (bit is set
	automatically on any set attempt of the WR bit)
	0 = The program or erase operation completed normally
bit 12-7	Unimplemented: Read as '0'
bit 6	ERASE: Erase/Program Enable bit
	1 = Perform the erase operation specified by NVMOP<3:0> on the next WR command
	0 = Perform the program operation specified by NVMOP<3:0> on the next WR command
bit 5-4	Unimplemented: Read as '0'
bit 3-0	NVMOP<3:0>: NVM Operation Select bits ⁽²⁾
	If ERASE = 1:
	1111 = Memory bulk erase operation
	1101 = Erase General Segment
	1100 = Erase Secure Segment
	0011 = No operation
	0010 = Memory page erase operation 0001 = No operation
	0000 = Erase a single Configuration register byte
	If ERASE = 0:
	1111 = No operation
	1101 = No operation 1100 = No operation
	0011 = Memory word program operation
	0010 = No operation
	0001 = Memory row program operation
	0000 = Program a single Configuration register byte
•• · ·	
Note 1:	These bits can only be Reset on POR.

2: All other combinations of NVMOP<3:0> are unimplemented.

6.2 POR

A POR circuit ensures the device is reset from poweron. The POR circuit is active until VDD crosses the VPOR threshold and the delay TPOR has elapsed. The delay TPOR ensures the internal device bias circuits become stable.

The device supply voltage characteristics must meet the specified starting voltage and rise rate requirements to generate the POR. Refer to Section 22.0 "Electrical Characteristics" for details.

The POR status bit (POR) in the Reset Control register (RCON<0>) is set to indicate the POR.

6.3 BOR and PWRT

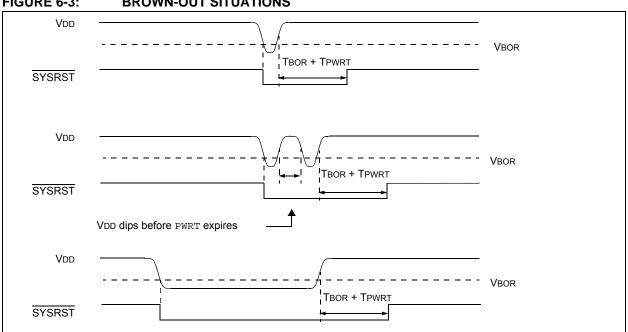

The on-chip regulator has a BOR circuit that resets the device when the VDD is too low (VDD < VBOR) for proper device operation. The BOR circuit keeps the device in Reset until VDD crosses VBOR threshold and the delay TBOR has elapsed. The delay TBOR ensures the voltage regulator output becomes stable.

FIGURE 6-3: **BROWN-OUT SITUATIONS** The BOR status bit (BOR) in the Reset Control register (RCON<1>) is set to indicate the BOR.

The device will not run at full speed after a BOR as the VDD should rise to acceptable levels for full-speed operation. The PWRT provides power-up time delay (TPWRT) to ensure that the system power supplies have stabilized at the appropriate levels for full-speed operation before the SYSRST is released.

The power-up timer delay (TPWRT) is programmed by the Power-on Reset Timer Value Select bits (FPWRT<2:0>) in the POR Configuration register (FPOR<2:0>), which provides eight settings (from 0 ms to 128 ms). Refer to Section 19.0 "Special Features" for further details.

Figure 6-3 shows the typical brown-out scenarios. The Reset delay (TBOR + TPWRT) is initiated each time VDD rises above the VBOR trip point.

7.0 INTERRUPT CONTROLLER

- Note 1: This data sheet summarizes the features of the dsPIC33FJ12GP201/202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 6. "Interrupts" (DS70184) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Microchip dsPIC33FJ12GP201/202 interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33FJ12GP201/202 CPU. It has the following features:

- Up to eight processor exceptions and software traps
- · Seven user-selectable priority levels
- Interrupt Vector Table (IVT) with up to 118 vectors
- A unique vector for each interrupt or exception source
- Fixed priority within a specified user priority level
- Alternate Interrupt Vector Table (AIVT) for debug support
- · Fixed interrupt entry and return latencies

7.1 Interrupt Vector Table

The Interrupt Vector Table is shown in Figure 7-1. The IVT resides in program memory, starting at location 000004h. The IVT contains 126 vectors consisting of eight nonmaskable trap vectors, plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority; this priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with vector 0 will take priority over interrupts at any other vector address.

The dsPIC33FJ12GP201/202 devices implement up to 21 unique interrupts and four nonmaskable traps. These are summarized in Table 7-1 and Table 7-2.

7.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 7-1. Access to the AIVT is provided by the ALTIVT control bit (INTCON2<15>). If the ALTIVT bit is set, all interrupt and exception processes use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports debugging by providing a way to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications to facilitate evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33FJ12GP201/202 device clears its registers in response to a Reset, which forces the PC to zero. The digital signal controller then begins program execution at location 0x000000. The user application can use a GOTO instruction at the Reset address that redirects program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

- bit 2
 STKERR: Stack Error Trap Status bit

 1 = Stack error trap has occurred
 0 = Stack error trap has not occurred

 bit 1
 OSCFAIL: Oscillator Failure Trap Status bit

 1 = Oscillator failure trap has occurred
 0 = Oscillator failure trap has not occurred
- bit 0 Unimplemented: Read as '0'

REGISTER 8-2: CLKDIV: CLOCK DIVISOR REGISTER ⁽²⁾

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
ROI		DOZE<2:0>		DOZEN ⁽¹⁾		FRCDIV<2:0>	
bit 15	•						bit 8
R/W-0	R/W-1	U-0	R/W-0	R/W-0		R/W-0	R/W-0
		0-0	R/W-U	R/W-0	R/W-0		R/W-U
bit 7	OST<1:0>	_			PLLPRE<4:0	>	bit (
DIL 7							bit (
Legend:		y = Value set	from Configu	ration bits on PC)R		
R = Readabl	e bit	W = Writable	bit	U = Unimplem	ented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15	1 = Interrupt	r on Interrupt bi s will clear the I s have no effec	DOZEN bit ar	nd the processor EN bit	clock/periphe	ral clock ratio is	set to 1:1
bit 14-12	DOZE<2:0>: 111 = FcY/12 110 = FcY/62 101 = FcY/32 100 = FcY/16 011 = FcY/8 010 = FcY/4 001 = FcY/2 000 = FcY/1	4 2 3	ck Reduction	Select bits			
bit 11	1 = DOZE<2	ZE Mode Enabl 2:0> field specifi or clock/periphe	es the ratio b	etween the peri o forced to 1:1	pheral clocks a	and the process	or clocks
bit 10-8	111 = FRC d 110 = FRC d 101 = FRC d 100 = FRC d 011 = FRC d 010 = FRC d 001 = FRC d	ivide by 256 ivide by 64 ivide by 32 ivide by 16 ivide by 8 ivide by 4		r Postscaler bits			
bit 7-6	PLLPOST<1 11 = Output/8 10 = Reserve 01 = Output/2 00 = Output/2	3 ed 4 (default)	Output Divide	er Select bits (als	o denoted as	'N2', PLL posts	caler)
bit 5	Unimplemen	ted: Read as '	0'				
bit 4-0	PLLPRE<4:0 11111 = Inpu 00001 = Inpu	ut/33	Detector Inpu	t Divider bits (al	so denoted as	'N1', PLL presc	caler)
	00001 = Inpt 00000 = Inpt						

- Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.
 - 2: This register is reset only on a Power-on Reset (POR).

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0 ⁽¹⁾
	—	—	—	—	—	—	PLLDIV<8>
bit 15							bit 8
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
			PLLD	IV<7:0>			
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown
bit 15-9	Unimplemen	ted: Read as '	0'				
bit 8-0	PLLDIV<8:0>	PLL Feedbac	k Divisor bits	(also denoted	as 'M', PLL mul	tiplier)	
	111111111 =	= 513					
	•						
	•						
	•						
	000110000 =	= 50 (default)					
	•						
	•						
	• 000000010 =	- 1					
	000000010 =						
	000000000						

REGISTER 8-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER⁽¹⁾

Note 1: This register is reset only on a Power-on Reset (POR).

12.0 TIMER2/3 FEATURE

- Note 1: This data sheet summarizes the features of the dsPIC33FJ12GP201/202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 11. "Timers" (DS70205) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer2/3 feature has 32-bit timers that can also be configured as two independent 16-bit timers with selectable operating modes.

As a 32-bit timer, the Timer2/3 feature permits operation in three modes:

- Two Independent 16-bit timers (Timer2 and Timer3) with all 16-bit operating modes (except Asynchronous Counter mode)
- Single 32-bit timer (Timer2/3)
- Single 32-bit synchronous counter (Timer2/3)
- The Timer2/3 feature also supports:
- Timer gate operation
- Selectable prescaler settings
- Timer operation during Idle and Sleep modes
- · Interrupt on a 32-bit Period register match
- Time base for Input Capture and Output Compare modules (Timer2 and Timer3 only)
- ADC1 Event Trigger (Timer2/3 only)

Individually, all eight of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed above, except for the event trigger. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON and T3CON registers. The T2CON register is shown in generic form in Register 12-1. The T3CON register is shown in Register 12-2.

For 32-bit timer/counter operation, Timer2 is the lsw and Timer3 is the msw of the 32-bit timers.

Note: For 32-bit operation, T3CON control bits are ignored. Only T2CON control bit is used for setup and control. Timer2 clock and gate inputs are used for the 32-bit timer modules, but an interrupt is generated with the Timer3 interrupt flags.

12.1 32-bit Operation

To configure the Timer2/3 feature for 32-bit operation:

- 1. Set the corresponding T32 control bit.
- 2. Select the prescaler ratio for Timer2 using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the corresponding TCS and TGATE bits.
- 4. Load the timer period value. PR3 contains the msw of the value, while PR2 contains the lsw.
- 5. If interrupts are required, set the interrupt enable bit, T3IE. Use the priority bits T3IP<2:0> to set the interrupt priority. While Timer2 controls the timer, the interrupt appears as a Timer3 interrupt.
- 6. Set the corresponding TON bit.

The timer value at any point is stored in the register pair TMR3:TMR2. TMR3 always contains the msw of the count, while TMR2 contains the lsw.

To configure any of the timers for individual 16-bit operation:

- 1. Clear the T32 bit corresponding to that timer.
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the interrupt enable bit, TxIE. Use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON bit.

REGISTER 18-4: AD1CHS123: ADC1 INPUT CHANNEL 1, 2, 3 SELECT REGISTER (CONTINUED)

bit 2-1

bit 0

CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits dsPIC33FJ12GP201 devices only:

If AD12B = 1:

- 11 = Reserved
- 10 = Reserved
- 01 = Reserved
- 00 = Reserved

If AD12B = 0:

- 11 = Reserved
- 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is not connected
- 01 = CH1, CH2, CH3 negative input is VREF-
- 00 = CH1, CH2, CH3 negative input is VREF-

dsPIC33FJ12GP202 devices only:

If AD12B = 1: 11 = Reserved

- 10 = Reserved
- 01 = Reserved
- 00 = Reserved

If AD12B = 0:

11 = CH1 negative input is AN9, CH2 and CH3 negative inputs are not connected 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 01 = CH1, CH2, CH3 negative input is VREF-00 = CH1, CH2, CH3 negative input is VREF-

CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit

dsPIC33FJ12GP201 devices only:

<u>If AD12B = 1:</u> 1 = Reserved 0 = Reserved

If AD12B = 0:

1 = CH1 positive input is AN3, CH2 and CH3 positive inputs are not connected

0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2

dsPIC33FJ12GP202 devices only:

If AD12B = 1:

1 = Reserved

0 = Reserved

If AD12B = 0:

1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2

IABL	E 20-2:	INSTRUCTION SET OVERVIEW (CONTINUED)												
Base Instr #	Assembly Mnemonic		Assembly Syntax	Description		# of Cycles	Status Flags Affected							
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None							
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None							
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None							
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None							
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z							
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С							
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z							
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С							
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z							
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z							
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С							
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z							
14	CALL	CALL	lit23	Call subroutine	2	2	None							
		CALL	Wn	Call indirect subroutine	1	2	None							
15	CLR	CLR	f	f = 0x0000	1	1	None							
		CLR	WREG	WREG = 0x0000	1	1	None							
		CLR	Ws	Ws = 0x0000	1	1	None							
		CLR	Acc,Wx,Wxd,Wy,Wyd,AWB	Clear Accumulator	1	1	OA,OB,SA,SB							
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep							
17	СОМ	СОМ	f	f = f	1	1	N,Z							
		СОМ	f,WREG	WREG = f	1	1	N,Z							
		COM	Ws,Wd	$Wd = \overline{Ws}$	1	1	N,Z							
18	СР	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z							
10	0F	CP		Compare Wb with lit5	1	1								
			Wb,#lit5		1	1	C,DC,N,OV,Z							
19	CP0	CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)		1	C,DC,N,OV,Z							
19	CFU	CP0	f	Compare f with 0x0000	1		C,DC,N,OV,Z							
00	000	CP0	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z							
20	СРВ	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z							
		CPB CPB	Wb,#lit5 Wb,Ws	Compare Wb with lit5, with Borrow Compare Wb with Ws, with Borrow (Wb – Ws – \overline{C})	1	1	C,DC,N,OV,Z C,DC,N,OV,Z							
21	CPSEQ	CPSEQ	Wb, Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None							
22	CPSGT	CPSGT	Wb, Wn	Compare Wb with Wn, skip if >	1	1 (2 or 3)	None							
23	CPSLT	CPSLT	Wb, Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None							
24	CPSNE	CPSNE	Wb, Wn	Compare Wb with Wn, skip if ≠	1	1 (2 or 3)	None							
25	DAW	DAW	Wn	Wn = decimal adjust Wn	1	1	С							
26	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z							
		DEC	f,WREG	WREG = f – 1	1	1	C,DC,N,OV,Z							
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z							
27	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z							
		DEC2	f,WREG	WREG = f – 2	1	1	C,DC,N,OV,Z							
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z							
28	DISI	DISI	#lit14	Disable Interrupts for k instruction cycles	1	1	None							

TABLE 20-2: INSTRUCTION SET OVERVIEW (CONTINUED)

22.1 DC Characteristics

Characteristic	VDD Range	Temp Range	Max MIPS
	(in Volts)	(in °C)	dsPIC33FJ12GP201/202
	3.0-3.6V	-40°C to +85°C	40
	3.0-3.6V	-40°C to +125°C	40

TABLE 22-1: OPERATING MIPS VS. VOLTAGE

TABLE 22-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range	TJ	-40	_	+140	°C
Operating Ambient Temperature Range	TA	-40	—	+125	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$	PD	I	Pint + Pi/c	D	W
I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$					
Maximum Allowed Power Dissipation	PDMAX	(TJ – ΤΑ)/θ.	IA	W

TABLE 22-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit	Notes
Package Thermal Resistance, 18-pin PDIP	θja	45	_	°C/W	1
Package Thermal Resistance, 28-pin SPDIP	θја	45	—	°C/W	1
Package Thermal Resistance, 18-pin SOIC	θја	60	_	°C/W	1
Package Thermal Resistance, 28-pin SOIC	θја	50	_	°C/W	1
Package Thermal Resistance, 28-pin SSOP	θја	71	—	°C/W	1
Package Thermal Resistance, 28-pin QFN	θја	35	—	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

DC CHA	RACTER	ISTICS	(unless	otherwi	tating Conditions: 3.0V to 3.6V vise stated) perature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended				
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions		
	VIL	Input Low Voltage							
DI10		I/O pins	Vss	—	0.2 VDD	V			
DI15		MCLR	Vss	—	0.2 VDD	V			
DI16		I/O Pins with OSC1 or SOSCI	Vss	_	0.2 VDD	V			
DI18		SDA, SCL	Vss	—	0.3 VDD	V	SMbus disabled		
DI19		SDA, SCL	Vss	—	0.8	V	SMbus enabled		
	Vih	Input High Voltage ⁽¹⁰⁾							
DI20		I/O Pins Not 5V Tolerant ⁽⁴⁾ I/O Pins 5V Tolerant ⁽⁴⁾	0.7 Vdd 0.7 Vdd	_	Vdd 5.5	V V			
DI21		I/O Pin with Schmitt Trigger Input	0.7 VDD	—	0.8 VDD	V			
DI25		MCLR	0.8 Vdd	_	Vdd	V			
DI26		OSC1 (in XT, HS, and LP modes)	0.7 Vdd	—	Vdd	V			
DI27		OSC1 (in RC mode)	0.9 Vdd	_	Vdd	V			
DI28		SDAx, SCLx	0.7 Vdd	—	Vdd	V	SMbus disabled		
DI29		SDAx, SCLx	2.1	—	Vdd	V	SMbus enabled		
	ICNPU	CNx Pull-up Current							
DI30			50	250	400	μA	VDD = 3.3V, VPIN = VSS		

TABLE 22-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

- **3:** Negative current is defined as current sourced by the pin.
- 4: See "Pin Diagrams" for a list of 5V tolerant pins.
- **5:** VIL source < (Vss 0.3). Characterized but not tested.
- **6:** Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.
- 7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.
- 10: These parameters are characterized, but not tested.

DC CHA	RACTER	ISTICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
	lı∟	Input Leakage Current ^(2,3)						
DI50		I/O Pins 5V Tolerant ⁽⁴⁾	_	_	±2	μA	Vss ≤VPiN ≤VDD, Pin at high-impedance	
DI51		I/O Pins Not 5V Tolerant ⁽⁴⁾	_	_	±1	μA	Vss ⊴VPIN ⊴VDD, Pin at high-impedance, -40°C ⊴TA ≤+85°C	
DI51a		I/O Pins Not 5V Tolerant ⁽⁴⁾	_	—	±2	μA	Shared with external reference pins, -40°C ≤TA ≤+85°C	
DI51b		I/O Pins Not 5V Tolerant ⁽⁴⁾	_	_	±3.5	μA	Vss ≤VPIN ≤VDD, Pin at high-impedance, -40°C ≤TA ≤+125°C	
DI51c		I/O Pins Not 5V Tolerant ⁽⁴⁾	_	_	±8	μA	Analog pins shared with external reference pins, -40°C ≤TA ≤+125°C	
DI55		MCLR		—	±2	μA	Vss ⊴Vpin ⊴Vdd	
DI56		OSC1		—	±2	μA	Vss ≤VPIN ≤VDD, XT and HS modes	

TABLE 22-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

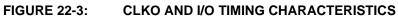
Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

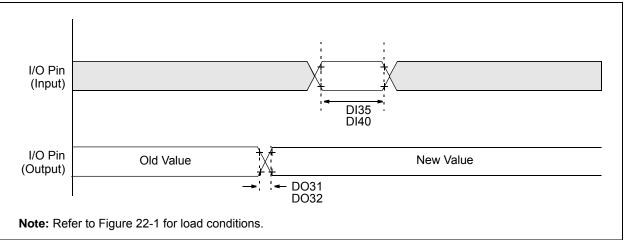
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: See "Pin Diagrams" for a list of 5V tolerant pins.

5: VIL source < (Vss - 0.3). Characterized but not tested.


6: Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.


7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.

8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

9: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

10: These parameters are characterized, but not tested.

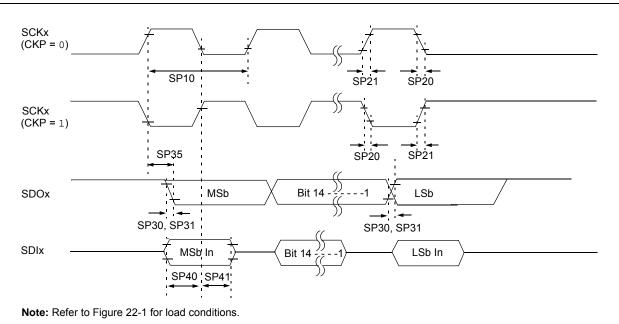

AC CHARACTERISTICS (unle			Standard Oper (unless otherw Operating temp	vise state	ed) -40°C ≤⊺		C for Indu	
Param No.	Symbol	Character	Characteristic			Max	Units	Conditions
DO31	TIOR	Port Output Rise Tim	е		10	25	ns	_
DO32	TIOF	Port Output Fall Time	9	_	10	25	ns	—
DI35	TINP	INTx Pin High or Low Time (input)		25	—	_	ns	—
DI40	Trbp	CNx High or Low Tim	ne (input)	2			TCY	

TABLE 22-20: I/O TIMING REQUIREMENTS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: These parameters are characterized, but are not tested in manufacturing.

TABLE 22-31:SPIX MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING
REQUIREMENTS

АС СНА	RACTERIST	ICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SP10	TscP	Maximum SCK Frequency			9	MHz	-40°C to +125°C and see Note 3	
SP20	TscF	SCKx Output Fall Time	_	_	_	ns	See parameter DO32 and Note 4	
SP21	TscR	SCKx Output Rise Time	_	_	_	ns	See parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time		—		ns	See parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	_	_		ns	See parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns	—	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30			ns	_	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—		ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30			ns	—	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

NOTES:

SPIxCON1 (SPIx Control 1)	145
SPIxCON2 (SPIx Control 2)	147
SPIxSTAT (SPIx Status and Control)	
SR (CPU Status)	
T1CON (Timer1 Control)	
T2CON Control	
T3CON Control	135
UxMODE (UARTx Mode)	158
UxSTA (UARTx Status and Control)	
Reset	
Illegal Opcode	
Trap Conflict	
Uninitialized W Register	
Reset Sequence	
Resets	

S

Serial Peripheral Interface (SPI)	
Software Reset Instruction (SWR)	
Software Simulator (MPLAB SIM)	191
Software Stack Pointer, Frame Pointer	
CALL Stack Frame	
Special Features of the CPU	175
SPI Module	
SPI1 Register Map	
Symbols Used in Opcode Descriptions	
System Control	
Register Map	

Т

Temperature and Voltage Specifications	
AC	204
Timer1	. 129
Timer2/3	. 131
Timing Characteristics	
ČLKO and I/O	207
Timing Diagrams	
10-bit A/D Conversion	.234
10-bit A/D Conversion (CHPS = 01, SIMSAM = 0, A	SAM
= 0, SSRC = 000)	. 234
12-bit A/D Conversion (ASAM = 0, SSRC = 000)	.233
Brown-out Situations	66
External Clock	
I2Cx Bus Data (Master Mode)	. 226
I2Cx Bus Data (Slave Mode)	
I2Cx Bus Start/Stop Bits (Master Mode)	. 226
I2Cx Bus Start/Stop Bits (Slave Mode)	. 228
Input Capture (CAPx)	. 212
OC/PWM	
Output Compare (OCx)	.212
Reset, Watchdog Timer, Oscillator Start-up Timer	and
Power-up Timer	208
Timer1, 2 and 3 External Clock	.210
Timing Requirements	
CLKO and I/O	. 207
DCI AC-Link Mode	
DCI Multi-Channel, I ² S Modes	. 230
External Clock	. 205
Input Capture	. 212
Timing Specifications	
10-bit A/D Conversion Requirements	. 235
12-bit A/D Conversion Requirements	. 233
I2Cx Bus Data Requirements (Master Mode)	. 226
I2Cx Bus Data Requirements (Slave Mode)	229
Output Compare Requirements	
PLL Clock	206

Reset, Watchdog Timer, Oscillator Start-up Timer, Pow- er-up Timer and Brown-out Reset Requirements 209
Simple OC/PWM Mode Requirements
Timer1 External Clock Requirements
Timer2 External Clock Requirements
Timer3 External Clock Requirements 211
U
UART Module UART1 Register Map 39
Using the RCON Status Bits
V
Voltage Regulator (On-Chip) 178
W
Watchdog Time-out Reset (WDTR)