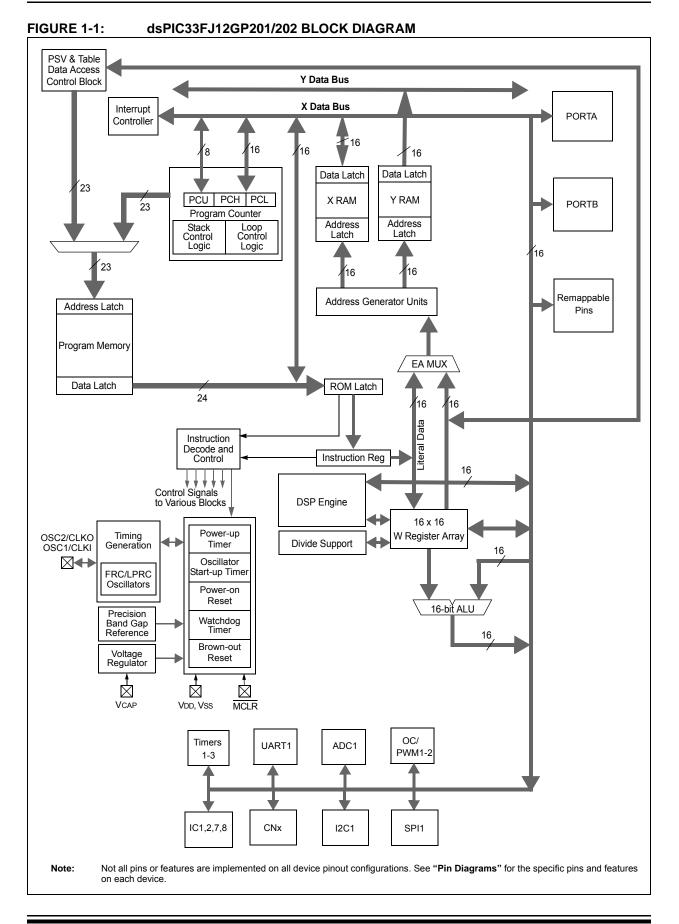


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	12KB (12K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj12gp202-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 CPU

- Note 1: This data sheet summarizes the features of the dsPIC33FJ12GP201/202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 2.** "CPU" (DS70204) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The dsPIC33FJ12GP201/202 CPU module has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for DSP. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M by 24 bits of user program memory space. The actual amount of program memory implemented varies by device. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

The dsPIC33FJ12GP201/202 devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can serve as a data, address or address offset register. The 16th working register (W15) operates as a software Stack Pointer (SP) for interrupts and calls.

The dsPIC33FJ12GP201/202 instruction set has two classes of instructions: MCU and DSP. These two instruction classes are seamlessly integrated into a single CPU. The instruction set includes many addressing modes and is designed for optimum C compiler efficiency. For most instructions. dsPIC33FJ12GP201/202 devices are capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing A + B = C operations to be executed in a single cycle.

A block diagram of the CPU is shown in Figure 3-1. The programmer's model for the dsPIC33FJ12GP201/202 is shown in Figure 3-2.

3.1 Data Addressing Overview

The data space can be addressed as 32K words or 64 Kbytes and is split into two blocks, referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear data space. Certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y data space boundary is device-specific.

Overhead-free circular buffers (Modulo Addressing mode) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. Furthermore, the X AGU circular addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms.

The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K program word boundary defined by the 8-bit Program Space Visibility Page (PSVPAG) register. The program to data space mapping feature lets any instruction access program space as if it were data space.

3.2 DSP Engine Overview

The DSP engine features a high-speed 17-bit by 17-bit multiplier, a 40-bit ALU, two 40-bit saturating accumulators and a 40-bit bidirectional barrel shifter. The barrel shifter is capable of shifting a 40-bit value up to 16 bits right or left, in a single cycle. The DSP instructions operate seamlessly with all other instructions and have been designed for optimal real-time performance. The MAC instruction and other associated instructions can concurrently fetch two data operands from memory while multiplying two W registers and accumulating and optionally saturating the result in the same cycle. This instruction functionality requires that the RAM data space be split for these instructions and linear for all others. Data space partitioning is achieved in a transparent and flexible manner through dedicating certain working registers to each address space.

3.3 Special MCU Features

The dsPIC33FJ12GP201/202 features a 17-bit by 17-bit single-cycle multiplier that is shared by both the MCU ALU and DSP engine. The multiplier can perform signed, unsigned and mixed-sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication not only allows you to perform mixed-sign multiplication, it also achieves accurate results for special operations, such as (-1.0) x (-1.0).

3.6.2.4 Data Space Write Saturation

In addition to adder/subtracter saturation, writes to data space can also be saturated, but without affecting the contents of the source accumulator. The data space write saturation logic block accepts a 16-bit, 1.15 fractional value from the round logic block as its input, together with overflow status from the original source (accumulator) and the 16-bit round adder. These inputs are combined and used to select the appropriate 1.15 fractional value as output to write to data space memory.

If the SATDW bit in the CORCON register is set, data (after rounding or truncation) is tested for overflow and adjusted accordingly:

- For input data greater than 0x007FFF, data written to memory is forced to the maximum positive 1.15 value, 0x7FFF
- For input data less than 0xFF8000, data written to memory is forced to the maximum negative 1.15 value, 0x8000

The MSb of the source (bit 39) is used to determine the sign of the operand being tested.

If the SATDW bit in the CORCON register is not set, the input data is always passed through unmodified under all conditions.

3.6.3 BARREL SHIFTER

The barrel shifter can perform up to 16-bit arithmetic or logic right shifts, or up to 16-bit left shifts in a single cycle. The source can be either of the two DSP accumulators or the X bus (to support multi-bit shifts of register or memory data).

The shifter requires a signed binary value to determine both the magnitude (number of bits) and direction of the shift operation. A positive value shifts the operand right. A negative value shifts the operand left. A value of '0' does not modify the operand.

The barrel shifter is 40 bits wide, thereby obtaining a 40-bit result for DSP shift operations and a 16-bit result for MCU shift operations. Data from the X bus is presented to the barrel shifter between bit positions 16 and 31 for right shifts, and between bit positions 0 and 16 for left shifts.

TABLE 4-4:	INTERRUPT CONTROLLER REGISTER MAP
------------	-----------------------------------

				••••••									-	-				
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	-	MATHERR	ADDRERR	STKERR	OSCFAIL	_	0000
INTCON2	0082	ALTIVT	DISI	_	_	_	_	_	_	_	_	_	_	_	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	—	_	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	—	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0086	_		INT2IF	_	_	_	_	_	IC8IF	IC7IF	_	INT1IF	CNIF	_	MI2C1IF	SI2C1IF	0000
IFS4	008C	—	_	_	_	_	-	—		—	_	_	—	_		U1EIF	_	0000
IEC0	0094	—	_	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	—	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0096	—	_	INT2IE	_	_	-	—		IC8IE	IC7IE	_	INT1IE	CNIE		MI2C1IE	SI2C1IE	0000
IEC4	009C		_	_	_			—		—	_		—	_		U1EIE		0000
IPC0	00A4			T1IP<2:0>	•		Ú	OC1IP<2:()>	—		IC1IP<2:0>		_	11	NT0IP<2:0>	•	4444
IPC1	00A6			T2IP<2:0>	•		Ú	OC2IP<2:()>	—		IC2IP<2:0>		_				4440
IPC2	00A8	_	ι	J1RXIP<2:()>			SPI1IP<2:0)>	—	:	SPI1EIP<2:0	>	_		T3IP<2:0>		4444
IPC3	00AA		_	_	_			—		—		AD1IP<2:0>	>	_	U	1TXIP<2:0	>	0044
IPC4	00AC	_		CNIP<2:0>	>			_		—		MI2C1IP<2:0)>	_	SI	2C1IP<2:0	>	4044
IPC5	00AE	—		IC8IP<2:0>	>	—		IC7IP<2:0	>	—	—	-	—	—	11	NT1IP<2:0>	•	4404
IPC7	00B2		_	_	_			—		—		INT2IP<2:0	>	_				0040
IPC16	00C4	_	_	_	_	_		_		—		U1EIP<2:0>	>	_	_		_	0040
INTTREG	00E0	_	_	_	_		ILR<3	:0>>		_			VE	CNUM<6:0>				0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-8: I2C1 REGISTER MAP

		1201112																
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	—	—	—	—	_	—	—					Receive	Register				0000
I2C1TRN	0202	_	—	—	_	-	—	_					Transmit	Register				OOFF
I2C1BRG	0204	_	_	_	_	_	_	_				Baud Ra	te Generato	r Register				0000
I2C1CON	0206	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C1ADD	020A	_	_	_	_	_	_					Address	Register					0000
I2C1MSK	020C	_	_	_	_	_	_					Address Ma	ask Register					0000

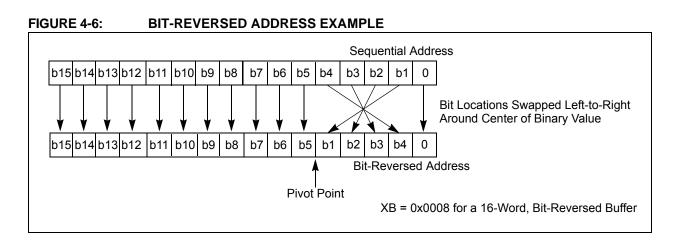
Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-9: UART1 REGISTER MAP

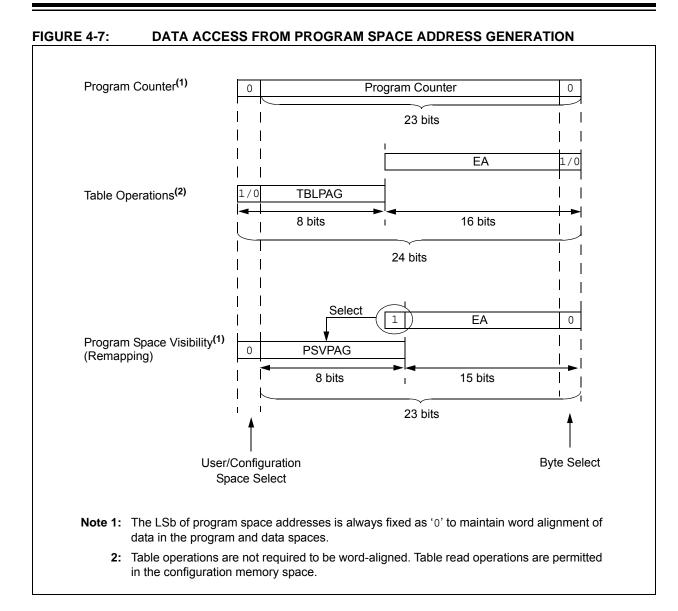
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	—	USIDL	IREN	RTSMD	—	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0		UTXBRK	UTXEN	UTXBF	TRMT	URXISE	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	-	_	_		_	_	_				UART	Transmit Reg	gister				xxxx
U1RXREG	0226	_	_	_		_	_	—				UART	Receive Reg	gister				0000
U1BRG	0228							Bau	d Rate Ger	nerator Presc	aler							0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-10: SPI1 REGISTER MAP


SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	_	SPISIDL	—	—	—	_	-	-	SPIROV	_	—	_	_	SPITBF	SPIRBF	0000
SPI1CON1	0242	-	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>	0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL	_	_	_	_	_	_	_	_	_	_	_	FRMDLY	-	0000
SPI1BUF	0248							SPI1 Trans	mit and Re	ceive Buffer	Register							0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.


TABLE 4-14:	ADC1 REGISTER MAP FOR dsPIC33FJ12GP201
--------------------	--

IADLE 4-	14. /		EGISTI		FUR as	гюзэг	JIZGFA	201										
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300								ADC Data	Buffer 0								xxxx
ADC1BUF1	0302								ADC Data	Buffer 1								xxxx
ADC1BUF2	0304								ADC Data	Buffer 2								xxxx
ADC1BUF3	0306								ADC Data	Buffer 3								xxxx
ADC1BUF4	0308								ADC Data	Buffer 4								xxxx
ADC1BUF5	030A								ADC Data	Buffer 5								xxxx
ADC1BUF6	030C								ADC Data	Buffer 6								xxxx
ADC1BUF7	030E								ADC Data	Buffer 7								xxxx
ADC1BUF8	0310								ADC Data	Buffer 8								xxxx
ADC1BUF9	0312								ADC Data	Buffer 9								xxxx
ADC1BUFA	0314								ADC Data	Buffer 10								xxxx
ADC1BUFB	0316								ADC Data	Buffer 11								xxxx
ADC1BUFC	0318								ADC Data	Buffer 12								xxxx
ADC1BUFD	031A								ADC Data	Buffer 13								xxxx
ADC1BUFE	031C								ADC Data	Buffer 14								xxxx
ADC1BUFF	031E								ADC Data	Buffer 15								xxxx
AD1CON1	0320	ADON	—	ADSIDL	_	_	AD12B	-	M<1:0>		SSRC<2:0>		—	SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322		VCFG<2:0	>	—	—	CSCNA	-	°S<1:0>	BUFS	—		SMPI			BUFM	ALTS	0000
AD1CON3	0324	ADRC	_	—		S	SAMC<4:0>						ADCS	8<7:0>	-		r	0000
AD1CHS123	0326	—	—	—	—	—		NB<1:0>	CH123SB	_	—	—	—	—		NA<1:0>	CH123SA	0000
AD1CHS0	0328	CH0NB	—	—		С	H0SB<4:0>	>		CH0NA	—	—		r	CH0SA<4:0		r	0000
AD1PCFGL	032C		_	—	_	_	_	-	—	PCFG7	PCFG6	—	—	PCFG3	PCFG2	PCFG1	PCFG0	0000
AD1CSSL	0330	—	—	—	—	_	—	—	—	CSS7	CSS6	—		CSS3	CSS2	CSS1	CSS0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

INDEE	4 Z V.		I EIKOE				,		
		Norma	al Addre	SS			Bit-Rev	ersed Ac	ldress
A3	A2	A1	A0	Decimal	A3	A2	A1	A0	Decimal
0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0	8
0	0	1	0	2	0	1	0	0	4
0	0	1	1	3	1	1	0	0	12
0	1	0	0	4	0	0	1	0	2
0	1	0	1	5	1	0	1	0	10
0	1	1	0	6	0	1	1	0	6
0	1	1	1	7	1	1	1	0	14
1	0	0	0	8	0	0	0	1	1
1	0	0	1	9	1	0	0	1	9
1	0	1	0	10	0	1	0	1	5
1	0	1	1	11	1	1	0	1	13
1	1	0	0	12	0	0	1	1	3
1	1	0	1	13	1	0	1	1	11
1	1	1	0	14	0	1	1	1	7
1	1	1	1	15	1	1	1	1	15

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE
bit 15							bit 8
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
SFTACERR	DIV0ERR		MATHERR	ADDRERR	STKERR	OSCFAIL	
bit 7							bit 0
Legend:							
R = Readable	hit	W = Writable	hit	l I = Unimpler	nented bit, read	las '0'	
-n = Value at F		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own
bit 15	NSTDIS: Inte	rrupt Nesting D	isable bit				
		nesting is disab					
	•	nesting is enab					
bit 14		cumulator A Ov caused by ove	•	0			
	•	not caused by					
bit 13		cumulator B O					
		caused by ove					
	•	not caused by					
bit 12		ccumulator A (-	=	-		
		caused by cata not caused by					
bit 11	•	Accumulator B	•				
	•	caused by cata	•				
		not caused by	-		umulator B		
bit 10		mulator A Ove	-	able bit			
	⊥ = Trap over 0 = Trap disal	flow of Accumu bled	Jiator A				
bit 9		imulator B Ove	•	able bit			
	1 = Trap over 0 = Trap disal	flow of Accumu bled	ulator B				
bit 8	COVTE: Cata	strophic Overfl	ow Trap Enab	le bit			
	1 = Trap on c 0 = Trap disal	atastrophic ove bled	erflow of Accur	nulator A or B	enabled		
bit 7	SFTACERR:	Shift Accumula	itor Error Statu	is bit			
		r trap was caus r trap was not o					
bit 6	DIV0ERR: Ar	ithmetic Error S	Status bit				
		r trap was caus					
	0 = Math erro	r trap was not o	caused by a di	vide by zero			
1.4 F							
bit 5	Unimplemen	ted: Read as '	0'				
bit 5 bit 4	Unimplemen MATHERR: A	ted: Read as 'o rithmetic Error	^{o'} Status bit				
	Unimplement MATHERR: A 1 = Math erro	ted: Read as '	o' Status bit Irred				
	Unimplemen MATHERR: A 1 = Math erro 0 = Math erro	t ed: Read as '(withmetic Error r trap has occu	^{D'} Status bit Irred Doccurred				

REGISTER 7-18: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	—
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—		U1EIP<2:0>			—	—	—
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable I	oit	U = Unimplei	mented bit, read	as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-7	Unimplemen	ted: Read as '0)'				
bit 6-4	U1EIP<2:0>:	UART1 Error In	nterrupt Priori	ty bits			
	111 = Interru	pt is priority 7 (ł	nighest priorit	y interrupt)			
	•		0	, I,			
	•						
	•						
	001 = Interru	pt is priority 1					
	000 = Interru	pt source is disa	abled				
bit 3-0	Unimplemen	ted: Read as '0)'				

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3)

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y
_		COSC<2:0>		—		NOSC<2:0> ⁽²⁾	
bit 15							bit 8
R/W-0	R/W-0	R-0	U-0	R/C-0	U-0	R/W-0	R/W-0
CLKLOCK	IOLOCK	LOCK	_	CF	_	LPOSCEN	OSWEN
bit 7				-			bit C
Legend:		y = Value set	from Configur	ation bits on P	OR		
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, rea	ıd as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own
1.11.45			e.1				
bit 15 bit 14-12	-	ted: Read as ' Current Oscilla					
	110 = Fast R 101 = Low-Pe 100 = Second 011 = Primar 010 = Primar 001 = Fast R	C oscillator (FF C oscillator (FF ower RC oscillator dary oscillator y oscillator (XT y oscillator (XT C oscillator (FF C oscillator (FF	RC) with Divide ator (LPRC) (SOSC) ; HS, EC) with ; HS, EC) RC) with Divide	e-by-16 I PLL	L		
bit 11		ted: Read as '	-				
bit 10-8	111 = Fast R 110 = Fast R 101 = Low-Pe 100 = Secone 011 = Primar 010 = Primar 001 = Fast R	New Oscillato C oscillator (Ff C oscillator (Ff ower RC oscillator dary oscillator (XT y oscillator (XT C oscillator (Ff C oscillator (Ff	RC) with Divide RC) with Divide ator (LPRC) (SOSC) ; HS, EC) with ; HS, EC) RC) with Divide	e-by-n e-by-16 I PLL	L		
bit 7	If clock switch 1 = Clock sw	Clock Lock Ena ning is enabled ritching is disat ritching is enab	and FSCM is led, system cl	lock source is	locked	: 0b01) by clock switching	a
bit 6	IOLOCK: Per 1 = Peripheri	ripheral Pin Se ial Pin Select is	lect Lock bit locked, write	to peripheral p	oin select regis	ter is not allowed	-
bit 5	 LOCK: PLL Lock Status bit (read-only) 1 = Indicates that PLL is in lock, or PLL start-up timer is satisfied 0 = Indicates that PLL is out of lock, start-up timer is in progress or PLL is disabled 						
bit 4	Unimplemen	ted: Read as '	0'				
<i>"ds</i> 2: Dir	PIC33F/PIC24	H Family Refer	ence Manual" y primary osci	(available fron llator mode wit	n the Microchip h PLL and FR	c illator" (DS701) website) for det CPLL mode are r llication must swi	ails. ot permitted.

- mode as a transition clock source between the two PLL modes.
- **3:** This register is reset only on a Power-on Reset (POR).

REGISTER 10-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	—	—	_	_	—	—	—			
bit 15							bit 8			
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
_		—			INT2R<4:0>					
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'				
-n = Value at	POR	'1' = Bit is set	l' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15-5	Unimplemen	ted: Read as '	0'							
bit 4-0	INT2R<4:0>:	Assign Externa	al Interrupt 2 (INTR2) to the	corresponding F	RPn pin bits				
	11111 = Inpu	t tied to Vss								
	01111 = Inpu	t tied to RP15								
	•									
	•									
	•									
	00001 = Input tied to RP1									
	00000 = Inpu	00000 = Input tied to RP0								

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	_			IC8R<4:0>		
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_				IC7R<4:0>		
bit 7							bit (
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-13	Unimplemen	ted: Read as	'O'				
bit 12-8	-			to the correspo	onding pin RPn	i pin bits	
	11111 = Inpu	•					
		it tied to RP15					
	•						
	•						
	•						
	00001 = Inp u						
	00000 = Inp u						
bit 7-5	-	ted: Read as					
bit 4-0	IC7R<4:0>:	Assign Input (Capture 7 (IC7) to the corresp	oonding pin RP	n pin bits	
	11111 = Inp u						
	01111 = Inp u	It tied to RP15					
	•						
	•						
	•	t tigd to DD1					
	00001 = Inpu 00000 = Inpu						
	00000 – mpt						

REGISTER 10-5: RPINR10: PERIPHERAL PIN SELECT INPUT REGISTERS 10

REGISTER 10-11: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTERS 1

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	_	_			RP3R<4:0>			
bit 15							bit 8	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	— RP2R<4:0>						
bit 7							bit 0	
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 15-13	Unimplemen	ted: Read as '	0'					
bit 12-8		Peripheral Out	•	is Assigned to F	RP3 Output Pir	n bits (see Table	10-2 for	
bit 7-5	Unimplemen	ted: Read as '	0'					

bit 4-0 **RP2R<4:0>:** Peripheral Output Function is Assigned to RP2 Output Pin bits (see Table 10-2 for peripheral function numbers)

REGISTER 10-12: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTERS 2

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP5R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP4R<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP5R<4:0>:** Peripheral Output Function is Assigned to RP5 Output Pin bits (see Table 10-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP4R<4:0>:** Peripheral Output Function is Assigned to RP4 Output Pin bits (see Table 10-2 for peripheral function numbers)

REGISTER 10-17: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTERS 7

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	—			RP15R<4:0	>	
bit 15							bit 8
				D 4440	DAALO	D 444.0	DAMA
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP14R<4:0	>	
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable I	bit	U = Unimpler	mented bit, rea	ıd as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-13	Unimplemen	ted: Read as 'd)'				

bit 12-8 **RP15R<4:0>:** Peripheral Output Function is Assigned to RP15 Output Pin bits (see Table 10-2 for peripheral function numbers)

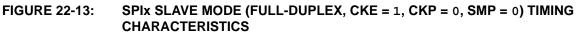
bit 7-5 Unimplemented: Read as '0'

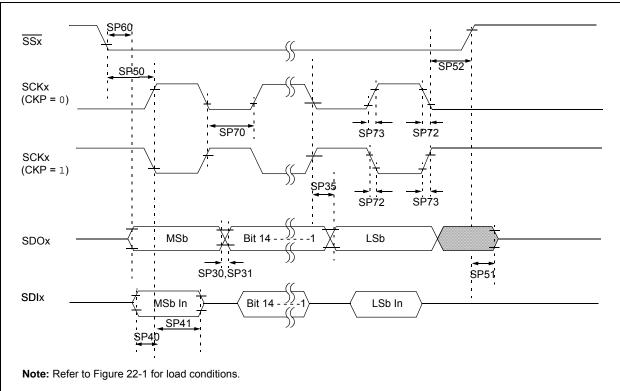
bit 4-0 **RP14R<4:0>:** Peripheral Output Function is Assigned to RP14 Output Pin bits (see Table 10-2 for peripheral function numbers)

R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0						
ADON		ADSIDL	_	_	AD12B	FOR	M<1:0>						
bit 15						•	bit 8						
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/C-0						
1000 0		10000				HC,HS	HC, HS						
	SSRC<2:0>			SIMSAM	ASAM	SAMP	DONE						
bit 7							bit (
Legend:		HC = Cleared b	y hardware	HS = Set by h	ardware								
R = Readabl	le bit	W = Writable b	it	U = Unimplen	nented bit, rea	id as '0'							
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is un	known						
bit 15		Operating Mode	hit										
		lule is operating											
bit 14	Unimplemen	ted: Read as '0	,										
bit 13	ADSIDL: Stop	o in Idle Mode b	it										
		ue module operation module operation module operation module operation module operation module operation module		levice enters Idle de	e mode								
bit 12-11	Unimplemen	ted: Read as '0	,										
bit 10	AD12B: 10-bi	it or 12-bit Operation	ation Mode b	oit									
		channel ADC op channel ADC op											
bit 9-8	FORM<1:0>:	Data Output Fo	rmat bits										
	For 10-bit ope												
		ractional (DOUT al (DOUT = dddo		dd dd00 0000	, where $s = .N$	OI.d<9>)							
	01 = Signed i		ssss sssd	dddd dddd, w	/here s = .NO	T.d<9>)							
	For 12-bit ope	eration:											
	•	•		dd dddd 0000	, where $s = .N$	OT.d<11>)							
		al (DOUT = dddo nteger (DOUT =		aa 0000) 1 dddd dddd, V	/here s = .NO	T.d<11>)							
		DOUT = 0000 d											
bit 7-5	SSRC<2:0>:	Sample Clock S	ource Selec	t bits									
			ampling and	d starts conversion	on (auto-conve	ert)							
	110 = Reserv		aton/ol ondo	sampling and st	arta conversio	n							
	100 = Reserv		itervar enus	sampling and si		11							
				sampling and st		n							
		•		g and starts conv		_							
				sampling and sta and starts conve		1							
bit 4		ted: Read as '0											
bit 3	•			it (applicable onl	v when CHPS	<1:0> = 01 or	1x)						
			-	mplemented, R	-		,						
	1 = Samples	CH0, CH1, CH2	, CH3 simul	taneously (when	CHPS<1:0> =	= 1x); or							
	Samples	CH0 and CH1 s	imultaneous	1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x); or Samples CH0 and CH1 simultaneously (when CHPS<1:0> = 01)									

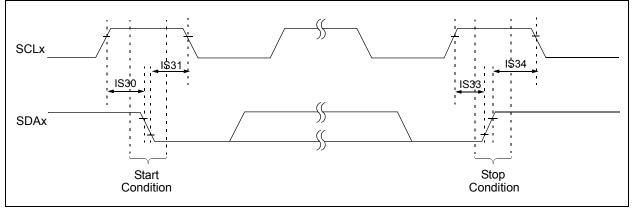
REGISTER 18-1: AD1CON1: ADC1 CONTROL REGISTER 1

0 = Samples multiple channels individually in sequence

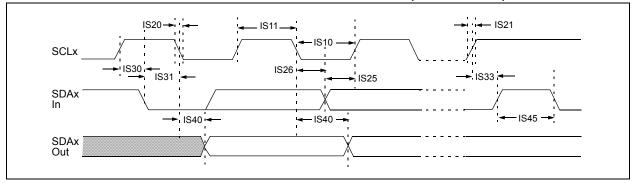

TABLE 22-21: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER TIMING REQUIREMENTS


AC CHA	RACTER	ISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SY10	ТмсL	MCLR Pulse-Width (low) ⁽¹⁾	2		_	μs	-40°C to +85°C	
SY11	TPWRT	Power-up Timer Period ⁽¹⁾	_	2 4 16 32 64 128	_	ms	-40°C to +85°C User programmable	
SY12	TPOR	Power-on Reset Delay ⁽³⁾	3	10	30	μs	-40°C to +85°C	
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset ⁽¹⁾	0.68	0.72	1.2	μs		
SY20	Twdt1	Watchdog Timer Time-out Period ⁽¹⁾	—	_	_	ms	See Section 19.4 "Watchdog Timer (WDT)" and LPRC parameter F21a (Table 22-19).	
SY30	Тоѕт	Oscillator Start-up Time	—	1024 Tosc	—	—	Tosc = OSC1 period	
SY35	TFSCM	Fail-Safe Clock Monitor Delay ⁽¹⁾	—	500	900	μs	-40°C to +85°C	

Note 1: These parameters are characterized but not tested in manufacturing.


2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: These parameters are characterized, but are not tested in manufacturing.



THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support