

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	12KB (12K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj12gp202t-i-ss

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

						_		-	-	-								
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREG0	0000		Working Register 0									0000						
WREG1	0002		Working Register 1 000										0000					
WREG2	0004		Working Register 2 0000										0000					
WREG3	0006		Working Register 3 0000										0000					
WREG4	0008		Working Register 4 0000										0000					
WREG5	000A		Working Register 5 0000										0000					
WREG6	000C		Working Register 6 0000										0000					
WREG7	000E		Working Register 7 0000										0000					
WREG8	0010		Working Register 8 0000									0000						
WREG9	0012								Working Re	egister 9								0000
WREG10	0014								Working Re	gister 10								0000
WREG11	0016								Working Re	gister 11								0000
WREG12	0018								Working Re	gister 12								0000
WREG13	001A								Working Re	gister 13								0000
WREG14	001C								Working Re	gister 14								0000
WREG15	001E								Working Re	gister 15								0800
SPLIM	0020							Sta	ck Pointer L	mit Registe	-							xxxx
ACCAL	0022							Accum	ulator A Lov	/ Word Regi	ster							0000
ACCAH	0024							Accum	ulator A Hig	n Word Reg	ister							0000
ACCAU	0026							Accumu	lator A Upp	er Word Reg	gister							0000
ACCBL	0028							Accum	ulator B Lov	v Word Regi	ster							0000
ACCBH	002A							Accum	ulator B Hig	n Word Reg	ister							0000
ACCBU	002C							Accumu	lator B Upp	er Word Reg	gister							0000
PCL	002E							Program	n Counter Lo	w Word Re	gister							0000
PCH	0030	—	_	—	—	_	—					Progra	m Counter	High Byte F	Register			0000
TBLPAG	0032	—	_		—	_	—					Table F	Page Addre	ss Pointer F	Register			0000
PSVPAG	0034	—	—	—	—	—	—		-		Progr	am Memory	/ Visibility P	age Addres	s Pointer R	egister		0000
RCOUNT	0036							Repe	eat Loop Co	unter Regist	er							xxxx
DCOUNT	0038								DCOUNT	<15:0>								xxxx
DOSTARTL	003A							DOS	TARTL<15:	1>							0	xxxx
DOSTARTH	003C	—	—	—	—	—	—	-	-	—	—			DOSTAF	RTH<5:0>			00xx
DOENDL	003E							DO	ENDL<15:1	>							0	xxxx
DOENDH	0040	-	—	—	—	—	—	-	-	—	—			DOE	NDH			00xx
SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1	IPL0	RA	N	OV	Z	С	0000
CORCON	0044	-	_	_	US	EDT		DL<2:0>		SATA	SATB	SATDW	ACCSAT	IPL3	PSV	RND	IF	0020
MODCON	0046	XMODEN	YMODEN	-	-		BWN	/<3:0>			YWM	<3:0>			XWM	<3:0>		0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.4 Modulo Addressing

Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either data or program space (since the data pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into program space) and Y data spaces. Modulo Addressing can operate on any W register pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can be configured to operate in only one direction, as there are certain restrictions on the buffer start address (for incrementing buffers), or end address (for decrementing buffers), based upon the direction of the circular buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

4.4.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1). Note: Y space Modulo Addressing EA calculations assume word-sized data (LSB of every EA is always clear).

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

4.4.2 W ADDRESS REGISTER SELECTION

The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that will operate with Modulo Addressing:

- If XWM = 15, X RAGU and X WAGU Modulo Addressing is disabled
- If YWM = 15, Y AGU Modulo Addressing is disabled

The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X data space when XWM is set to any value other than '15' and the XMODEN bit is set at MODCON<15>.

The Y Address Space Pointer W register (YWM), to which Modulo Addressing is to be applied, is stored in MODCON<7:4>. Modulo Addressing is enabled for Y data space when YWM is set to any value other than '15' and the YMODEN bit is set at MODCON<14>.

Byte MOV #0x1100, W0 Address W0, XMODSRT MOV ;set modulo start address MOV #0x1163, W0 W0, MODEND MOV ;set modulo end address MOV #0x8001, W0 0x1100 ;enable W1, X AGU for modulo MOV W0, MODCON ;W0 holds buffer fill value MOV #0x0000, W0 MOV #0x1110, W1 ;point W1 to buffer AGAIN, #0x31 ;fill the 50 buffer locations DO MOV WO, [W1++] ;fill the next location AGAIN: INC W0, W0 ; increment the fill value 0x1163 Start Addr = 0x1100 End Addr = 0x1163Length = 0x0032 words

FIGURE 4-5: MODULO ADDRESSING OPERATION EXAMPLE

5.4.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

Programmers can program one row of program Flash memory at a time. To do this, it is necessary to erase the 8-row erase page that contains the desired row. The general process is:

- 1. Read eight rows of program memory (512 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase the block (see Example 5-1):
 - a) Set the NVMOP bits (NVMCON<3:0>) to ⁽⁰⁰¹⁰⁾ to configure for block erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the page to be erased into the TBLPAG and W registers.
 - c) Write 0x55 to NVMKEY.
 - d) Write 0xAA to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 64 instructions from data RAM into the program memory buffers (see Example 5-2).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOP bits to '0001' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 0x55 to NVMKEY.
 - c) Write 0xAA to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.
- Repeat steps 4 and 5, using the next available 64 instructions from the block in data RAM by incrementing the value in TBLPAG, until all 512 instructions are written back to Flash memory.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 5-3.

EXAMPLE 5-1: ERASING A PROGRAM MEMORY PAGE

; Set	up NVMCO	N for block erase operation		
	MOV	#0x4042, W0	;	
	MOV	W0, NVMCON	;	Initialize NVMCON
; Init	pointer	to row to be ERASED		
	MOV	<pre>#tblpage(PROG_ADDR), W0</pre>	;	
	MOV	W0, TBLPAG	;	Initialize PM Page Boundary SFR
	MOV	<pre>#tbloffset(PROG_ADDR), W0</pre>	;	Initialize in-page EA[15:0] pointer
	TBLWTL	WO, [WO]	;	Set base address of erase block
	DISI	#5	;	Block all interrupts with priority <7
			;	for next 5 instructions
	MOV	#0x55, W0		
	MOV	W0, NVMKEY	;	Write the 55 key
	MOV	#0xAA, W1	;	
	MOV	W1, NVMKEY	;	Write the AA key
	BSET	NVMCON, #WR	;	Start the erase sequence
	NOP		;	Insert two NOPs after the erase
	NOP		;	command is asserted

	Reset – GOTO Instruction	0x000000	
	Reset – GOTO Address	0x000002	
	Reserved	0x000002	
	Oscillator Fail Tran Vector	0,000004	
	Address Error Tran Vector		
	Stack Error Tran Vector	_	
	Math Error Tran Vector		
	Reserved		
	Reserved	_	
	Reserved	_	
	Interrupt Vector 0	0x000014	
	Interrupt Vector 1		
	~		
	~		
	~		
	Interrupt Vector 52	0x00007C	· · · · · · · · · · · · · · · · · · ·
	Interrupt Vector 53	0x00007E	Interrupt Vector Table (IVT)(")
ity	Interrupt Vector 54	0x000080	
ior	~		
<u>r</u>	~		
der	~		
ō	Interrupt Vector 116	0x0000FC	
a	Interrupt Vector 117	0x0000FE	
atu	Reserved	0x000100	
ž	Reserved	0x000102	
ing	Reserved	-	
sas	Oscillator Fail Trap Vector		
SCLE	Address Error Trap Vector		
ĕ	Stack Error Trap Vector		
	Math Error Trap Vector		
	Reserved		
	Reserved		
	Reserved		
	Interrupt Vector 0	0x000114	
	Interrupt Vector 1		
	~		
	~		
	~		Alternate Interrupt Vector Table (AIVT) ⁽¹⁾
	Interrupt Vector 52	0x00017C	
	Interrupt Vector 53	0x00017E	
	Interrupt Vector 54	0x000180	
	~		
	~		
	~		
	Interrupt Vector 116		
1	Interrupt Vector 117	0x0001FE	
4	Start of Code	0x000200	

Vector Number	Interrupt Request (IRQ) Number	IVT Address	AIVT Address	Interrupt Source
8	0	0x000014	0x000114	INT0 – External Interrupt 0
9	1	0x000016	0x000116	IC1 – Input Capture 1
10	2	0x000018	0x000118	OC1 – Output Compare 1
11	3	0x00001A	0x00011A	T1 – Timer1
12	4	0x00001C	0x00011C	Reserved
13	5	0x00001E	0x00011E	IC2 – Input Capture 2
14	6	0x000020	0x000120	OC2 – Output Compare 2
15	7	0x000022	0x000122	T2 – Timer2
16	8	0x000024	0x000124	T3 – Timer3
17	9	0x000026	0x000126	SPI1E – SPI1 Error
18	10	0x000028	0x000128	SPI1 – SPI1 Transfer Done
19	11	0x00002A	0x00012A	U1RX – UART1 Receiver
20	12	0x00002C	0x00012C	U1TX – UART1 Transmitter
21	13	0x00002E	0x00012E	ADC1 – ADC1
22	14	0x000030	0x000130	Reserved
23	15	0x000032	0x000132	Reserved
24	16	0x000034	0x000134	SI2C1 – I2C1 Slave Events
25	17	0x000036	0x000136	MI2C1 – I2C1 Master Events
26	18	0x000038	0x000138	Reserved
27	19	0x00003A	0x00013A	Change Notification Interrupt
28	20	0x00003C	0x00013C	INT1 – External Interrupt 1
29	21	0x00003E	0x00013E	Reserved
30	22	0x000040	0x000140	IC7 – Input Capture 7
31	23	0x000042	0x000142	IC8 – Input Capture 8
32	24	0x000044	0x000144	Reserved
33	25	0x000046	0x000146	Reserved
34	26	0x000048	0x000148	Reserved
35	27	0x00004A	0x00014A	Reserved
36	28	0x00004C	0x00014C	Reserved
37	29	0x00004E	0x00014E	INT2 – External Interrupt 2
38	30	0x000050	0x000150	Reserved
39	31	0x000052	0x000152	Reserved
40	32	0x000054	0x000154	Reserved
41	33	0x000056	0x000156	Reserved
42	34	0x000058	0x000158	Reserved
43	35	0x00005A	0x00015A	Reserved
44	36	0x00005C	0x00015C	Reserved
45	37	0x00005E	0x00015E	Reserved
40	38	0x000000	0x000160	Reserved
47	39	0x000062	0x000162	Reserved
40	40	0x000066	0x000164	Reserved
49 E0	41		0x000160	Perenved
50	42			Posonvod
51	43			Posonvod
52	44			Perenved
55	40	UXUUUUDE	0200010E	IVESCINEN

TABLE 7-1: INTERRUPT VECTORS

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
		INT2IE	—	_			_				
bit 15	·						bit 8				
R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0				
IC8IE	IC7IE		INT1IE	CNIE		MI2C1IE	SI2C1IE				
bit 7							bit 0				
F											
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15 11	Unimplomor	ted. Dood oo '	۰,								
DIL 13-14		real Interrupt 2	J Enabla hit								
DIL 13	1 = Interrupt	request enable									
	0 = Interrupt request not enabled										
bit 12-8	Unimplemen	Unimplemented: Read as '0'									
bit 7	IC8IE: Input (IC8IE: Input Capture Channel 8 Interrupt Enable bit									
	1 = Interrupt	request enabled	b								
	0 = Interrupt	request not ena	bled								
bit 6	IC7IE: Input (Capture Channe	el 7 Interrupt I	Enable bit							
	1 = Interrupt	request enabled	d Ibled								
bit 5	Unimplemen	ted: Read as '	וטוכט ז'								
bit 4	INT1IE: Exte	rnal Interrupt 1	- Fnable bit								
2	1 = Interrupt	request enabled									
	0 = Interrupt	request not ena	bled								
bit 3	CNIE: Input (Change Notifica	tion Interrupt	Enable bit							
	1 = Interrupt	1 = Interrupt request enabled									
	0 = Interrupt	request not ena	ibled								
bit 2	Unimplemen	ted: Read as ')'								
DIT	1 = Interrupt	request enable	ts interrupt Er ₄	iadie dit							
	0 = Interrupt	request enabled	ibled								
bit 0	SI2C1IE: 12C	1 Slave Events	Interrupt Ena	ble bit							
	1 = Interrupt	request enabled	d								
	0 = Interrupt	request not ena	bled								

REGISTER 7-14: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	_	—	—
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		AD1IP<2:0>		—		U1TXIP<2:0>	
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable I	oit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value at	-n = Value at POR '1' = Bit is set				ared	x = Bit is unkr	nown
bit 15-7	Unimplemen	ted: Read as 'd)'				
bit 6-4	AD1IP<2:0>:	ADC1 Convers	sion Complete	e Interrupt Prio	rity bits		
	111 = Interru	ot is priority 7 (I	nighest priority	y interrupt)			
	•						
	•						
	001 = Interrup	ot is priority 1					
	000 = Interru	ot source is disa	abled				
bit 3	Unimplemen	ted: Read as 'd)'				
bit 2-0	U1TXIP<2:0>	: UART1 Trans	mitter Interru	pt Priority bits			
	111 = Interru	ot is priority 7 (I	nighest priority	y interrupt)			
	•						
	•						
	001 = Interru	ot is priority 1					
	000 = Interrup	ot source is disa	abled				

TABLE 10-1: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)	TABLE 10-1:	SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNC	;TION) ⁽¹⁾
---	-------------	--	-----------------------

Input Name	Function Name	Register	Configuration Bits
External Interrupt 1	INT1	RPINR0	INT1R<4:0>
External Interrupt 2	INT2	RPINR1	INT2R<4:0>
Timer2 External Clock	T2CK	RPINR3	T2CKR<4:0>
Timer3 External Clock	T3CK	RPINR3	T3CKR<4:0>
Input Capture 1	IC1	RPINR7	IC1R<4:0>
Input Capture 2	IC2	RPINR7	IC2R<4:0>
Input Capture 7	IC7	RPINR10	IC7R<4:0>
Input Capture 8	IC8	RPINR10	IC8R<4:0>
Output Compare Fault A	OCFA	RPINR11	OCFAR<4:0>
UART1 Receive	U1RX	RPINR18	U1RXR<4:0>
UART1 Clear To Send	U1CTS	RPINR18	U1CTSR<4:0>
SPI1 Data Input	SDI1	RPINR20	SDI1R<4:0>
SPI1 Clock Input	SCK1IN	RPINR20	SCK1R<4:0>
SPI1 Slave Select Input	SS1IN	RPINR21	SS1R<4:0>

Note 1: Unless otherwise noted, all inputs use the Schmitt input buffers.

10.4.2.2 Output Mapping

In contrast to inputs, the outputs of the peripheral pin select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Like the RPINRx registers, each register contains sets of 5-bit fields, with each set associated with one RPn pin (see Register 10-10 through Register 10-17). The value of the bit field corresponds to one of the peripherals, and that peripheral's output is mapped to the pin (see Table 10-2 and Figure 10-2).

The list of peripherals for output mapping also includes a null value of '00000' because of the mapping technique. This permits any given pin to remain unconnected from the output of any of the pin selectable peripherals.

FIGURE 10-3:

MULTIPLEXING OF REMAPPABLE OUTPUT FOR RPn

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	_			U1CTSR<4:0)>	
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	_				U1RXR<4:0	>	
bit 7							bit 0
Legend:							
R = Readabl	ad as '0'						
-n = Value at	POR	'1' = Bit is set	:	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-13	Unimplemen	ted: Read as	0'				
bit 12-8	U1CTSR<4:0	>: Assign UAF	RT1 Clear to S	end (U1CTS) t	to the correspo	onding RPn pin b	oits
	11111 = Inpu	it tied to Vss					
	01111 = I npu	it tied to RP15					
	•						
	•						
	•						
	00001 = Inpu	it fied to RP1					
bit 7-5	Unimplemen	ted: Read as '	0'				
bit 4-0	U1RXR<4:0>	Assign UAR	° 1 Receive (U	1RX) to the co	rresponding R	Pn pin bits	
	11111 = Inpu	it fied to Vss			in coponialing it		
	01111 = Inpu	it tied to RP15					
	•						
	•						
	•						
	00001 = Inpu	It tied to RP1					
	00000 = Inpu	it tied to RP0					

REGISTER 10-7: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18

REGISTER 10-8: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—			SCK1R<4:0	>	
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
		<u> </u>			SDI1R<4:0>	>	
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimpler	nented bit, rea	id as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-13 bit 12-8 bit 7-5	Unimplement SCK1R<4:0> 11111 = Inpu 01111 = Inpu	ted: Read as ' : Assign SPI1 (t tied to Vss t tied to RP15 t tied to RP1 t tied to RP1 t tied to RP0	_D , Clock Input (S	SCK1IN) to the	corresponding	RPn pin bits	
bit 4-0	SDI1R<4.0>	Assign SPI1 D	ο lata Input (SΓ)11) to the corre	sponding RPr	nin hits	
	11111 = Inpu 01111 = Inpu • • • 00001 = Inpu 00000 = Inpu	t tied to RP15 t tied to RP15 t tied to RP1				. pin 010	

REGISTER 10-13: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTERS 3

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—	—		RP7R<4:0>					
bit 15	•						bit 8		
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	—	_		RP6R<4:0>					
bit 7							bit 0		
Legend:									
R = Readable I	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			iown		
bit 15-13	Unimplement	ted: Read as '	0'						
bit 12-8 RP7R<4:0>: Peripheral Output Function is Assigned to RP7 Output Pin bits (see Table 10-2 for peripheral function numbers)									
bit 7-5 Unimplemented: Read as '0'									

bit 4-0 **RP6R<4:0>:** Peripheral Output Function is Assigned to RP6 Output Pin bits (see Table 10-2 for peripheral function numbers)

REGISTER 10-14: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTERS 0

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—					
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP8R<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP9R<4:0>:** Peripheral Output Function is Assigned to RP9 Output Pin bits (see Table 10-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP8R<4:0>:** Peripheral Output Function is Assigned to RP8 Output Pin bits (see Table 10-2 for peripheral function numbers)

NOTES:

REGISTER 16-1: I2	CxCON: I2Cx	CONTROL	REGISTER
-------------------	-------------	---------	----------

R/W-0	U-0	R/W-0	R/W-1 HC	R/W-0	R/W-0	R/W-0	R/W-0
I2CEN	—	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0 HC				
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7							bit 0

Legend:		U = Unimplemented bit, rea	ad as '0'						
R = Readable	bit	W = Writable bit	HS = Set in hardware	HC = Cleared in hardware					
-n = Value at F	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					
bit 15	12CEN: 12Cx	Enable bit							
	1 = Enables t	he I2Cx module and configu	res the SDAx and SCLx pins a	as serial port pins					
	0 = Disables 1	the I2Cx module. All I ² C pins	s are controlled by port functio	ns					
bit 14	Unimplemen	Unimplemented: Read as '0'							
bit 13	I2CSIDL: Sto	p in Idle Mode bit							
	1 = Discontinu 0 = Continue	ue module operation when d module operation in Idle mo	evice enters an Idle mode de						
bit 12	SCLREL: SC	Lx Release Control bit (when	n operating as I ² C slave)						
	1 = Release S	SCLx clock							
	0 = Hold SCL	x clock low (clock stretch)							
	$\frac{\text{If STREN} = 1}{\text{Pit is PAV (i.s.)}}$	$\frac{1}{2}$	itiate stratch and write '1' to re	lagge deck) Herdwere deer					
	at beginning of	of slave transmission. Hardw	are clear at end of slave receiver	otion.					
	If STREN = 0	:							
	Bit is R/S (i.e.	, software can only write '1'	to release clock). Hardware cl	ear at beginning of slave					
	transmission.								
bit 11	IPMIEN: Intel	ligent Peripheral Manageme	nt Interface (IPMI) Enable bit						
	1 = IPMI mod 0 = IPMI mod	le is enabled; all addresses A le disabled	Acknowledged						
bit 10	A10M: 10-bit	Slave Address bit							
	1 = I2CxADD	is a 10-bit slave address							
1 1 0	0 = 12CXADD	is a 7-bit slave address							
bit 9	DISSLW: Disa	able Slew Rate Control bit							
	1 = Slew rate 0 = Slew rate	control enabled							
bit 8	SMEN: SMbu	is Input Levels bit							
	1 = Enable I/0 0 = Disable S	O pin thresholds compliant w Mbus input thresholds	ith SMbus specification						
bit 7	GCEN: Gene	ral Call Enable bit (when ope	erating as I ² C slave)						
	1 = Enable in	nterrupt when a general call a	address is received in the I2C	kRSR					
	(module i	is enabled for reception)							
bit 6			(hop operating as 12C alove)						
ט ווע	JIREN: SUL	x CIUCK STRETCH ENABLE DIT (M	men operating as I-C slave)						
	1 = Enable sc	oftware or receive clock stret	ching						
	0 = Disable se	oftware or receive clock stre	tching						

NOTES:

21.7 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

21.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

21.9 MPLAB ICD 3 In-Circuit Debugger System

MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC[®] Flash microcontrollers and dsPIC[®] DSCs with the powerful, yet easyto-use graphical user interface of MPLAB Integrated Development Environment (IDE).

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

21.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express

The MPLAB PICkit 3 allows debugging and programming of PIC[®] and dsPIC[®] Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming[™].

The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

DC CHA	RACTER	ISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)						
			Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic	Min Typ ⁽¹⁾ Max Units Conditions						
	lı∟	Input Leakage Current ^(2,3)							
DI50		I/O Pins 5V Tolerant ⁽⁴⁾	—	_	±2	μA	Vss ≤VPiN ≤VDD, Pin at high-impedance		
DI51		I/O Pins Not 5V Tolerant ⁽⁴⁾	_	_	±1	μA	Vss ⊴VPIN ⊴VDD, Pin at high-impedance, -40°C ≤TA ≤+85°C		
DI51a		I/O Pins Not 5V Tolerant ⁽⁴⁾	—	_	±2	μA	Shared with external reference pins, -40°C ≤TA ≤+85°C		
DI51b		I/O Pins Not 5V Tolerant ⁽⁴⁾	_	_	±3.5	μA	Vss ⊴VPIN ⊴VDD, Pin at high-impedance, -40°C ≤TA ≤+125°C		
DI51c		I/O Pins Not 5V Tolerant ⁽⁴⁾	_	_	±8	μA	Analog pins shared with external reference pins, -40°C ≤TA ≤+125°C		
DI55		MCLR	—	—	±2	μA	Vss ⊴Vpin ⊴Vdd		
DI56		OSC1	—	—	±2	μA	Vss ≤VPIN ≤VDD, XT and HS modes		

TABLE 22-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: See "Pin Diagrams" for a list of 5V tolerant pins.

5: VIL source < (Vss - 0.3). Characterized but not tested.

6: Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.

7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.

8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

9: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

10: These parameters are characterized, but not tested.

AC CHARACTERISTICS			Standard Oper (unless otherw Operating temp	rating Co vise state perature	nditions: ed) -40°C ≤⊺ -40°C ≤⊺	3.0V to Га ≤+85°(Га ≤+125°	3.6V C for Indu °C for Ex	ıstrial tended
Param No.	Symbol	Characteristic		Min	Typ ⁽¹⁾	Max	Units	Conditions
DO31	TIOR	Port Output Rise Tim	e	_	10	25	ns	_
DO32	TIOF	Port Output Fall Time		—	10	25	ns	—
DI35	TINP	INTx Pin High or Low Time (input)		25	—		ns	_
DI40	Trbp	CNx High or Low Tim	ne (input)	2	—	_	TCY	—

TABLE 22-20: I/O TIMING REQUIREMENTS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: These parameters are characterized, but are not tested in manufacturing.

23.2 Package Details

18-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			INCHES			
	Dimension Limits	MIN	NOM	MAX			
Number of Pins	N		18				
Pitch	е		.100 BSC				
Top to Seating Plane	A	-	-	.210			
Molded Package Thickness	A2	.115	.130	.195			
Base to Seating Plane	A1	.015	-	-			
Shoulder to Shoulder Width	E	.300	.310	.325			
Molded Package Width	E1	.240	.250	.280			
Overall Length	D	.880	.900	.920			
Tip to Seating Plane	L	.115	.130	.150			
Lead Thickness	С	.008	.010	.014			
Upper Lead Width	b1	.045	.060	.070			
Lower Lead Width	b	.014	.018	.022			
Overall Row Spacing §	eB	_	_	.430			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-007B

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		INCHES		
Dimensio	n Limits	MIN	NOM	MAX
Number of Pins	Ν	28		
Pitch	е	.100 BSC		
Top to Seating Plane	А	—	—	.200
Molded Package Thickness	A2	.120	.135	.150
Base to Seating Plane	A1	.015	-	—
Shoulder to Shoulder Width	E	.290	.310	.335
Molded Package Width	E1	.240	.285	.295
Overall Length	D	1.345	1.365	1.400
Tip to Seating Plane	L	.110	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.050	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	_	_	.430

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

TABLE 23-3: MAJOR SECTION UPDATES (CONTINUED)

Section Name	Update Description	
Section 22.0 "Electrical Characteristics"	 Updated the following Absolute Maximum Ratings: Storage temperature Voltage on any pin that is not 5V tolerant with respect to Vss Voltage on any 5V tolerant pin with respect to Vss when VDD ≥ 3.0V Voltage on any 5V tolerant pin with respect to Vss when VDD < 3.0V Added Note 4 	
	Revised parameters DI18, DI19, DI50, and DI51, added parameters DI21, DI25, DI26, DI27, DI28, DI29, DI60a, DI60b, and DI60c, and added Notes 5, 6, 7, 8, and 9 to the I/O Pin Input Specifications (see Table 22-9).	
	Removed Note 2 from the AC Characteristics: Internal RC Accuracy (see Table 22-18).	
	Updated the maximum value for parameter OC15 and the minimum value for parameter OC20 in the Simple OC/PWM Mode Timing Requirements (see Table 22-27).	
	Updated <i>all</i> SPI specifications (see Table 22-28 through Table 22-35 and Figure 22-9 through Figure 22-16).	
	Updated the minimum values for parameters AD05 and AD07, and the maximum value for parameter AD06 in the ADC Module Specifications (see Table 22-38).	
	Added Note 4 regarding injection currents to the ADC Module Specifications (12-bit mode) (see Table 22-39).	
	Added Note 4 regarding injection currents to the ADC Module Specifications (10-bit mode) (see Table 22-40).	