

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Broduct Status	Obselete
	UDSUICLE
Core Processor	F ² MC-16FX
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SCI, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	101
Program Memory Size	96КВ (96К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	10К х 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 29x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	120-LQFP
Supplier Device Package	120-LQFP (16x16)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb96f653abpmc-gse1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Non Maskable Interrupt

- Disabled after reset, can be enabled by Boot-ROM depending on ROM configuration block
- Once enabled, can not be disabled other than by reset
- ■High or Low level sensitive
- Pin shared with external interrupt 0

I/O Ports

- Most of the external pins can be used as general purpose I/O
- All push-pull outputs (except when used as I²C SDA/SCL line)
- Bit-wise programmable as input/output or peripheral signal
- Bit-wise programmable input enable
- One input level per GPIO-pin (either Automotive or CMOS hysteresis)
- Bit-wise programmable pull-up resistor

Built-in On Chip Debugger (OCD)

- ■One-wire debug tool interface
- Break function:
 - □ Hardware break: 6 points (shared with code event) □ -Software break: 4096 points
- ■Event function
 - □ Code event: 6 points (shared with hardware break) □ -Data event: 6 points
 - □ Event sequencer: 2 levels + reset
- Execution time measurement function
- ■Trace function: 42 branches
- Security function

Flash Memory

- Dual operation flash allowing reading of one Flash bank while programming or erasing the other bank
- Command sequencer for automatic execution of programming algorithm and for supporting DMA for programming of the Flash Memory
- Supports automatic programming, Embedded Algorithm
- ■Write/Erase/Erase-Suspend/Resume commands
- A flag indicating completion of the automatic algorithm
- Erase can be performed on each sector individually
- Sector protection
- Flash Security feature to protect the content of the Flash
- Low voltage detection during Flash erase or write

3. Pin Assignment

Pin name	Feature	Description
TOTn	Reload Timer	Reload Timer n output pin
TOTn_R	Reload Timer	Relocated Reload Timer n output pin
TTGn	PPG	Programmable Pulse Generator n trigger input pin
TXn	CAN	CAN interface n TX output pin
Vcc	Supply	Power supply pin
Vss	Supply	Power supply pin
WOT	RTC	Real Time clock output pin
WOT_R	RTC	Relocated Real Time clock output pin
X0	Clock	Oscillator input pin
X0A	Clock	Subclock Oscillator input pin
X1	Clock	Oscillator output pin
X1A	Clock	Subclock Oscillator output pin
ZINn	QPRC	Quadrature Position/Revolution Counter Unit n input pin

5. Pin Circuit Type

Pin no.	I/O circuit type*	Pin name			
1	Supply	Vss			
2	F	С			
3	М	P03_7 / INT1 / SIN1			
4	Н	P13_0 / INT2 / SOT1			
5	М	P13_1 / INT3 / SCK1			
6	Н	P13_2 / PPG0 / TIN0 / FRCK1			
7	Н	P13_3 / PPG1 / TOT0 / WOT			
8	М	P13_4 / SIN0 / INT6			
9	Н	P13_5 / SOT0 / ADTG / INT7			
10	М	P13_6 / SCK0 / CKOTX0			
11	н	P13_7 / PPG2 / CKOT0			
12	Ν	P04_4 / PPG3 / SDA0			
13	Ν	P04_5 / PPG4 / SCL0			
14	1	P06_0 / AN0 / SCK5			
15	К	P06_1 / AN1 / SOT5			
16	I	P06_2 / AN2 / INT5 / SIN5			
17	К	P06_3 / AN3 / FRCK0			
18	К	P06_4 / AN4 / IN0 / TTG0 / TTG4			
19	К	P06_5 / AN5 / IN1 / TTG1 / TTG5			
20	К	P06_6 / AN6 / TIN1 / IN4_R			
21	К	P06_7 / AN7 / TOT1 / IN5_R			
22	Supply	AVcc			
23	G	AVRH			
24	G	AVRL			
25	Supply	AVss			
26	К	P05_0 / AN8			
27	К	P05_1 / AN9			
28	К	P05_2 / AN10 / OUT2			
29	К	P05_3 / AN11 / OUT3			
30	Supply	Vcc			
31	Supply	Vss			
32	К	P05_4 / AN12 / INT2_R / WOT_R			
33	К	P05_5/AN13			
34	К	P05_6 / AN14 / TIN2			
35	К	P05_7 / AN15 / TOT2			
36	К	P08_0 / AN16			

6. I/O Circuit Type

7. Memory Map

	FF:FFFF _H		
		USER ROM*1	
	DE:0000 _H		
	DD:FFFF _H		
		Reserved	
	10:0000 _H		
	0F:C000 _H	Boot-ROM	
		Perinheral	
	0E:9000 _H	Fenpheral	
		Reserved	
	01:0000 _H		
		ROM/RAM	
	00:8000 _H	MIRROR	
		Internal RAM	
	RAMSTART0*2	bank0	
		Reserved	
	00:0C00 _H		
		Peripheral	
	00:0380 _H		
	UU:0180 _H	GPR*3	
	00:0100 _H	DMA	
		Reserved	
	00.0000H	Peripheral	
 *1: For details about USER ROM following pages. *2: For RAMSTART addresses, *3: Unused GPR banks can be u GPR: General-Purpose Regi The DMA area is only available The available RAM and ROM ar 	A area, see "□USER ROM M see the table on the next pa used as RAM area. ster if the device contains the con ea depends on the device.	IEMORY MAP FOR ge. rresponding resource	FLASH DEVICES" on the

Vector number	Offset in vector table	Vector name	Cleared by DMA	Index in ICR to program	Description
121	218 _H	-	-	121	Reserved
122	214 _H	-	-	122	Reserved
123	210 _H	-	-	123	Reserved
124	20C _H	-	-	124	Reserved
125	208 _H	-	-	125	Reserved
126	204 _H	-	-	126	Reserved
127	200 _н	-	-	127	Reserved
128	1FC _H	-	-	128	Reserved
129	1F8 _H	-	-	129	Reserved
130	1F4 _H	-	-	130	Reserved
131	1F0 _H	-	-	131	Reserved
132	1EC _H	-	-	132	Reserved
133	1E8 _H	FLASHA	Yes	133	Flash memory A interrupt
134	1E4 _H	-	-	134	Reserved
135	1E0 _H	-	-	135	Reserved
136	1DC _H	-	-	136	Reserved
137	1D8 _H	QPRC0	Yes	137	Quad Position/Revolution counter 0
138	1D4 _H	QPRC1	Yes	138	Quad Position/Revolution counter 1
139	1D0 _H	ADCRC0	No	139	A/D Converter 0 - Range Comparator
140	1CC _H	-	-	140	Reserved
141	1C8 _H	-	-	141	Reserved
142	1C4 _H	-	-	142	Reserved
143	1С0 _н	-	-	143	Reserved

■ Static Electricity

Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions:

- (1) Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity.
- (2) Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.
- (3) Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1 MΩ).

Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended.

- (4) Ground all fixtures and instruments, or protect with anti-static measures.
- (5) Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies.

12.3 Precautions for Use Environment

Reliability of semiconductor devices depends on ambient temperature and other conditions as described above.

For reliable performance, do the following:

(1) Humidity

Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing.

(2) Discharge of Static Electricity

When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use anti-static measures or processing to prevent discharges.

(3) Corrosive Gases, Dust, or Oil

Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices.

(4) Radiation, Including Cosmic Radiation

Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate.

(5) Smoke, Flame

CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases.

Customers considering the use of Cypress products in other special environmental conditions should consult with sales representatives.

14. Electrical Characteristics

14.1 Absolute Maximum Ratings

Parameter	Symbol	Condition	Rating		Unit	Remarks	
Farameter	Min Max		Max	Unit	Itellial K5		
Power supply voltage*1	V _{CC}	-	V _{SS} - 0.3	V _{SS} + 6.0	V		
Analog power supply voltage*1	AV _{cc}	-	V _{SS} - 0.3	V _{SS} + 6.0	V	$V_{CC} = AV_{CC}^{*2}$	
Analog reference voltage*1	AVRH, AVRL	-	V _{SS} - 0.3	V _{SS} + 6.0	V	AV _{cc} ≥ AVRH, AV _{cc} ≥ AVRL, AVRH > AVRL, AVRL ≥ AV _{SS}	
Input voltage*1	VI	-	V _{SS} - 0.3	V _{SS} + 6.0	V	$V_1 \le V_{CC} + 0.3V^{*3}$	
Output voltage*1	Vo	-	V _{SS} - 0.3	V _{SS} + 6.0	V	$V_0 \le V_{CC} + 0.3V^{*3}$	
Maximum Clamp Current	I _{CLAMP}	-	-4.0	+4.0	mA	Applicable to general purpose I/O pins *4	
Total Maximum Clamp Current	Σ I _{CLAMP}	-	-	33	mA	Applicable to general purpose I/O pins *4	
"L" level maximum output current	I _{OL}	-	-	15	mA		
"L" level average output current	I _{OLAV}	-	-	4	mA		
"L" level maximum overall output current	Σl _{ol}	-	-	82	mA		
"L" level average overall output current	ΣI_{OLAV}	-	-	41	mA		
"H" level maximum output current	I _{OH}	-	-	-15	mA		
"H" level average output current	I _{OHAV}	-	-	-4	mA		
"H" level maximum overall output current	ΣI_{OH}	-	-	-82	mA		
"H" level average overall output current	ΣI_{OHAV}	-	-	-41	mA		
Power consumption*5	P _D	T _A = +125°C	-	446 ^{*6}	mW		
Operating ambient temperature	T _A	-	-40	+125*7	°C		
Storage temperature	T _{STG}	-	-55	+150	°C		

*1: This parameter is based on $V_{SS} = AV_{SS} = 0V$.

*2: AV_{CC} and V_{CC} must be set to the same voltage. It is required that AV_{CC} does not exceed V_{CC} and that the voltage at the analog inputs does not exceed AV_{CC} when the power is switched on.

- *3: V_I and V_O should not exceed V_{CC} + 0.3V. V_I should also not exceed the specified ratings. However if the maximum current to/from an input is limited by some means with external components, the I_{CLAMP} rating supersedes the V_I rating. Input/Output voltages of standard ports depend on V_{CC}.
- *4: Applicable to all general purpose I/O pins (Pnn_m).
 - Use within recommended operating conditions.
 - Use at DC voltage (current).
 - The +B signal should always be applied a limiting resistance placed between the +B signal and the microcontroller.
 - The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
 - Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the V_{cc} pin, and this may affect other devices.
 - Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0V), the power supply is provided from the pins, so that incomplete operation may result.
 - Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply
 voltage may not be sufficient to operate the Power reset.
 - The DEBUG I/F pin has only a protective diode against V_{ss}. Hence it is only permitted to input a negative clamping current (4mA). For protection against positive input voltages, use an external clamping diode which limits the input voltage to maximum 6.0V.

· Sample recommended circuits:

*5: The maximum permitted power dissipation depends on the ambient temperature, the air flow velocity and the thermal conductance of the package on the PCB.

The actual power dissipation depends on the customer application and can be calculated as follows: $P_D = P_{IO} + P_{INT}$

 $P_{IO} = \Sigma (V_{OL} \times I_{OL} + V_{OH} \times I_{OH})$ (I/O load power dissipation, sum is performed on all I/O ports)

 $P_{INT} = V_{CC} \times (I_{CC} + I_A)$ (internal power dissipation)

Icc is the total core current consumption into Vcc as described in the "DC characteristics" and depends on the selected operation mode and clock frequency and the usage of functions like Flash programming.

IA is the analog current consumption into AVcc.

*6: Worst case value for a package mounted on single layer PCB at specified T_A without air flow.

*7: Write/erase to a large sector in flash memory is warranted with $T_A \leq + 105^{\circ}C$.

WARNING

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

14.2 Recommended Operating Conditions

 $(V_{SS} = AV_{SS} = 0V)$

Baramotor	Symbol	Value			Unit	Bomarks	
Falameter	Symbol	Min	Тур	Max	Unit	Relial KS	
Power supply veltage		2.7	-	5.5	V		
Fower supply voltage	V _{CC} , AV _{CC}	2.0	-	5.5	V	Maintains RAM data in stop mode	
Smoothing capacitor at C pin	Cs	0.5	1.0 to 3.9	4.7	μF	1.0μ F (Allowance within ± 50%) 3.9μ F (Allowance within ± 20%) Please use the ceramic capacitor or the capacitor of the frequency response of this level. The smoothing capacitor at V _{CC} must use the one of a capacity value that is larger than C _S .	

WARNING

The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

Doromotor	Symbol	Pin name	Conditions		Value		Unit	Remarks
Farameter	Symbol			Min	Тур	Max		
"H" level output voltage	V _{OH4}	4mA type	$\begin{array}{l} 4.5V \leq V_{CC} \leq 5.5V \\ I_{OH} = -4mA \\ \hline 2.7V \leq V_{CC} < 4.5V \\ I_{OH} = -1.5mA \end{array}$	V _{cc} - 0.5	-	V _{cc}	V	
	V _{OH3}	3mA type	$\begin{array}{l} 4.5V \leq V_{\rm CC} \leq 5.5V \\ I_{\rm OH} = -3mA \\ 2.7V \leq V_{\rm CC} < 4.5V \\ I_{\rm OH} = -1.5mA \end{array}$	V _{cc} - 0.5	-	V _{cc}	v	
"L" level	V _{OL4}	4mA type	$\begin{array}{l} 4.5V \leq V_{CC} \leq 5.5V \\ I_{OL} = +4mA \\ \hline 2.7V \leq V_{CC} < 4.5V \\ I_{OL} = +1.7mA \end{array}$		-	0.4	V	
output voltage	V _{OL3}	3mA type	$2.7V \le V_{CC} < 5.5V$ $I_{OL} = +3mA$	-	-	0.4	V	
	V _{OLD}	DEBUG I/F	$V_{CC} = 2.7V$ $I_{OL} = +25mA$	0	-	0.25	V	
Input leak current	IIL	Pnn_m	V _{SS} < V _I < V _{CC} AV _{SS} , AVRL < V _I < AV _{CC} , AVRH	- 1	-	+ 1	μΑ	
Pull-up resistance value	R _{PU}	Pnn_m	$V_{CC} = 5.0V \pm 10\%$	25	50	100	kΩ	
Input capacitance	C _{IN}	Other than C, Vcc, Vss, AVcc, AVss, AVRH, AVRL	-	-	5	15	pF	

14.4.5 Operating Conditions of PLL

$(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}$								
Baramatar	Symbol	Value			Unit	Domorko		
Falameter	Symbol		Тур	Max	Onic	Rellidiks		
PLL oscillation stabilization wait time	t _{LOCK}	1	-	4	ms	For CLKMC = 4MHz		
PLL input clock frequency	f _{PLLI}	4	-	8	MHz			
PLL oscillation clock frequency	f _{CLKVCO}	56	-	108	MHz	Permitted VCO output frequency of PLL (CLKVCO)		
PLL phase jitter	t _{PSKEW}	-5	-	+5	ns	For CLKMC (PLL input clock) ≥ 4MHz		

14.4.6 Reset Input

($V_{CC} = AV_{CC} = 2.7V$ to 5.5V. $V_{SS} = AV_{SS} = 0V$	$T_{A} = -40^{\circ}C \text{ to } + 125^{\circ}C$
۱	100 - 7000 - 2.7 + 10 - 0.0 + 10 - 700 - 700 - 0 - 0 - 0 - 0 - 0 - 0 -	, 1A = 1000011200)

Parameter	Symbol	Pin name	Va	Unit	
i alameter	Cymbol	T III Hame	Min	Max	Olin
Reset input time	+	DETY	10	-	μS
Rejection of reset input time	IRSTL	KOIA	1	-	μS

SIN

 V_{IH}

External shift clock mode

V,

 V_{IH}

V

14.5.3 Definition of A/D Converter Terms

Resolution: Analog variation that is recognized by an A/D converter.Nonlinearity error: Deviation of the actual conversion characteristics from a straight line that connects the zero transition
point (0b0000000000 $\leftarrow \rightarrow$ 0b000000001) to the full-scale transition point (0b111111110 $\leftarrow \rightarrow$
0b111111111).Differential nonlinearity error : Deviation from the ideal value of the input voltage that is required to change the output code by
1LSB.

Total error: Difference between the actual value and the theoretical value. The total error includes zero transition
error, full-scale transition error and nonlinearity error.

Zero transition voltage: Input voltage which results in the minimum conversion value.

Full scale transition voltage: Input voltage which results in the maximum conversion value.

14.7 Flash Memory Write/Erase Characteristics

Parameter		Conditions	Value			Unit	Remarks	
			win	тур	wax			
Sector erase time	Large Sector	Ta ≤ + 105°C	-	1.6	7.5	s		
	Small Sector	-	-	0.4	2.1	s	Includes write time prior to internal erase.	
	Security Sector	-	-	0.31	1.65	s		
Word (16-bit) write time	Large Sector	Ta≤+105°C	-	25	400	μs	Not including system-level	
	Small Sector	-	-	25	400	μs	time.	
Chip erase time		Ta≤+105°C	-	11.51	55.05	s	Includes write time prior to internal erase.	

$(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C})$

Note: While the Flash memory is written or erased, shutdown of the external power (V_{CC}) is prohibited. In the application system where the external power (V_{CC}) might be shut down while writing or erasing, be sure to turn the power off by using a low voltage detection function.

To put it concrete, change the external power in the range of change ration of power supply voltage (-0.004V/ μ s to +0.004V/ μ s) after the external power falls below the detection voltage (V_{DLX})^{*1}.

Write/Erase cycles and data hold time

Write/Erase cycles (cycle)	Data hold time (year)
1,000	20 ^{*2}
10,000	10 ^{*2}
100,000	5 ^{*2}

*1: See "6. Low Voltage Detection Function Characteristics".

*2: This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at + 85°C).

■MB96F657

■Used setting

Mode	Selected Source Clock	Clock/Regulator and FLASH Settings
Run mode	PLL	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 32MHz
	Main osc.	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 4MHz
	RC clock fast	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 2MHz
	RC clock slow	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 100kHz
	Sub osc.	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 32kHz
Sleep mode	PLL	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 32MHz Regulator in High Power Mode, (CLKB is stopped in this mode)
	Main osc.	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 4MHz Regulator in High Power Mode, (CLKB is stopped in this mode)
	RC clock fast	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 2MHz Regulator in High Power Mode, (CLKB is stopped in this mode)
	RC clock slow	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 100kHz Regulator in Low Power Mode, (CLKB is stopped in this mode)
	Sub osc.	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 32kHz Regulator in Low Power Mode, (CLKB is stopped in this mode)
Timer mode	PLL	CLKMC = 4MHz, CLKPLL = 32MHz (System clocks are stopped in this mode) Regulator in High Power Mode, FLASH in Power-down / reset mode
	Main osc.	CLKMC = 4MHz (System clocks are stopped in this mode) Regulator in High Power Mode, FLASH in Power-down / reset mode
	RC clock fast	CLKMC = 2MHz (System clocks are stopped in this mode) Regulator in High Power Mode, FLASH in Power-down / reset mode
	RC clock slow	CLKMC = 100kHz (System clocks are stopped in this mode) Regulator in Low Power Mode, FLASH in Power-down / reset mode
	Sub osc.	CLKMC = 32 kHz (System clocks are stopped in this mode) Regulator in Low Power Mode, FLASH in Power-down / reset mode
Stop mode	stopped	(All clocks are stopped in this mode) Regulator in Low Power Mode, FLASH in Power-down / reset mode

18. Major Changes

Spansion Publication Number: MB96650_DS704-00003

Page	Section	Change Results		
Revision 1.	Revision 1.0			
-	-	Initial release		
Revision 2.0				
	Electrical Characteristics	Changed the Value of "Power supply current in Timer modes"		
39	DC Characteristics			
	Current Rating	Typ: 2485 μ A \rightarrow 1800 μ A (T _A = +25°C)		
		Max: $2715\mu A \rightarrow 2250\mu A (T_A = +25^{\circ}C)$		
		Max: $4095\mu A \rightarrow 3220\mu A (T_A = +105^{\circ}C)$		
		Max: 5065 μ A \rightarrow 4205 μ A (T _A = +125°C)		
Revision 2.1				
-	-	Company name and layout design change		

NOTE: Please see "Document History" about later revised information.

Page	Section	Change Results
Revision *B		
5, 7, 62, 63	 Product Lineup Pin Assignment Ordering Information Package Dimension 	Package description modified to JEDEC description. FPT-120P-M21 \rightarrow LQM120

Document History

Document Title: MB96650 Series, F2MC-16FX 16-bit Microcontroller

Document Number: 002-04707

Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	l	KSUN	01/31/2014	Migrated to Cypress and assigned document number 002-04707. No change to document contents or format.
*A	5164895	KSUN	03/14/2016	Updated to Cypress template
*В	6005555	KSUN	01/09/2018	Updated the Cypress logo, Sales information and legal. Refer to 18. Major Changes.