

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	F ² MC-16FX
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SCI, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	101
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 29x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	120-LQFP
Supplier Device Package	120-LQFP (16x16)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb96f653abpmc-gse2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MB96650 Series

F²MC-16FX 16-bit Microcontroller

MB96650 series is based on Cypress's advanced F²MC-16FX architecture (16-bit with instruction pipeline for RISC-like performance). The CPU uses the same instruction set as the established F²MC-16LX family thus allowing for easy migration of F²MC-16LX Software to the new F²MC-16FX products. F²MC-16FX product improvements compared to the previous generation include significantly improved performance - even at the same operation frequency, reduced power consumption and faster start-up time. For high processing speed at optimized power consumption an internal PLL can be selected to supply the CPU with up to 32MHz operation frequency from an external 4MHz to 8MHz resonator. The result is a minimum instruction cycle time of 31.2ns going together with excellent EMI behavior. The emitted power is minimized by the on-chip voltage regulator that reduces the internal CPU voltage. A flexible clock tree allows selecting suitable operation frequencies for peripheral resources independent of the CPU speed.

Features

Technology

0.18µm CMOS

CPU

- ■F²MC-16FX CPU
- Optimized instruction set for controller applications (bit, byte, word and long-word data types, 23 different addressing modes, barrel shift, variety of pointers)
- ■8-byte instruction queue
- Signed multiply (16-bit × 16-bit) and divide (32-bit/16-bit) instructions available

System clock

- ■On-chip PLL clock multiplier (×1 to ×8, ×1 when PLL stop)
- 4MHz to 8MHz crystal oscillator (maximum frequency when using ceramic resonator depends on Q-factor)
- Up to 8MHz external clock for devices with fast clock input feature
- ■32.768kHz subsystem quartz clock
- ■100kHz/2MHz internal RC clock for quick and safe startup, clock stop detection function, watchdog
- Clock source selectable from mainclock oscillator, subclock oscillator and on-chip RC oscillator, independently for CPU and 2 clock domains of peripherals
- The subclock oscillator is enabled by the Boot ROM program controlled by a configuration marker after a Power or External reset
- Low Power Consumption 13 operating modes (different Run, Sleep, Timer, Stop modes)

On-chip voltage regulator

Internal voltage regulator supports a wide MCU supply voltage range (Min=2.7V), offering low power consumption

Low voltage detection function

Reset is generated when supply voltage falls below programmable reference voltage

Code Security

Protects Flash Memory content from unintended read-out

DMA

Automatic transfer function independent of CPU, can be assigned freely to resources

Interrupts

- Fast Interrupt processing
- ■8 programmable priority levels
- ■Non-Maskable Interrupt (NMI)

CAN

- Supports CAN protocol version 2.0 part A and B
- ■ISO16845 certified
- Bit rates up to 1Mbps
- ■32 message objects
- Each message object has its own identifier mask
- Programmable FIFO mode (concatenation of message objects)
- Maskable interrupt
- Disabled Automatic Retransmission mode for Time Triggered CAN applications
- Programmable loop-back mode for self-test operation

USART

•

■Full duplex USARTs (SCI/LIN)

Cypress Semiconductor Corporation Document Number: 002-04707 Rev. *B

- Wide range of baud rate settings using a dedicated reload timer
- Special synchronous options for adapting to different synchronous serial protocols
- LIN functionality working either as master or slave LIN device
- Extended support for LIN-Protocol to reduce interrupt load

I²C

- ■Up to 400kbps
- ■Master and Slave functionality, 7-bit and 10-bit addressing

A/D converter

- ■SAR-type
- ■8/10-bit resolution
- Signals interrupt on conversion end, single conversion mode, continuous conversion mode, stop conversion mode, activation by software, external trigger, reload timers and PPGs
- ■Range Comparator Function
- ■Scan Disable Function

Source Clock Timers

Three independent clock timers (23-bit RC clock timer, 23-bit Main clock timer, 17-bit Sub clock timer)

Hardware Watchdog Timer

- ■Hardware watchdog timer is active after reset
- Window function of Watchdog Timer is used to select the lower window limit of the watchdog interval

Reload Timers

- ■16-bit wide
- Prescaler with 1/2¹, 1/2², 1/2³, 1/2⁴, 1/2⁵, 1/2⁶ of peripheral clock frequency
- Event count function

Free-Running Timers

- Signals an interrupt on overflow, supports timer clear upon match with Output Compare (0, 4)
- Prescaler with 1, 1/2¹, 1/2², 1/2³, 1/2⁴, 1/2⁵, 1/2⁶, 1/2⁷, 1/2⁸ of peripheral clock frequency

Input Capture Units

- ■16-bit wide
- ■Signals an interrupt upon external event
- Rising edge, Falling edge or Both (rising & falling) edges sensitive

Output Compare Units

- ■16-bit wide
- Signals an interrupt when a match with Free-running Timer occurs
- A pair of compare registers can be used to generate an output signal

Programmable Pulse Generator

- ■16-bit down counter, cycle and duty setting registers
- ■Can be used as 2 × 8-bit PPG
- ■Interrupt at trigger, counter borrow and/or duty match
- PWM operation and one-shot operation
- Internal prescaler allows 1, 1/4, 1/16, 1/64 of peripheral clock as counter clock or of selected Reload timer underflow as clock input
- Can be triggered by software or reload timer
- Can trigger ADC conversion
- Timing point capture
- Start delay

Quadrature Position/Revolution Counter (QPRC)

- Up/down count mode, Phase difference count mode, Count mode with direction
- 16-bit position counter
- ■16-bit revolution counter
- Two 16-bit compare registers with interrupt
- Detection edge of the three external event input pins AIN, BIN and ZIN is configurable

Real Time Clock

- Operational on main oscillation (4MHz), sub oscillation (32kHz) or RC oscillation (100kHz/2MHz)
- Capable to correct oscillation deviation of Sub clock or RC oscillator clock (clock calibration)
- Read/write accessible second/minute/hour registers
- Can signal interrupts every half second/second/minute/hour/day
- Internal clock divider and prescaler provide exact 1s clock

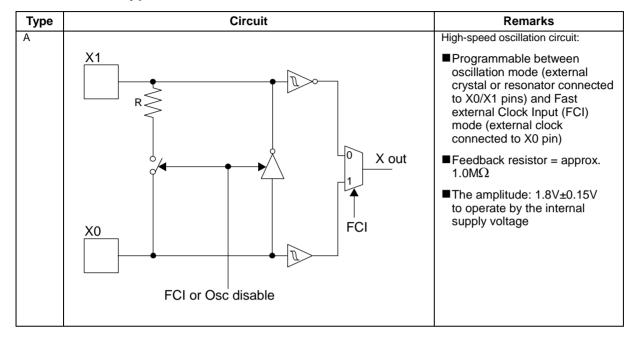
External Interrupts

- Edge or Level sensitive
- Interrupt mask bit per channel
- Each available CAN channel RX has an external interrupt for wake-up
- Selected USART channels SIN have an external interrupt for wake-up

4. Pin Description

Pin name	Feature	Description
ADTG	ADC	A/D converter trigger input pin
AINn	QPRC	Quadrature Position/Revolution Counter Unit n input pin
ANn	ADC	A/D converter channel n input pin
AVcc	Supply	Analog circuits power supply pin
AVRH	ADC	A/D converter high reference voltage input pin
AVRL	ADC	A/D converter low reference voltage input pin
AVss	Supply	Analog circuits power supply pin
BINn	QPRC	Quadrature Position/Revolution Counter Unit n input pin
С	Voltage regulator	Internally regulated power supply stabilization capacitor pin
CKOTn	Clock Output function	Clock Output function n output pin
CKOTn_R	Clock Output function	Relocated Clock Output function n output pin
CKOTXn	Clock Output function	Clock Output function n inverted output pin
CKOTXn_R	Clock Output function	Relocated Clock Output function n inverted output pin
DEBUG I/F	OCD	On Chip Debugger input/output pin
FRCKn	Free-Running Timer	Free-Running Timer n input pin
FRCKn_R	Free-Running Timer	Relocated Free-Running Timer n input pin
INn	ICU	Input Capture Unit n input pin
INn_R	ICU	Relocated Input Capture Unit n input pin
INTn	External Interrupt	External Interrupt n input pin
INTn_R	External Interrupt	Relocated External Interrupt n input pin
MD	Core	Input pin for specifying the operating mode
NMI	External Interrupt	Non-Maskable Interrupt input pin
OUTn	OCU	Output Compare Unit n waveform output pin
OUTn_R	OCU	Relocated Output Compare Unit n waveform output pin
Pnn_m	GPIO	General purpose I/O pin
PPGn	PPG	Programmable Pulse Generator n output pin (16bit/8bit)
PPGn_R	PPG	Relocated Programmable Pulse Generator n output pin (16bit/8bit)
PPGn_B	PPG	Programmable Pulse Generator n output pin (16bit/8bit)
RSTX	Core	Reset input pin
RXn	CAN	CAN interface n RX input pin
SCKn	USART	USART n serial clock input/output pin
SCKn_R	USART	Relocated USART n serial clock input/output pin
SCLn	l ² C	I ² C interface n clock I/O input/output pin
SDAn	l ² C	I ² C interface n serial data I/O input/output pin
SINn	USART	USART n serial data input pin
SINn_R	USART	Relocated USART n serial data input pin
SOTn	USART	USART n serial data output pin
SOTn_R	USART	Relocated USART n serial data output pin
TINn	Reload Timer	Reload Timer n event input pin
TINn_R	Reload Timer	Relocated Reload Timer n event input pin

5. Pin Circuit Type


Pin no.	I/O circuit type*	Pin name
1	Supply	Vss
2	F	С
3	Μ	P03_7 / INT1 / SIN1
4	н	P13_0 / INT2 / SOT1
5	M	P13_1 / INT3 / SCK1
6	н	P13_2 / PPG0 / TIN0 / FRCK1
7	н	P13_3 / PPG1 / TOT0 / WOT
8	Μ	P13_4 / SIN0 / INT6
9	н	P13_5 / SOT0 / ADTG / INT7
10	Μ	P13_6 / SCK0 / CKOTX0
11	н	P13_7 / PPG2 / CKOT0
12	N	P04_4 / PPG3 / SDA0
13	N	P04_5 / PPG4 / SCL0
14	1	P06_0 / AN0 / SCK5
15	К	P06_1 / AN1 / SOT5
16	1	P06_2 / AN2 / INT5 / SIN5
17	К	P06_3 / AN3 / FRCK0
18	К	P06_4 / AN4 / IN0 / TTG0 / TTG4
19	К	P06_5 / AN5 / IN1 / TTG1 / TTG5
20	К	P06_6 / AN6 / TIN1 / IN4_R
21	К	P06_7 / AN7 / TOT1 / IN5_R
22	Supply	AVcc
23	G	AVRH
24	G	AVRL
25	Supply	AVss
26	К	P05_0 / AN8
27	К	P05_1 / AN9
28	К	P05_2 / AN10 / OUT2
29	К	P05_3 / AN11 / OUT3
30	Supply	Vcc
31	Supply	Vss
32	к	P05_4 / AN12 / INT2_R / WOT_R
33	к	P05_5 / AN13
34	к	P05_6 / AN14 / TIN2
35	К	P05_7 / AN15 / TOT2
36	к	P08_0 / AN16

Pin no.	I/O circuit type*	Pin name
37	К	P08_1 / AN17
38	К	P08_2 / AN18
39	К	P08_3 / AN19
40	К	P08_4 / AN20 / OUT6
41	N	P04_6 / SDA1
42	N	P04_7 / SCL1
43	К	P08_5 / AN21 / OUT7
44	К	P08_6 / AN22 / PPG6_B
45	К	P08_7 / AN23 / PPG7_B
46	К	P09_0 / AN24 / PPG8_R
47	К	P09_1 / AN25 / PPG9_R
48	К	P09_2 / AN26 / PPG10_R
49	К	P09_3 / AN27 / PPG11_R
50	н	P09_4 / PPG12
51	н	P09_5 / PPG13
52	н	P09_6 / PPG14
53	н	P17_1 / PPG12_R
54	н	P17_2 / PPG13_R
55	н	P09_7 / PPG15
56	1	P10_0 / SIN2 / TIN3 / AN28 / INT11
57	н	P10_1 / SOT2 / TOT3
58	М	P10_2 / SCK2 / PPG6
59	н	P10_3 / PPG7
60	Supply	Vcc
61	Supply	Vss
62	0	DEBUG I/F
63	н	P17_0
64	С	MD
65	A	X0
66	A	X1
67	Supply	Vss
68	В	P04_0 / X0A
69	В	P04_1 / X1A
70	С	RSTX
71	н	P11_0
72	н	P11_1 / PPG0_R
73	н	P11_2 / PPG1_R
74	н	P11_3 / PPG2_R
75	н	P11_4 / PPG3_R

6. I/O Circuit Type

7. Memory Map

	FF:FFFF _H		
		USER ROM*1	
	DE:0000 _H		
	DD:FFFF _H		
		Reserved	
	10:0000 _H		
	0F:C000 _H	Boot-ROM	
	0E:9000 _H	Peripheral	
		Reserved	
	01:0000 _H		
		ROM/RAM	
	00:8000 _H	MIRROR	
		Internal RAM	
	RAMSTART0*2	bank0	
		Reserved	
	00:0C00 _H		
	00:0380 _Н	Peripheral	
	00:0180 _H	GPR*3	
	00:0100 _H	DMA	
	00:00F0 _H	Reserved	
	00:00P0H	Peripheral	
		i chpheidi	
*1: For details about USER ROI	M area, see "□USER ROM N	MEMORY MAP FOR	FLASH DEVICES" on the
following pages.	can the table on the next as	20	
*2: For RAMSTART addresses, *3: Unused GPR banks can be		ye.	
GPR: General-Purpose Reg			
The DMA area is only available		rresponding resource	Э.
The available RAM and ROM a	rea depends on the device.		

10. Serial Programming Communication Interface

USART pins for Flash serial programming (MD = 0, DEBUG I/F = 0, Serial Communication mode)

MB96650					
Pin Number	USART Number	Normal Function			
8		SIN0			
9	USART0	SOT0			
10		SCK0			
3		SIN1			
4	USART1	SOT1			
5		SCK1			
56		SIN2			
57	USART2	SOT2			
58		SCK2			
101		SIN4			
102	USART4	SOT4			
103		SCK4			

Vector number	Offset in vector table	Vector name	Cleared by DMA	Index in ICR to program	Description	
81	2B8 _н	OCU4	Yes	81	Output Compare Unit 4	
82	2B4 _H	-	-	82	Reserved	
83	2B0 _H	OCU6	Yes	83	Output Compare Unit 6	
84	2AC _H	OCU7	Yes	84	Output Compare Unit 7	
85	2A8 _H	-	-	85	Reserved	
86	2A4 _H	-	-	86	Reserved	
87	2A0 _H	-	-	87	Reserved	
88	29C _H	-	-	88	Reserved	
89	298 _H	FRT0	Yes	89	Free-Running Timer 0	
90	294 _H	FRT1	Yes	90	Free-Running Timer 1	
91	290 _H	FRT2	Yes	91	Free-Running Timer 2	
92	28C _H	-	-	92	Reserved	
93	288 _H	RTC0	No	93	Real Time Clock	
94	284 _H	CAL0	No	94	Clock Calibration Unit	
95	280 _H	-	-	95	Reserved	
96	27C _H	IIC0	Yes	96	I ² C interface 0	
97	278 _H	IIC1	Yes	97	I ² C interface 1	
98	274 _H	ADC0	Yes	98	A/D Converter 0	
99	270 _H	-	-	99	Reserved	
100	26C _H	-	-	100	Reserved	
101	268 _H	LINR0	Yes	101	LIN USART 0 RX	
102	264 _H	LINTO	Yes	102	LIN USART 0 TX	
103	260 _H	LINR1	Yes	103	LIN USART 1 RX	
104	25C _н	LINT1	Yes	104	LIN USART 1 TX	
105	258 _н	LINR2	Yes	105	LIN USART 2 RX	
106	254 _H	LINT2	Yes	106	LIN USART 2 TX	
107	250 _H	-	-	107	Reserved	
108	24C _H	-	-	108	Reserved	
109	248 _H	LINR4	Yes	109	LIN USART 4 RX	
110	244 _H	LINT4	Yes	110	LIN USART 4 TX	
111	240 _H	LINR5	Yes	111	LIN USART 5 RX	
112	23C _H	LINT5	Yes	112	LIN USART 5 TX	
113	238 _н	-	-	113	Reserved	
114	234 _H	-	-	114	Reserved	
115	230 _H	LINR7	Yes	115	LIN USART 7 RX	
116	22C _H	LINT7	Yes	116	LIN USART 7 TX	
117	228 _H	-	-	117	Reserved	
118	224 _H	-	-	118	Reserved	
119	220 _H	-	-	119	Reserved	
120	21C _H	-	-	120	Reserved	

■ Precautions Related to Usage of Devices

Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

12.2 Precautions for Package Mounting

Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Spansion's recommended conditions. For detailed information about mount conditions, contact your sales representative.

■Lead Insertion Type

Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket.

Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Spansion recommended mounting conditions.

If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting.

■Surface Mount Type

Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges.

You must use appropriate mounting techniques. Spansion recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with Spansion ranking of recommended conditions.

■Lead-Free Packaging

CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength may be reduced under some conditions of use.

Storage of Semiconductor Devices

Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent, do the following:

- (1) Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in locations where temperature changes are slight.
- (2) Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5°C and 30°C.

When you open Dry Package that recommends humidity 40% to 70% relative humidity.

- (3) When necessary, Spansion packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage.
- (4) Avoid storing packages where they are exposed to corrosive gases or high levels of dust.

Baking

Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Spansion recommended conditions for baking.

Condition: 125°C/24 h

■ Static Electricity

Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions:

- (1) Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity.
- (2) Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.
- (3) Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1 MΩ).

Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended.

- (4) Ground all fixtures and instruments, or protect with anti-static measures.
- (5) Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies.

12.3 Precautions for Use Environment

Reliability of semiconductor devices depends on ambient temperature and other conditions as described above.

For reliable performance, do the following:

(1) Humidity

Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing.

(2) Discharge of Static Electricity

When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use anti-static measures or processing to prevent discharges.

(3) Corrosive Gases, Dust, or Oil

Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices.

(4) Radiation, Including Cosmic Radiation

Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate.

(5) Smoke, Flame

CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases.

Customers considering the use of Cypress products in other special environmental conditions should consult with sales representatives.

13. Handling Devices

Special care is required for the following when handling the device:

- Latch-up prevention
- Unused pins handling
- External clock usage
- Notes on PLL clock mode operation
- Power supply pins (Vcc/Vss)
- Crystal oscillator and ceramic resonator circuit
- Turn on sequence of power supply to A/D converter and analog inputs
- Pin handling when not using the A/D converter
- Notes on Power-on
- Stabilization of power supply voltage
- Serial communication
- Mode Pin (MD)

1. Latch-up prevention

CMOS IC chips may suffer latch-up under the following conditions:

- A voltage higher than V_{CC} or lower than V_{SS} is applied to an input or output pin.
- A voltage higher than the rated voltage is applied between Vcc pins and Vss pins.
- The AV $_{\mbox{CC}}$ power supply is applied before the V $_{\mbox{CC}}$ voltage.
- Latch-up may increase the power supply current dramatically, causing thermal damages to the device.

For the same reason, extra care is required to not let the analog power-supply voltage (AV_{CC}, AVRH) exceed the digital power-supply voltage.

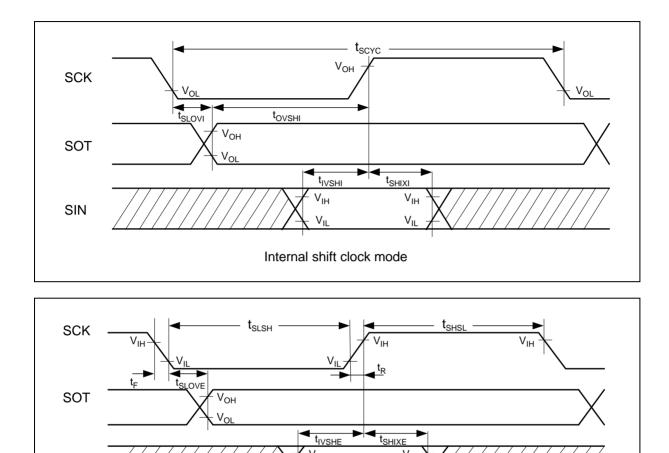
2. Unused pins handling

Unused input pins can be left open when the input is disabled (corresponding bit of Port Input Enable register PIER = 0).

Leaving unused input pins open when the input is enabled may result in misbehavior and possible permanent

damage of the device. To prevent latch-up, they must therefore be pulled up or pulled down through resistors which should be more than $2k\Omega$.

Unused bidirectional pins can be set either to the output state and be then left open, or to the input state with


either input disabled or external pull-up/pull-down resistor as described above.

Parameter	Symbol	Pin	Conditions		Value		Unit	Remarks	
i arameter	Gymbol	name	Conditions	Min	Тур	Max	Onic	Remarks	
				-	1800	2250	μA	T _A = +25°C	
	I _{CCTPLL}		PLL Timer mode with CLKPLL = 32MHz (CLKRC and CLKSC stopped)	-	-	3220	μA	T _A = +105°C	
				-	-	4205	μA	T _A = +125°C	
			Main Timer mode with CLKMC = 4MHz,	-	285	330	μA	T _A = +25°C	
	I _{CCTMAIN}		SMCR:LPMSS = 0 (CLKPLL, CLKRC and CLKSC	-	-	1195	μA	T _A = +105°C	
			stopped)	-	-	2165	μA	T _A = +125°C	
Power supply		Vcc	RC Timer mode with CLKRC = 2MHz.	-	160	215	μA	T _A = +25°C	
current in Timer	I _{CCTRCH}			Vcc	*	-	-	1095	μA
modes			stopped)	-	-	2075	μA	T _A = +125°C	
		((((st	RC Timer mode with	-	35	75	μA	T _A = +25°C	
	I _{CCTRCL}		(Cl	CLKRC = 100kHz (CLKPLL, CLKMC and CLKSC	-	-	905	μA	T _A = +105°C
				stopped) Sub Timer mode with	-	-	1880	μA	T _A = +125°C
					-	25	65	μA	T _A = +25°C
	I _{CCTSUB}			-	CLKSC = 32kHz (CLKMC, CLKPLL and CLKRC	-	-	885	μA
			stopped)	-	-	1850	μA	T _A = +125°C	

SIN

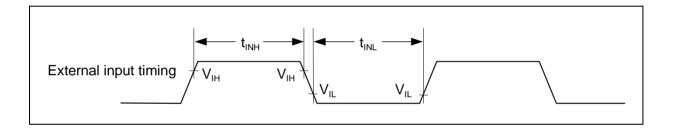
 V_{IH}

External shift clock mode

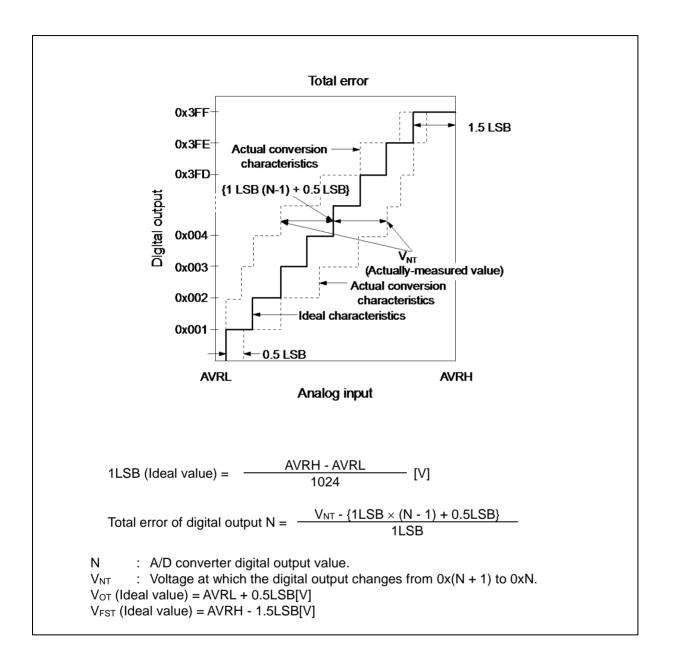
V,

 V_{IH}

V

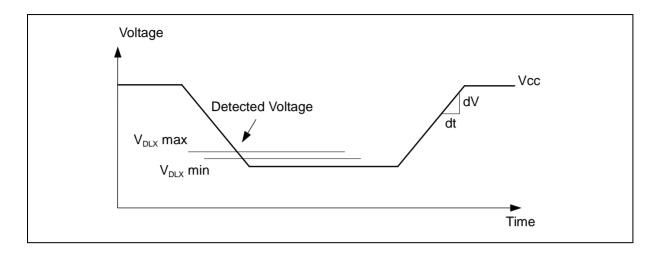


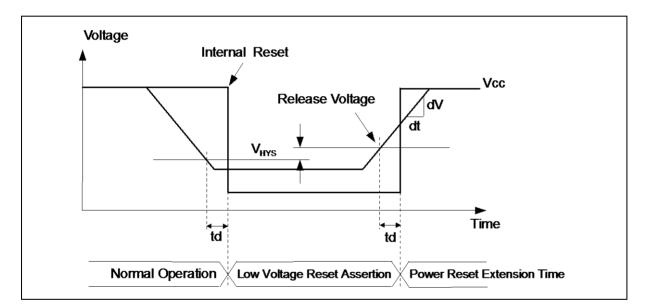
14.4.9 External Input Timing

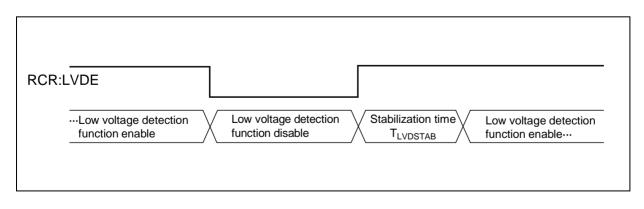

		($\mathbf{v}_{\mathrm{CC}} = \mathbf{A} \mathbf{v}_{\mathrm{CC}} = \mathbf{Z}_{\mathrm{CC}} \mathbf{v}_{\mathrm{CC}}$	55.50, 05	5 - 7 55	$= 00, T_{A} = -40 C (0 + 123 C)$
Parameter	Symbol	Pin name	Value		Unit	Remarks
Falanietei	Symbol	Fininame	Min	Max	Unit	itemaiks
		Pnn_m				General Purpose I/O
		ADTG		-		A/D Converter trigger input
		TINn, TINn_R			ns	Reload Timer
	t _{INH} , t _{INL}	TTGn	2t _{CLKP1} +200 (t _{CLKP1} = - 1/f _{CLKP1})*			PPG trigger input
		FRCKn, FRCKn_R				Free-Running Timer input clock
Input pulse width		INn, INn_R				Input Capture
		AINn, BINn, ZINn				Quadrature Position/Revolution Counter
		INTn, INTn_R NMI	200	-	ns	External Interrupt Non-Maskable Interrupt

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$

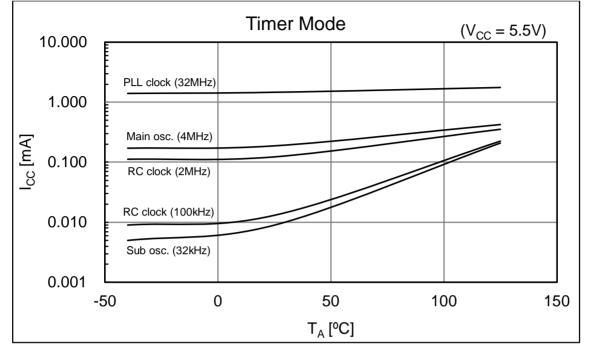
*: t_{CLKP1} indicates the peripheral clock1 (CLKP1) cycle time except stop when in stop mode.

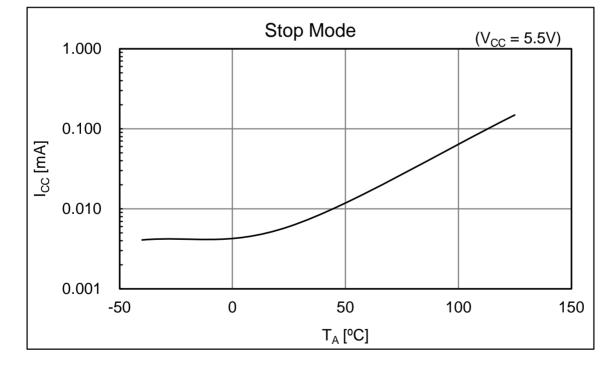

14.6 Low Voltage Detection Function Characteristics


Baramatar	Symbol	Conditions		Value	11	
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
	V _{DL0}	$CILCR:LVL = 0000_{B}$	2.70	2.90	3.10	V
	V _{DL1}	$CILCR:LVL = 0001_{B}$	2.79	3.00	3.21	V
	V _{DL2}	$CILCR:LVL = 0010_B$	2.98	3.20	3.42	V
Detected voltage ^{*1}	V _{DL3}	CILCR:LVL = 0011 _B	3.26	3.50	3.74	V
	V _{DL4}	CILCR:LVL = 0100 _B	3.45	3.70	3.95	V
	V _{DL5}	CILCR:LVL = 0111 _B	3.73	4.00	4.27	V
	V _{DL6}	CILCR:LVL = 1001 _B	3.91	4.20	4.49	V
Power supply voltage change rate ^{*2}	dV/dt	-	- 0.004	-	+ 0.004	V/µs
I hustowa sia uuiatta	N	CILCR:LVHYS=0	-	-	50	mV
Hysteresis width	V _{HYS}	CILCR:LVHYS=1	80	100	120	mV
Stabilization time	TLVDSTAB	-	-	-	75	μs
Detection delay time	t _d	-	-	-	30	μS


*1: If the power supply voltage fluctuates within the time less than the detection delay time (t_d), there is a possibility that the low voltage detection will occur or stop after the power supply voltage passes the detection range.

*2: In order to perform the low voltage detection at the detection voltage (V_{DLX}), be sure to suppress fluctuation of the power supply voltage within the limits of the change ration of power supply voltage.





■MB96F657

18. Major Changes

Spansion Publication Number: MB96650_DS704-00003

Page	Section	Change Results					
Revision 1.0							
-	-	Initial release					
Revision 2	.0						
	Electrical Characteristics	Changed the Value of "Power supply current in Timer modes"					
	DC Characteristics	I _{CCTPLL}					
20	Current Rating	Typ: $2485\mu A \rightarrow 1800\mu A (T_A = +25^{\circ}C)$					
39		Max: $2715\mu A \rightarrow 2250\mu A (T_A = +25^{\circ}C)$					
		Max: 4095µA → 3220µA (T _A = +105°C)					
		Max: 5065µA → 4205µA (T _A = +125°C)					
Revision 2	.1	•					
-	-	Company name and layout design change					

NOTE: Please see "Document History" about later revised information.

Page	Section	Change Results
Revision *B	3	
5, 7, 62, 63	 Product Lineup Pin Assignment Ordering Information Package Dimension 	Package description modified to JEDEC description. FPT-120P-M21 \rightarrow LQM120