

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	54
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f6723-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
 mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, Keeloq, Keeloq logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, PIC³² logo, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2009, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

QUALITY MANAGEMENT SYSTEM

CERTIFIED BY DNV

ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

64/80-Pin, 1-Mbit, Enhanced Flash Microcontrollers with 12-Bit A/D and nanoWatt Technology

Peripheral Highlights:

- 12-Bit, Up to 16-Channel Analog-to-Digital Converter module (A/D):
 - Auto-acquisition capability
 - Conversion available during Sleep
- Two Master Synchronous Serial Port (MSSP) modules supporting 2/3/4-Wire SPI (all four modes) and I²C™ Master and Slave modes
- Two Capture/Compare/PWM (CCP) modules
- Three Enhanced Capture/Compare/PWM (ECCP) modules:
 - One, two or four PWM outputs
 - Selectable polarity
 - Programmable dead time
 - Auto-shutdown and auto-restart
- Two Enhanced Addressable USART modules:
 - Supports RS-485, RS-232 and LIN 1.2
 - Auto-wake-up on Start bit
 - Auto-Baud Detect
- · Dual Analog Comparators with Input Multiplexing
- · High-Current Sink/Source 25 mA/25 mA
- · Four Programmable External Interrupts
- · Four Input Change Interrupts

External Memory Interface:

- · Address Capability of Up to 2 Mbytes
- · 8-Bit or 16-Bit Interface
- 8, 12, 16 and 20-Bit Address modes

Power-Managed Modes:

- · Run: CPU on, Peripherals on
- · Idle: CPU off, Peripherals on
- · Sleep: CPU off, Peripherals off
- Idle mode Currents Down to 15 μA Typical
- Sleep Current Down to 0.2 μA Typical
- Timer1 Oscillator: 1.8 μA, 32 kHz, 2V
- Watchdog Timer: 2.1 μA

Special Microcontroller Features:

- · C Compiler Optimized Architecture:
 - Optional extended instruction set designed to optimize re-entrant code
- 100,000 Erase/Write Cycle Enhanced Flash Program Memory Typical
- 1,000,000 Erase/Write Cycle Data EEPROM Memory Typical
- Flash/Data EEPROM Retention: 100 Years Typical
- · Self-Programmable under Software Control
- · Priority Levels for Interrupts
- 8 x 8 Single-Cycle Hardware Multiplier
- Extended Watchdog Timer (WDT):
 - Programmable period from 4 ms to 131s
- Single-Supply In-Circuit Serial Programming™ (ICSP™) via Two Pins
- · In-Circuit Debug (ICD) via Two Pins
- · Wide Operating Voltage Range: 2.0V to 5.5V
- · Fail-Safe Clock Monitor
- · Two-Speed Oscillator Start-up
- · nanoWatt Technology

Note: This document is supplemented by the "PIC18F8722 Family Data Sheet" (DS39646). See Section 1.0 "Device Overview".

	Prog	ram Memory	Data	a Memory				MSSP			b.	tors	s #	<u> </u>
Device	Flash (bytes)	# Single-Word Instructions	SRAM (bytes)	EEPROM (bytes)	I/O	12-Bit A/D (ch)	CCP/ ECCP (PWM)		SPI	Master I ² C™	EUSAR	Comparato	Timers 8/16-Bit	External Bus
PIC18F6628	96K	49152	3936	1024	54	12	2/3	2	Υ	Υ	2	2	2/3	N
PIC18F6723	128K	65536	3936	1024	54	12	2/3	2	Υ	Υ	2	2	2/3	N
PIC18F8628	96K	49152	3936	1024	70	16	2/3	2	Υ	Υ	2	2	2/3	Υ
PIC18F8723	128K	65536	3936	1024	70	16	2/3	2	Υ	Υ	2	2	2/3	Υ

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- · Microchip's Worldwide Web site; http://www.microchip.com
- · Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

1.0 DEVICE OVERVIEW

This document contains device-specific information for the following devices:

PIC18F6628
 PIC18F6628
 PIC18F6723
 PIC18F8628
 PIC18F8628
 PIC18F8723
 PIC18LF8723

Note: This data sheet documents only the devices' features and specifications that are in addition to the features and specifications of the PIC18F8722 family devices. For information on the features and specifications shared by the PIC18F8723 family and PIC18F8722 family devices, see the "PIC18F8722 Family Data Sheet" (DS39646).

The PIC18F8723 family of devices offers the advantages of all PIC18 microcontrollers – namely, high computational performance at an economical price – with the addition of high-endurance, Enhanced Flash program memory. In addition to these features, the PIC18F8723 introduces design enhancements that make these microcontrollers a logical choice for many high-performance, power-sensitive applications.

1.1 Special Features

 12-Bit A/D Converter: The PIC18F8723 family implements a 12-bit A/D Converter. A/D Converters in both families incorporate programmable acquisition time. This allows for a channel to be selected and a conversion to be initiated, without waiting for a sampling period and thus, reducing code overhead.

1.2 Details on Individual Family Members

Devices in the PIC18F8723 family are available in 64-pin and 80-pin packages. Block diagrams for the two groups are shown in Figure 1-1 and Figure 1-2.

The devices are differentiated from each other in the following ways:

- Flash program memory (96 Kbytes for PIC18FX628 devices and 128 Kbytes for PIC18FX723).
- A/D channels (12 for PIC18F6628/6723 devices and 16 for PIC18F8628/8723 devices).
- I/O ports (seven bidirectional ports on PIC18F6628/6723 devices and nine bidirectional ports on PIC18F8628/8723 devices).
- External Memory Bus, configurable for 8 and 16-bit operation

All other features for devices in this family are identical. These are summarized in Table 1-1.

The pinouts for all devices are listed in Table 1-2 and Table 1-3.

Like all Microchip PIC18 devices, members of the PIC18F8723 family are available as both standard and low-voltage devices. Standard devices with Enhanced Flash memory, designated with an "F" in the part number (such as PIC18F6628), accommodate an operating VDD range of 4.2V to 5.5V. Low-voltage parts, designated by "LF" (such as PIC18LF6628), function over an extended VDD range of 2.0V to 5.5V.

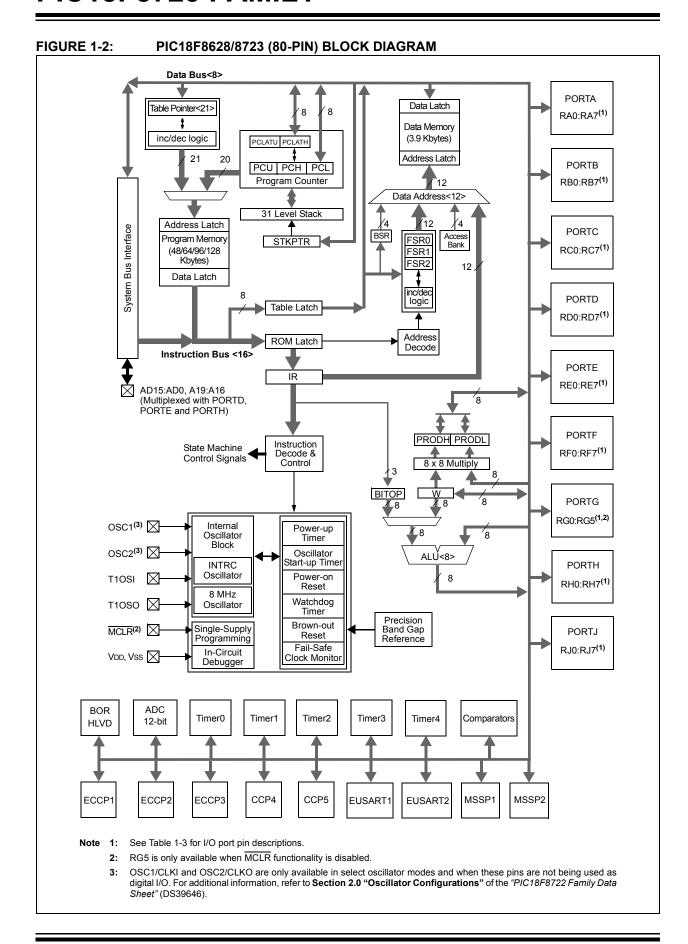


TABLE 1-2: PIC18F6628/6723 (64-PIN) PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Number	Pin	Buffer	Description				
Pin Name	TQFP	Type	Type	Description				
				PORTA is a bidirectional I/O port.				
RA0/AN0 RA0 AN0	24	I/O I	TTL Analog	Digital I/O. Analog input 0.				
RA1/AN1 RA1 AN1	23	I/O I	TTL Analog	Digital I/O. Analog input 1.				
RA2/AN2/VREF- RA2 AN2 VREF-	22	I/O I I	TTL Analog Analog	Digital I/O. Analog input 2. A/D reference voltage (low) input.				
RA3/AN3/VREF+ RA3 AN3 VREF+	21	I/O 	TTL Analog Analog	Digital I/O. Analog input 3. A/D reference voltage (high) input.				
RA4/T0CKI RA4 T0CKI	28	I/O I	ST ST	Digital I/O. Timer0 external clock input.				
RA5/AN4/HLVDIN RA5 AN4 HLVDIN	27	I/O 	TTL Analog Analog	Digital I/O. Analog input 4. High/Low-Voltage Detect input.				
RA6				See the OSC2/CLKO/RA6 pin.				
RA7				See the OSC1/CLKI/RA7 pin.				

Legend: TTL = TTL compatible input

ST = Schmitt Trigger input with CMOS levels

I = Input

P = Power

CMOS = CMOS compatible input or output

Analog = Analog input

O = Output

 $I^2C^{TM} = I^2C/SMBus$ input buffer

Note 1: Default assignment for ECCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared.

TABLE 1-2: PIC18F6628/6723 (64-PIN) PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Number	Pin	Buffer	Description
Pili Naille	TQFP	Type	Туре	Description
				PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.
RB0/INT0/FLT0 RB0 INT0 FLT0	48	I/O 	TTL ST ST	Digital I/O. External interrupt 0. PWM Fault input for ECCPx.
RB1/INT1 RB1 INT1	47	I/O I	TTL ST	Digital I/O. External interrupt 1.
RB2/INT2 RB2 INT2	46	I/O I	TTL ST	Digital I/O. External interrupt 2.
RB3/INT3 RB3 INT3	45	I/O I	TTL ST	Digital I/O. External interrupt 3.
RB4/KBI0 RB4 KBI0	44	I/O I	TTL TTL	Digital I/O. Interrupt-on-change pin.
RB5/KBI1/PGM RB5 KBI1 PGM	43	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. Low-Voltage ICSP™ Programming enable pin.
RB6/KBI2/PGC RB6 KBI2 PGC	42	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming clock pin.
RB7/KBI3/PGD RB7 KBI3 PGD	37	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming data pin.

Legend: TTL = TTL compatible input

CMOS = CMOS compatible input or output

ST = Schmitt Trigger input with CMOS levels

Analog = Analog input

I = Input

O = Output

P = Power

 $I^2C^{TM} = I^2C/SMBus$ input buffer

Note 1: Default assignment for ECCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared.

TABLE 1-2: PIC18F6628/6723 (64-PIN) PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Number	Pin	Buffer	Description
Pin Name	TQFP	Туре	Туре	Description
				PORTF is a bidirectional I/O port.
RF0/AN5 RF0 AN5	18	I/O I	ST Analog	Digital I/O. Analog input 5.
RF1/AN6/C2OUT RF1 AN6 C2OUT	17	I/O I O	ST Analog —	Digital I/O. Analog input 6. Comparator 2 output.
RF2/AN7/C1OUT RF2 AN7 C1OUT	16	I/O I O	ST Analog —	Digital I/O. Analog input 7. Comparator 1 output.
RF3/AN8 RF3 AN8	15	I/O I	ST Analog	Digital I/O. Analog input 8.
RF4/AN9 RF4 AN9	14	I/O I	ST Analog	Digital I/O. Analog input 9.
RF5/AN10/CVREF RF5 AN10 CVREF	13	I/O I O	ST Analog Analog	Digital I/O. Analog input 10. Comparator reference voltage output.
RF6/AN11 RF6 AN11	12	I/O I	ST Analog	Digital I/O. Analog input 11.
RF7/SS1 RF7 SS1	11	I/O I	ST TTL	Digital I/O. SPI slave select input.

Legend: TTL = TTL compatible input

CMOS = CMOS compatible input or output

ST = Schmitt Trigger input with CMOS levels

Analog = Analog input

I = Input

O = Output

P = Power

 $I^2C^{TM} = I^2C/SMBus$ input buffer

Note 1: Default assignment for ECCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared.

TABLE 1-3: PIC18F8628/8723 (80-PIN) PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Number	Pin	Buffer	Description
Pin Name	TQFP	Туре	Туре	Description
				PORTD is a bidirectional I/O port.
RD0/AD0/PSP0 RD0 AD0 PSP0	72	I/O I/O I/O	ST TTL TTL	Digital I/O. External memory address/data 0. Parallel Slave Port data.
RD1/AD1/PSP1 RD1 AD1 PSP1	69	I/O I/O I/O	ST TTL TTL	Digital I/O. External memory address/data 1. Parallel Slave Port data.
RD2/AD2/PSP2 RD2 AD2 PSP2	68	I/O I/O I/O	ST TTL TTL	Digital I/O. External memory address/data 2. Parallel Slave Port data.
RD3/AD3/PSP3 RD3 AD3 PSP3	67	I/O I/O I/O	ST TTL TTL	Digital I/O. External memory address/data 3. Parallel Slave Port data.
RD4/AD4/PSP4/SDO2 RD4 AD4 PSP4 SDO2	66	I/O I/O I/O O	ST TTL TTL	Digital I/O. External memory address/data 4. Parallel Slave Port data. SPI data out.
RD5/AD5/PSP5/ SDI2/SDA2 RD5 AD5 PSP5 SDI2 SDA2	65	I/O I/O I/O I	ST TTL TTL ST I ² C/SMB	Digital I/O. External memory address/data 5. Parallel Slave Port data. SPI data in. I ² C™ data I/O.
RD6/AD6/PSP6/ SCK2/SCL2 RD6 AD6 PSP6 SCK2 SCL2	64	I/O I/O I/O I/O	ST TTL TTL ST I ² C/SMB	Digital I/O. External memory address/data 6. Parallel Slave Port data. Synchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I ² C mode.
RD7/AD7/PSP7/SS2 RD7 AD7 PSP7 SS2	63	I/O I/O I/O	ST TTL TTL TTL	Digital I/O. External memory address/data 7. Parallel Slave Port data. SPI slave select input.

Legend: TTL = TTL compatible input

CMOS = CMOS compatible input or output

ST = Schmitt Trigger input with CMOS levels
I = Input

Analog = Analog input
O = Output

P = Power

 $I^2C^{TM}/SMB = I^2C/SMBus$ input buffer

Note 1: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared (all operating modes except Microcontroller mode).

- 2: Default assignment for ECCP2 in all operating modes (CCP2MX is set).
- 3: Alternate assignment for ECCP2 when CCP2MX is cleared (Microcontroller mode only).
- 4: Default assignment for P1B/P1C/P3B/P3C (ECCPMX is set).
- **5:** Alternate assignment for P1B/P1C/P3B/P3C (ECCPMX is clear).

TABLE 1-3: PIC18F8628/8723 (80-PIN) PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Number	Pin	Buffer	Description
Pin Name	TQFP	Туре	Туре	Description
				PORTH is a bidirectional I/O port.
RH0/A16 RH0 A16	79	I/O I/O	ST TTL	Digital I/O. External memory address/data 16.
RH1/A17 RH1 A17	80	I/O I/O	ST TTL	Digital I/O. External memory address/data 17.
RH2/A18 RH2 A18	1	I/O I/O	ST TTL	Digital I/O. External memory address/data 18.
RH3/A19 RH3 A19	2	I/O I/O	ST TTL	Digital I/O. External memory address/data 19.
RH4/AN12/P3C RH4 AN12 P3C ⁽⁵⁾	22	I/O I O	ST Analog —	Digital I/O. Analog input 12. ECCP3 PWM output C.
RH5/AN13/P3B RH5 AN13 P3B ⁽⁵⁾	21	I/O I O	ST Analog —	Digital I/O. Analog input 13. ECCP3 PWM output B.
RH6/AN14/P1C RH6 AN14 P1C ⁽⁵⁾	20	I/O I O	ST Analog —	Digital I/O. Analog input 14. ECCP1 PWM output C.
RH7/AN15/P1B RH7 AN15 P1B ⁽⁵⁾	19	I/O - O	ST Analog —	Digital I/O. Analog input 15. ECCP1 PWM output B.

Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output

ST = Schmitt Trigger input with CMOS levels Analog = Analog input
I = Input O = Output

P = Power $I^2C^{TM}/SMB = I^2C/SMBus$ input buffer

Note 1: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared (all operating modes except Microcontroller mode).

- 2: Default assignment for ECCP2 in all operating modes (CCP2MX is set).
- 3: Alternate assignment for ECCP2 when CCP2MX is cleared (Microcontroller mode only).
- 4: Default assignment for P1B/P1C/P3B/P3C (ECCPMX is set).
- 5: Alternate assignment for P1B/P1C/P3B/P3C (ECCPMX is clear).

REGISTER 2-2: ADCON1: A/D CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 7-6 **Unimplemented:** Read as '0'

bit 5-4 VCFG1:VCFG0: Voltage Reference Configuration bits

	A/D VREF+	A/D VREF-
0.0	AVDD	AVss
01	External VREF+	AVss
10	AVDD	External VREF-
11	External VREF+	External VREF-

bit 3-0 **PCFG3:PCFG0:** A/D Port Configuration Control bits:

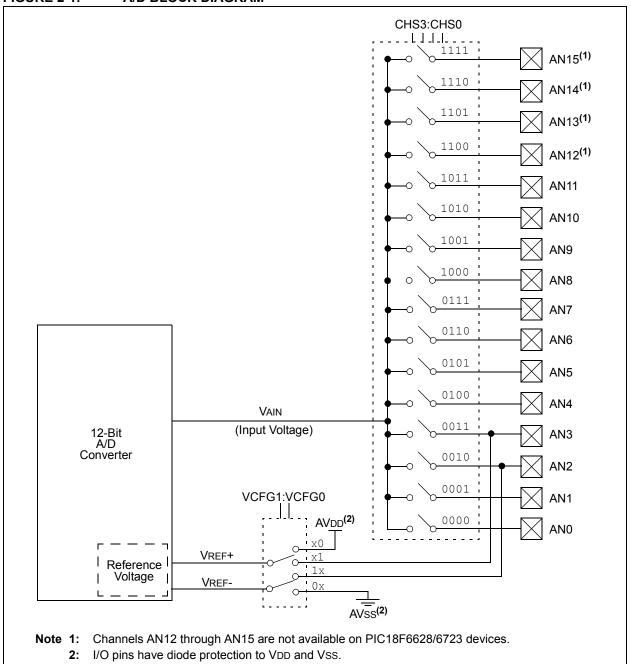
PCFG<3:0>	AN15 ⁽¹⁾	AN14 ⁽¹⁾	AN13 ⁽¹⁾	AN12 ⁽¹⁾	AN11	AN10	AN9	AN8	AN7	AN6	AN5	AN4	AN3	AN2	AN1	ANO
0000	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0001	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0010	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0011	D	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0100	D	D	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0101	D	D	D	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0110	D	D	D	D	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α
0111	D	D	D	D	D	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α
1000	D	D	D	D	D	D	D	D	D	Α	Α	Α	Α	Α	Α	Α
1001	D	D	D	D	D	D	D	D	D	D	Α	Α	Α	Α	Α	Α
1010	D	D	D	D	D	D	D	D	D	D	D	Α	Α	Α	Α	Α
1011	D	D	D	D	D	D	D	D	D	D	D	D	Α	Α	Α	Α
1100	D	D	D	D	D	D	D	D	D	D	D	D	D	Α	Α	Α
1101	D	D	D	D	D	D	D	D	D	D	D	D	D	D	Α	Α
1110	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	Α
1111	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D

A = Analog input

D = Digital I/O

Note 1: AN15 through AN12 are available only on PIC18F8628/8723 devices.

The analog reference voltage is software selectable to either the device's positive and negative supply voltage (VDD and VSS), or the voltage level on the RA3/AN3/ VREF+ and RA2/AN2/VREF-/CVREF pins.


The A/D Converter has a unique feature of being able to operate while the device is in Sleep mode. To operate in Sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

The output of the sample and hold is the input into the converter, which generates the result via successive approximation.

A device Reset forces all registers to their Reset state. This forces the A/D module to be turned off and any conversion in progress is aborted.

Each port pin associated with the A/D Converter can be configured as an analog input or a digital I/O. The ADRESH and ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRESH:ADRESL register pair, the GO/DONE bit (ADCON0<1>) is cleared and the A/D Interrupt Flag bit, ADIF, is set. The block diagram of the A/D module is shown in Figure 2-1.

FIGURE 2-1: A/D BLOCK DIAGRAM

2.1 A/D Acquisition Requirements

For the A/D Converter to meet its specified accuracy, the charge holding capacitor (Chold) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 2-3. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor, Chold. The sampling switch (Rss) impedance varies over the device voltage (Vdd). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 2.5 k Ω . After the analog input channel is selected (changed), the channel must be sampled for at least the minimum acquisition time before starting a conversion.

Note:

When the conversion is started, the holding capacitor is disconnected from the input pin.

To calculate the minimum acquisition time, Equation 2-1 may be used. This equation assumes that 1/2 LSb error is used (4096 steps for the 12-bit A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

Example 2-3 shows the calculation of the minimum required acquisition time, TACQ. This calculation is based on the following application system assumptions:

CHOLD = 25 pF Rs = $2.5 \text{ k}\Omega$ Conversion Error \leq 1/2 LSb

VDD = $3V \rightarrow Rss = 4 \text{ k}\Omega$ Temperature = 85°C (system max.)

EQUATION 2-1: ACQUISITION TIME

```
TACQ = Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient
= TAMP + TC + TCOFF
```

EQUATION 2-2: A/D MINIMUM CHARGING TIME

```
VHOLD = (VREF - (VREF/4096)) \cdot (1 - e^{(-TC/CHOLD(RIC + RSS + RS))})

or

TC = -(CHOLD)(RIC + RSS + RS) \ln(1/4096)
```

EQUATION 2-3: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME

```
TACQ
                     TAMP + TC + TCOFF
TAMP
                    0.2~\mu s
TCOFF
                    (Temp - 25^{\circ}C)(0.02 \mu s/^{\circ}C)
                     (85^{\circ}C - 25^{\circ}C)(0.02 \,\mu\text{s/}^{\circ}C)
                     1.2 us
Temperature coefficient is only required for temperatures > 25°C. Below 25°C, TCOFF = 0 \mus.
TC
                    -(CHOLD)(RIC + RSS + RS) ln(1/4096) \mu s
                     -(25 \text{ pF}) (1 \text{ k}\Omega + 4 \text{ k}\Omega + 2.5 \text{ k}\Omega) \ln(0.0002441) \,\mu\text{s}
                     1.56 \mu s
                    0.2 \mu s + 1.56 \mu s + 1.2 \mu s
TACO
                     2.96 us
```

2.4 Operation in Power-Managed Modes

The selection of the automatic acquisition time and A/D conversion clock is determined in part by the clock source and frequency while in a power-managed mode.

If the A/D is expected to operate while the device is in a power-managed mode, the ADCS2:ADCS0 bits in ADCON2 should be updated in accordance with the clock source to be used. The ACQT2:ACQT0 bits do not need to be adjusted as the ADCS2:ADCS0 bits adjust the TAD time for the new clock speed. After entering the mode, an A/D acquisition or conversion may be started. Once started, the device should continue to be clocked by the same clock source until the conversion has been completed.

If desired, the device may be placed into the corresponding Idle mode during the conversion. If the device clock frequency is less than 1 MHz, the A/D RC clock source should be selected.

Operation in Sleep mode requires the A/D FRC clock to be selected. If the ACQT2:ACQT0 bits are set to '000' and a conversion is started, the conversion will be delayed one instruction cycle to allow execution of the SLEEP instruction and entry to Sleep mode. The IDLEN bit (OSCCON<7>) must have already been cleared prior to starting the conversion.

2.5 Configuring Analog Port Pins

The ADCON1, TRISA, TRISF and TRISH registers all configure the A/D port pins. The port pins needed as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS3:CHS0 bits and the TRIS bits.

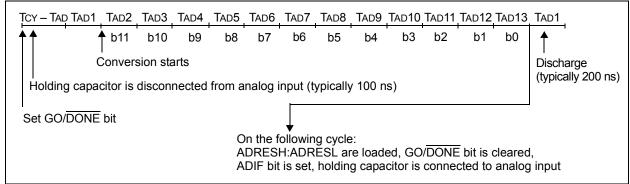
- Note 1: When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level). Analog conversion on pins configured as digital pins can be performed. The voltage on the pin will be accurately converted.
 - 2: Analog levels on any pin defined as a digital input may cause the digital input buffer to consume current out of the device's specification limits.

2.6 A/D Conversions

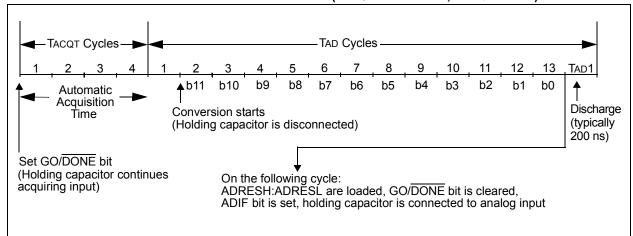
Figure 2-4 shows the operation of the A/D Converter after the GO/DONE bit has been set and the ACQT2:ACQT0 bits are cleared. A conversion is started after the following instruction to allow entry into Sleep mode before the conversion begins.

Figure 2-5 shows the operation of the A/D Converter after the GO/DONE bit has been set, the ACQT2:ACQT0 bits are set to '010' and a 4 TAD acquisition time has been selected before the conversion starts.

Clearing the GO/DONE bit during a conversion will abort the current conversion. The A/D Result register pair will NOT be updated with the partially completed A/D conversion sample. This means the ADRESH:ADRESL registers will continue to contain the value of the last completed conversion (or the last value written to the ADRESH:ADRESL registers).


After the A/D conversion is completed or aborted, a 2 Tcy wait is required before the next acquisition can be started. After this wait, acquisition on the selected channel is automatically started.

Note: The GO/DONE bit should NOT be set in the same instruction that turns on the A/D. Code should wait at least 2 μs after enabling the A/D before beginning an acquisition and conversion cycle.


2.7 Discharge

The discharge phase is used to initialize the value of the holding capacitor. The array is discharged before every sample. This feature helps to optimize the unity gain amplifier, as the circuit always needs to charge the capacitor array, rather than charge/discharge based on previous measure values.

FIGURE 2-4: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 000, TACQ = 0)

FIGURE 2-5: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 010, TACQ = 4 TAD)

5.0 PACKAGING INFORMATION

For packaging information, see the "PIC18F8722 Family Data Sheet" (DS39646).

APPENDIX A: REVISION HISTORY

Revision A (August 2007)

Original data sheet for the PIC18F8723 family of devices.

Revision B (October 2009)

Updated to remove Preliminary status.

APPENDIX B: DEVICE DIFFERENCES

The differences between the devices listed in this data sheet are shown in Table B-1.

TABLE B-1: PIC18F8723 FAMILY DEVICE DIFFERENCES

Features	PIC18F6628	PIC18F6723	PIC18F8628	PIC18F8723
Program Memory (Bytes)	96K	128K	96K	128K
Program Memory (Instructions)	49152	65536	49152	65536
Interrupt Sources	28	28	29	29
I/O Ports	Ports A, B, C, D, E, F, G	Ports A, B, C, D, E, F, G	Ports A, B, C, D, E, F, G, H, J	Ports A, B, C, D, E, F, G, H, J
Capture/Compare/PWM Modules	2	2	2	2
Enhanced Capture/Compare/PWM Modules	3	3	3	3
Parallel Communications (PSP)	Yes	Yes	Yes	Yes
External Memory Bus	No	No	Yes	Yes
12-Bit Analog-to-Digital Module	12 Input Channels	12 Input Channels	16 Input Channels	16 Input Channels
Packages	64-Pin TQFP	64-Pin TQFP	80-Pin TQFP	80-Pin TQFP

APPENDIX E: MIGRATION FROM MID-RANGE TO ENHANCED DEVICES

A detailed discussion of the differences between the mid-range MCU devices (i.e., PIC16CXXX) and the enhanced devices (i.e., PIC18FXXX) is provided in AN716, "Migrating Designs from PIC16C74A/74B to PIC18C442". The changes discussed, while device specific, are generally applicable to all mid-range to enhanced device migrations.

This Application Note is available on our web site, www.microchip.com, as Literature Number DS00716.

APPENDIX F: MIGRATION FROM HIGH-END TO ENHANCED DEVICES

A detailed discussion of the migration pathway and differences between the high-end MCU devices (i.e., PIC17CXXX) and the enhanced devices (i.e., PIC18FXXX) is provided in AN726, "PIC17CXXX to PIC18CXXX Migration".

This Application Note is available on our web site, www.microchip.com, as Literature Number DS00726.

NOTES:

INDEX

A		F	
A/D	31	Features Summary Table	3
A/D Converter Interrupt, Configuring	35		
Acquisition Requirements	36	I	
ADCON0 Register	31	Internet Address	57
ADCON1 Register	31	Interrupt Sources	
ADCON2 Register	31	A/D Conversion Complete	35
ADRESH Register	31, 34	М	
ADRESL Register	31		
Analog Port Pins, Configuring	38	Microchip Internet Web Site	
Associated Registers	40	Migration From Baseline to Enhanced Devices	
Configuring the Module	35	Migration From High-End to Enhanced Devices	
Conversion Clock (TAD)	37	Migration From Mid-Range to Enhanced Devices	
Conversion Status (GO/DONE Bit)	34	More Information	
Conversions	39	Customer Notification System	
Converter Characteristics	46	Errata	7
Discharge	39	0	
Operation in Power-Managed Modes	38		
Selecting and Configuring Acquisition Time	37	Overview	_
Special Event Trigger (ECCP2)	40	External Memory Interface	
Transfer Function	35	Features Summary Table	
Use of the ECCP2 Trigger	40	Peripheral Highlights	
Absolute Maximum Ratings	43	Power-Managed Modes	
ADCON0 Register	31	Special Microcontroller Features	3
GO/DONE Bit	34	Р	
ADCON1 Register	31	Dealer sing Information	40
ADCON2 Register	31	Packaging Information	
ADRESH Register	31	Peripheral Highlights	c
ADRESL Register	31, 34	Pin Diagrams 64-Pin TQFP	,
Analog-to-Digital Converter. See A/D.			
В		80-Pin TQFPPin Functions	5
			20
Block Diagrams		AVDD (64-pin)	
A/D		AVDD (80-pin)	
Analog Input Model		AVSS (80-pin)	
PIC18F6628/6723			
PIC18F8628/8723	12	OSC1/CLKI/RA7 OSC2/CLKO/RA6	
С		RA0/AN0	
		RA1/AN1	-
Compare (ECCP2 Module)		RA2/AN2/VREF-	
Special Event Trigger		RA3/AN3/VREF+	,
Conversion Considerations		RA4/T0CKI	
Customer Change Notification Service		RA5/AN4/HLVDIN	
Customer Notification Service		RB0/INT0/FLT0	
Customer Notification System		RB1/INT1	
Customer Support	57	RB2/INT2	
D		RB3/INT3	,
Device Differences	E1	RB3/INT3/ECCP2/P2A	
Device ID Registers		RB4/KBI0	
•	41	RB5/KBI1/PGM	,
Device Overview	10	RB6/KBI2/PGC	
Features (table)		RB7/KBI3/PGD	
Special Features	9	RC0/T10S0/T13CKI	
E			
Electrical Characteristics	/1.3	RC1/T1OSI/ECCP2/P2A RC2/ECCP1/P1A	-
Equations	43	RC2/ECCP1/P1A	
·	36	RC4/SDI1/SDA1	,
A/D Minimum Charging Time			,
A/D Minimum Charging Time		RC5/SDO1 RC6/TX1/CK1	
Calculating the Minimum Required Acquisition			
Errata		RC7/RX1/DT1 RD0/AD0/PSP0	
External Memory Interface	3		
		RD0/PSP0	17