

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	EBI/EMI, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	70
Program Memory Size	96KB (48K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f8628-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.


FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, PIC³² logo, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2009, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

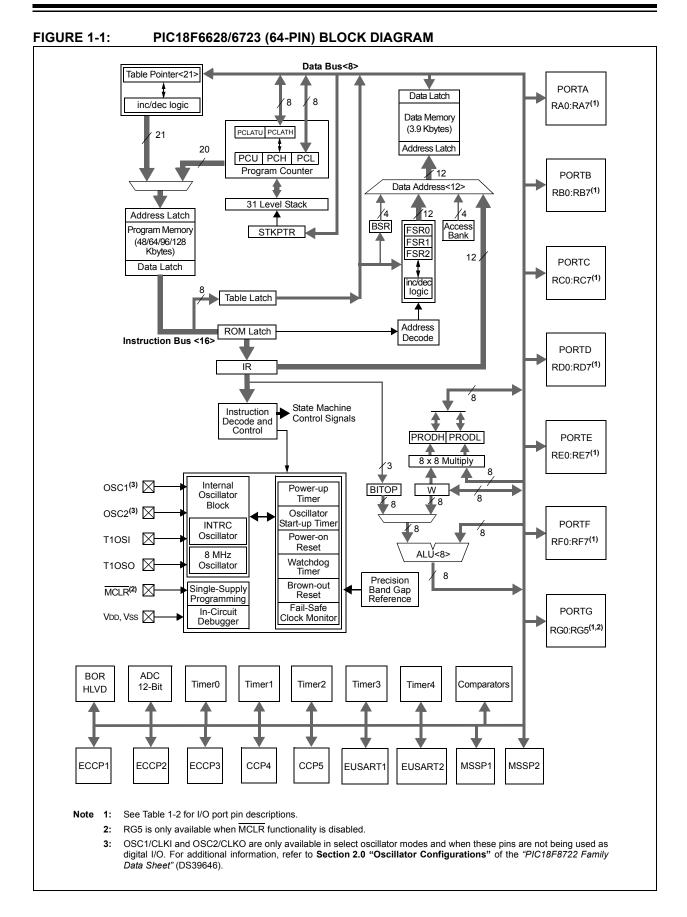

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Table of Contents

1.0	Device Overview	9
2.0	12-Bit Analog-to-Digital Converter (A/D) Module	. 31
3.0	Special Features of the CPU	. 41
4.0	Electrical Characteristics	. 43
5.0	Packaging Information	. 49
Appe	ndix A: Revision History	. 51
Appe	ndix B. Device Differences	51
Appe	ndix C: Conversion Considerations	. 52
Appe	ndix D: Migration From Baseline to Enhanced Devices	. 52
Appe	ndix E: Migration From Mid-Range to Enhanced Devices	. 53
Appe	ndix F: Migration From High-End to Enhanced Devices	. 53
Index		. 55
The N	/icrochip Web Site	. 57
Custo	omer Change Notification Service	. 57
Custo	omer Support	. 57
Read	er Response	. 58
	8F8723 family Product Identification System	

	PICARES	DIC40E6702		DIC40E0702
Features	PIC18F6628	PIC18F6723	PIC18F8628	PIC18F8723
Operating Frequency	DC – 40 MHz			
Program Memory (Bytes)	96K	128K	96K	128K
Program Memory (Instructions)	49152	65536	49152	65536
Data Memory (Bytes)	3936	3936	3936	3936
Data EEPROM Memory (Bytes)	1024	1024	1024	1024
Interrupt Sources	28	28	29	29
I/O Ports	Ports A, B, C, D, E, F, G	Ports A, B, C, D, E, F, G	Ports A, B, C, D, E, F, G, H, J	Ports A, B, C, D, E, F, G, H, J
Timers	5	5	5	5
Capture/Compare/PWM Modules	2	2	2	2
Enhanced Capture/Compare/ PWM Modules	3	3	3	3
Enhanced USART	2	2	2	2
Serial Communications	MSSP, Enhanced USART	MSSP, Enhanced USART	MSSP, Enhanced USART	MSSP, Enhanced USART
Parallel Communications (PSP)	Yes	Yes	Yes	Yes
12-Bit Analog-to-Digital Module	12 Input Channels	12 Input Channels	16 Input Channels	16 Input Channels
Resets (and Delays)	POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST), MCLR (optional), WDT	POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST), MCLR (optional), WDT	POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST), MCLR (optional), WDT	POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST), MCLR (optional), WDT
Programmable High/Low-Voltage Detect	Yes	Yes	Yes	Yes
Programmable Brown-out Reset	Yes	Yes	Yes	Yes
Instruction Set	75 Instructions; 83 with Extended Instruction Set Enabled			
Packages	64-Pin TQFP	64-Pin TQFP	80-Pin TQFP	80-Pin TQFP

TABLE 1-1: DEVICE FEATURES

Dia Nama	Pin Number	Pin Number Pin	Buffer	Description		
Pin Name	TQFP	Туре	Туре			
				PORTA is a bidirectional I/O port.		
RA0/AN0	24					
RA0		I/O	TTL	Digital I/O.		
AN0		I	Analog	Analog input 0.		
RA1/AN1	23					
RA1		I/O	TTL	Digital I/O.		
AN1		I	Analog	Analog input 1.		
RA2/AN2/VREF-	22					
RA2		I/O	TTL	Digital I/O.		
AN2		I	Analog	Analog input 2.		
VREF-		I	Analog	A/D reference voltage (low) input.		
RA3/AN3/VREF+	21					
RA3		I/O	TTL	Digital I/O.		
AN3		I	Analog	Analog input 3.		
VREF+		I	Analog	A/D reference voltage (high) input.		
RA4/T0CKI	28					
RA4		I/O	ST	Digital I/O.		
TOCKI		I	ST	Timer0 external clock input.		
RA5/AN4/HLVDIN	27					
RA5		I/O	TTL	Digital I/O.		
AN4		Ι	Analog	Analog input 4.		
HLVDIN		I	Analog	High/Low-Voltage Detect input.		
RA6				See the OSC2/CLKO/RA6 pin.		
RA7				See the OSC1/CLKI/RA7 pin.		
	L compatible inpu		-	CMOS = CMOS compatible input or output		
	hmitt Trigger inpu	it with Cl	MOS level			
				O = Output		
P = Power $I^2 C^{TM} = I^2 C/SMBus$ input buffer						

TABLE 1-2: PIC18F6628/6723 (64-PIN) PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for ECCP2 when Configuration bit, CCP2MX, is set.

Din Nama	Pin Number	Pin	Buffer		
Pin Name	TQFP	Туре	Туре	Description	
				PORTC is a bidirectional I/O port.	
RC0/T1OSO/T13CKI RC0 T1OSO T13CKI	30	I/O O I	ST — ST	Digital I/O. Timer1 oscillator output. Timer1/Timer3 external clock input.	
RC1/T1OSI/ECCP2/ P2A	29				
RC1 T1OSI ECCP2 ⁽¹⁾		I/O I I/O	ST CMOS ST	Digital I/O. Timer1 oscillator input. Enhanced Capture 2 input/Compare 2 output/ PWM2 output.	
P2A ⁽¹⁾		0	_	ECCP2 PWM output A.	
RC2/ECCP1/P1A RC2 ECCP1	33	I/O I/O	ST ST	Digital I/O. Enhanced Capture 1 input/Compare 1 output/ PWM1 output.	
P1A		0	_	ECCP1 PWM output A.	
RC3/SCK1/SCL1 RC3 SCK1 SCL1	34	I/O I/O I/O	ST ST ST	Digital I/O. Synchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I ² C™ mode.	
RC4/SDI1/SDA1 RC4 SDI1 SDA1	35	I/O I I/O	ST ST ST	Digital I/O. SPI data in. I ² C data I/O.	
RC5/SDO1 RC5 SDO1	36	I/O O	ST —	Digital I/O. SPI data out.	
RC6/TX1/CK1 RC6 TX1 CK1	31	I/O O I/O	ST — ST	Digital I/O. EUSART1 asynchronous transmit. EUSART1 synchronous clock (see related RX1/DT1).	
RC7/RX1/DT1 RC7 RX1 DT1	32	I/O I I/O	ST ST ST	Digital I/O. EUSART1 asynchronous receive. EUSART1 synchronous data (see related TX1/CK1).	
Legend:TTL = TTL compatible inputCMOS= CMOS compatible input or outputST = Schmitt Trigger input with CMOS levelsAnalog= Analog inputI = InputO= OutputP = Power $l^2 C^{TM}$ = $l^2 C/SMBus$ input buffer					

TABLE 1-2: PIC18F6628/6723 (64-PIN) PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for ECCP2 when Configuration bit, CCP2MX, is set.

	Pin Number	Pin	Buffer	Description	
Pin Name	TQFP	Туре	Туре	Description	
				PORTD is a bidirectional I/O port.	
RD0/PSP0 RD0 PSP0	58	I/O I/O	ST TTL	Digital I/O. Parallel Slave Port data.	
RD1/PSP1 RD1 PSP1	55	I/O I/O	ST TTL	Digital I/O. Parallel Slave Port data.	
RD2/PSP2 RD2 PSP2	54	I/O I/O	ST TTL	Digital I/O. Parallel Slave Port data.	
RD3/PSP3 RD3 PSP3	53	I/O I/O	ST TTL	Digital I/O. Parallel Slave Port data.	
RD4/PSP4/SDO2 RD4 PSP4 SDO2	52	I/O I/O O	ST TTL	Digital I/O. Parallel Slave Port data. SPI data out.	
RD5/PSP5/SDI2/ SDA2 RD5 PSP5 SDI2 SDA2	51	I/O I/O I I/O	ST TTL ST I ² C/SMB	Digital I/O. Parallel Slave Port data. SPI data in. I ² C™ data I/O.	
RD6/PSP6/SCK2/ SCL2 RD6 PSP6 SCK2 SCL2	50	I/O I/O I/O	ST TTL ST I ² C/SMB	Digital I/O. Parallel Slave Port data. Synchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I ² C mode.	
RD7/PSP7/ SS2 RD7 <u>PSP</u> 7 SS2	49	I/O I/O I	ST TTL TTL	Digital I/O. Parallel Slave Port data. SPI slave select input.	
Legend:TTL = TTL compatible inputCMOS= CMOS compatible input or outputST = Schmitt Trigger input with CMOS levelsAnalog= Analog inputI = InputO= OutputP = Power $I^2 C^{TM}$ = $I^2 C/SMBus$ input buffer					

TABLE 1-2:	PIC18F6628/6723 (64-PIN) PINOUT I/O	DESCRIPTIONS	(CONTINUED)	
		• • • • • •		======		

Note 1: Default assignment for ECCP2 when Configuration bit, CCP2MX, is set.

Pin Name	Pin Number	Pin	Buffer	Description	
	TQFP	Туре	Туре	Description	
				PORTE is a bidirectional I/O port.	
RE0/RD/P2D RE0 RD P2D	2	I/O I O	ST TTL	Digital I/O. Read control for Parallel Slave Port. ECCP2 PWM output D.	
RE1/WR/P2C RE1 WR P2C	1	I/O I O	ST TTL	Digital I/O. Write control for Parallel Slave Port. ECCP2 PWM output C.	
RE2/CS/P2B RE2 CS P2B	64	I/O I O	ST TTL	Digital I/O. Chip select control for Parallel Slave Port. ECCP2 PWM output B.	
RE3/P3C RE3 P3C	63	I/O O	ST —	Digital I/O. ECCP3 PWM output C.	
RE4/P3B RE4 P3B	62	I/O O	ST —	Digital I/O. ECCP3 PWM output B.	
RE5/P1C RE5 P1C	61	I/O O	ST —	Digital I/O. ECCP1 PWM output C.	
RE6/P1B RE6 P1B	60	I/O O	ST —	Digital I/O. ECCP1 PWM output B.	
RE7/ECCP2/P2A RE7 ECCP2 ⁽²⁾	59	I/O I/O	ST ST	Digital I/O. Enhanced Capture 2 input/Compare 2 output/ PWM2 output.	
P2A ⁽²⁾ O—ECCP2 PWM output A.Legend:TTL = TTL compatible inputCMOS = CMOS compatible input or outputST = Schmitt Trigger input with CMOS levelsAnalog = Analog inputI = InputO= OutputP = Power l^2C^{TM} = $l^2C/SMBus$ input buffer					

TABLE 1-2: PIC18F6628/6723 (64-PIN) PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for ECCP2 when Configuration bit, CCP2MX, is set.

Dia Mara	Pin Number	Pin	Buffer	Description	
Pin Name	TQFP	Туре	Туре	Description	
				PORTF is a bidirectional I/O port.	
RF0/AN5 RF0 AN5	18	I/O I	ST Analog	Digital I/O. Analog input 5.	
RF1/AN6/C2OUT RF1 AN6 C2OUT	17	I/O I O	ST Analog —	Digital I/O. Analog input 6. Comparator 2 output.	
RF2/AN7/C1OUT RF2 AN7 C1OUT	16	I/O I O	ST Analog —	Digital I/O. Analog input 7. Comparator 1 output.	
RF3/AN8 RF3 AN8	15	I/O I	ST Analog	Digital I/O. Analog input 8.	
RF4/AN9 RF4 AN9	14	I/O I	ST Analog	Digital I/O. Analog input 9.	
RF5/AN10/CVREF RF5 AN10 CVREF	13	I/O I O	ST Analog Analog	Digital I/O. Analog input 10. Comparator reference voltage output.	
RF6/AN11 RF6 AN11	12	I/O I	ST Analog	Digital I/O. Analog input 11.	
RF7/ <u>SS1</u> <u>RF7</u> SS1	11	I/O I	ST TTL	Digital I/O. SPI slave select input.	
Legend:TTL = TTL compatible inputCMOS = CMOS compatible input or outputST = Schmitt Trigger input with CMOS levelsAnalog = Analog inputI = InputO = OutputP = Power $I^2 C^{TM} = I^2 C/SMBus input buffer$				s Analog = Analog input O = Output	

TABLE 1-2:	PIC18F6628/6723	64-PIN	DESCRIPTIONS	
TADLL 1-2.	FICIOI 0020/0723	04-6 114	DESCRIF HONS	

Note 1: Default assignment for ECCP2 when Configuration bit, CCP2MX, is set.

Din Nama	Pin Number	Pin	Buffer	Description				
Pin Name	TQFP	Туре	Туре	Description				
				PORTG is a bidirectional I/O port.				
RG0/ECCP3/P3A RG0 ECCP3	3	1/0 1/0	ST ST	Digital I/O. Enhanced Capture 3 input/Compare 3 output/ PWM3 output.				
P3A		0	_	ECCP3 PWM output A.				
RG1/TX2/CK2 RG1 TX2 CK2	4	I/O O I/O	ST — ST	Digital I/O. EUSART2 asynchronous transmit. EUSART2 synchronous clock (see related RX2/DT2).				
RG2/RX2/DT2 RG2 RX2 DT2	5	I/O I I/O	ST ST ST	Digital I/O. EUSART2 asynchronous receive. EUSART2 synchronous data (see related TX2/CK2).				
RG3/CCP4/P3D RG3 CCP4 P3D	6	I/O I/O O	ST ST	Digital I/O. Capture 4 input/Compare 4 output/PWM4 output. ECCP3 PWM output D.				
RG4/CCP5/P1D RG4 CCP5 P1D	8	I/O I/O O	ST ST	Digital I/O. Capture 5 input/Compare 5 output/PWM5 output. ECCP1 PWM output D.				
RG5				See RG5/MCLR/VPP pin.				
Vss	9, 25, 41, 56	Р	—	Ground reference for logic and I/O pins.				
Vdd	10, 26, 38, 57	Р		Positive supply for logic and I/O pins.				
AVss	20	Р	—	Ground reference for analog modules.				
AVDD	19	Р		Positive supply for analog modules.				
	Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output							

= Output

0

TABLE 1-2: PIC18F6628/6723 (64-PIN) PINOUT I/O DESCRIPTIONS (CONTINUED)

P = Power $I^2 C^{TM} = I^2 C/SMBus$ input buffer

Note 1: Default assignment for ECCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared.

L

= Input

Din Nome	Pin Number	Pin	Buffer	Description	
Pin Name	TQFP	Туре	Туре	Description	
RG5/MCLR/VPP	9			Master Clear (input) or programming voltage (input).	
RG5		I	ST	Digital input.	
MCLR		I	ST	Master Clear (Reset) input. This pin is an active-low Reset to the device.	
VPP		Р		Programming voltage input.	
OSC1/CLKI/RA7 OSC1	49	I	ST	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode, CMOS	
CLKI		I	CMOS	otherwise. External clock source input. Always associated with pin function OSC1. (See related OSC1/CLKI, OSC2/CLKO pins.)	
RA7		I/O	TTL	General purpose I/O pin.	
OSC2/CLKO/RA6 OSC2	50	о	_	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.	
CLKO		0	_	In RC mode, OSC2 pin outputs CLKO, which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.	
RA6		I/O	TTL	General purpose I/O pin.	
Legend: TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I = Input				CMOS = CMOS compatible input or output	

Note 1: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared (all operating modes except Microcontroller mode).

2: Default assignment for ECCP2 in all operating modes (CCP2MX is set).

3: Alternate assignment for ECCP2 when CCP2MX is cleared (Microcontroller mode only).

4: Default assignment for P1B/P1C/P3B/P3C (ECCPMX is set).

	Pin Number	Pin	Buffer			
Pin Name TQFP		Туре	Туре	Description		
				PORTA is a bidirectional I/O port.		
RA0/AN0	30					
RA0		I/O	TTL	Digital I/O.		
AN0		I	Analog	Analog input 0.		
RA1/AN1	29					
RA1		I/O	TTL	Digital I/O.		
AN1		I	Analog	Analog input 1.		
RA2/AN2/VREF-	28					
RA2		I/O	TTL	Digital I/O.		
AN2		1	Analog	Analog input 2.		
VREF-		I	Analog	A/D reference voltage (low) input.		
RA3/AN3/VREF+	27					
RA3		I/O	TTL	Digital I/O.		
AN3		I	Analog	Analog input 3.		
VREF+		I	Analog	A/D reference voltage (high) input.		
RA4/T0CKI	34					
RA4		I/O	ST	Digital I/O.		
TOCKI		I	ST	Timer0 external clock input.		
RA5/AN4/HLVDIN	33					
RA5		I/O	TTL	Digital I/O.		
AN4		I	Analog	Analog input 4.		
HLVDIN		I	Analog	High/Low-Voltage Detect input.		
RA6				See the OSC2/CLKO/RA6 pin.		
RA7				See the OSC1/CLKI/RA7 pin.		
Legend: TTL = TT	L compatible inpu	t	1	CMOS = CMOS compatible input or output		
	hmitt Trigger inpu		MOS level			
I = Inp				O = Output		
P = Po	wer			$I^2C^{TM}/SMB = I^2C/SMBus$ input buffer		

TABLE 1-3: PIC18F8628/8723 (80-PIN) PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared (all operating modes except Microcontroller mode).

2: Default assignment for ECCP2 in all operating modes (CCP2MX is set).

3: Alternate assignment for ECCP2 when CCP2MX is cleared (Microcontroller mode only).

4: Default assignment for P1B/P1C/P3B/P3C (ECCPMX is set).

Pin Name	Pin Number	Pin	Buffer	Description		
Pin Name	TQFP	Туре	Туре	Description		
				PORTC is a bidirectional I/O port.		
RC0/T10S0/T13CKI RC0 T10S0 T13CKI	36	I/O O I	ST — ST	Digital I/O. Timer1 oscillator output. Timer1/Timer3 external clock input.		
RC1/T1OSI/ECCP2/ P2A	35					
RC1 T1OSI ECCP2 ⁽²⁾		I/O I I/O	ST CMOS ST	Digital I/O. Timer1 oscillator input. Enhanced Capture 2 input/Compare 2 output/ PWM2 output.		
P2A ⁽²⁾		0	_	ECCP2 PWM output A.		
RC2/ECCP1/P1A RC2 ECCP1	43	I/O I/O	ST ST	Digital I/O. Enhanced Capture 1 input/Compare 1 output/ PWM1 output.		
P1A		0	—	ECCP1 PWM output A.		
RC3/SCK1/SCL1 RC3 SCK1 SCL1	44	I/O I/O I/O	ST ST ST	Digital I/O. Synchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I ² C™ mode.		
RC4/SDI1/SDA1 RC4 SDI1 SDA1	45	I/O I I/O	ST ST ST	Digital I/O. SPI data in. I ² C data I/O.		
RC5/SDO1 RC5 SDO1	46	I/O O	ST —	Digital I/O. SPI data out.		
RC6/TX1/CK1 RC6 TX1 CK1	37	I/O O I/O	ST — ST	Digital I/O. EUSART1 asynchronous transmit. EUSART1 synchronous clock (see related RX1/DT1).		
RC7/RX1/DT1 RC7 RX1 DT1	38	I/O I I/O	ST ST ST	Digital I/O. EUSART1 asynchronous receive. EUSART1 synchronous data (see related TX1/CK1).		
			MOS level	$\begin{array}{rcl} CMOS &= CMOS \text{ compatible input or output} \\ s & Analog &= Analog input \\ O &= Output \\ I^2C^TM/SMB = I^2C/SMBus input buffer \end{array}$		

TABLE 1-3: PIC18F8628/8723 (80-PIN) PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared (all operating modes except Microcontroller mode).

2: Default assignment for ECCP2 in all operating modes (CCP2MX is set).

3: Alternate assignment for ECCP2 when CCP2MX is cleared (Microcontroller mode only).

4: Default assignment for P1B/P1C/P3B/P3C (ECCPMX is set).

Pin Name	Pin Number	Pin	Buffer	Description		
Pin Name	TQFP	Туре	Туре	Description		
				PORTH is a bidirectional I/O port.		
RH0/A16 RH0 A16	79	I/O I/O	ST TTL	Digital I/O. External memory address/data 16.		
RH1/A17 RH1 A17	80	I/O I/O	ST TTL	Digital I/O. External memory address/data 17.		
RH2/A18 RH2 A18	1	I/O I/O	ST TTL	Digital I/O. External memory address/data 18.		
RH3/A19 RH3 A19	2	I/O I/O	ST TTL	Digital I/O. External memory address/data 19.		
RH4/AN12/P3C RH4 AN12 P3C ⁽⁵⁾	22	I/O I O	ST Analog —	Digital I/O. Analog input 12. ECCP3 PWM output C.		
RH5/AN13/P3B RH5 AN13 P3B ⁽⁵⁾	21	I/O I O	ST Analog —	Digital I/O. Analog input 13. ECCP3 PWM output B.		
RH6/AN14/P1C RH6 AN14 P1C ⁽⁵⁾	20	I/O I O	ST Analog —	Digital I/O. Analog input 14. ECCP1 PWM output C.		
RH7/AN15/P1B RH7 AN15 P1B ⁽⁵⁾	19	I/O I O	ST Analog —	Digital I/O. Analog input 15. ECCP1 PWM output B.		

TABLE 1-3: PIC18F8628/8723 (80-PIN) PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared (all operating modes except Microcontroller mode).

2: Default assignment for ECCP2 in all operating modes (CCP2MX is set).

3: Alternate assignment for ECCP2 when CCP2MX is cleared (Microcontroller mode only).

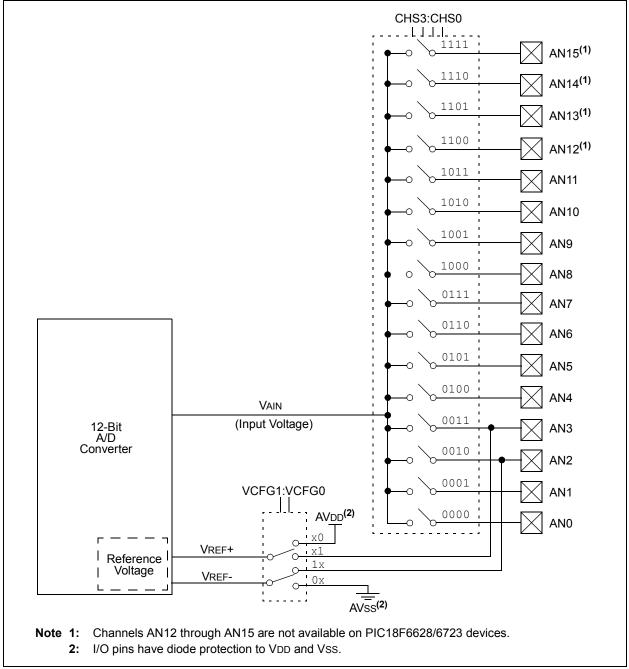
4: Default assignment for P1B/P1C/P3B/P3C (ECCPMX is set).

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ADFM		ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0		
bit 7		nouiz	nouri	nouro	18002	712001	bit 0		
Legend:									
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 7		esult Format S	Select bit						
	1 = Right justi 0 = Left justifi								
bit 6	Unimplemen	ted: Read as '	0'						
bit 5-3	ACQT2:ACQT0: A/D Acquisition Time Select bits								
	111 = 20 T AD								
	110 = 16 T AD								
	101 = 12 TAD								
	100 = 8 TAD								
	011 = 6 TAD								
	010 = 4 TAD 001 = 2 TAD								
	001 = 2 TAD 000 = 0 TAD ⁽¹⁾)							
bit 2-0		S0: A/D Conve	vision Clock S	alact hits					
DIL 2-0	-								
	111 = FRc (clock derived from A/D RC oscillator) ⁽¹⁾ 110 = Fosc/64								
	110 = FOSC/64 101 = FOSC/16								
	101 = Fosc/4								
		ock derived fro	om A/D RC os	cillator) ⁽¹⁾					
	010 = Fosc/3			· · · · /					
	001 = Fosc/8	1							
	000 = Fosc/2								

REGISTER 2-3: ADCON2: A/D CONTROL REGISTER 2

Note 1: If the A/D FRC clock source is selected, a delay of one TcY (instruction cycle) is added before the A/D clock starts. This allows the SLEEP instruction to be executed before starting a conversion.

The analog reference voltage is software selectable to either the device's positive and negative supply voltage (VDD and Vss), or the voltage level on the RA3/AN3/ VREF+ and RA2/AN2/VREF-/CVREF pins.


The A/D Converter has a unique feature of being able to operate while the device is in Sleep mode. To operate in Sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

The output of the sample and hold is the input into the converter, which generates the result via successive approximation.

A device Reset forces all registers to their Reset state. This forces the A/D module to be turned off and any conversion in progress is aborted.

Each port pin associated with the A/D Converter can be configured as an analog input or a digital I/O. The ADRESH and ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRESH:ADRESL register pair, the GO/DONE bit (ADCON0<1>) is cleared and the A/D Interrupt Flag bit, ADIF, is set. The block diagram of the A/D module is shown in Figure 2-1.

2.1 A/D Acquisition Requirements

For the A/D Converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 2-3. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor, CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 2.5 k Ω . After the analog input channel is selected (changed), the channel must be sampled for at least the minimum acquisition time before starting a conversion.

Note:	When	the	conversion	is	started,	the	
	holding capacitor is disconnected from t						
	input p	in.					

To calculate the minimum acquisition time, Equation 2-1 may be used. This equation assumes that 1/2 LSb error is used (4096 steps for the 12-bit A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

Example 2-3 shows the calculation of the minimum required acquisition time, TACQ. This calculation is based on the following application system assumptions:

CHOLD	=	25 pF
Rs	=	2.5 kΩ
Conversion Error	\leq	1/2 LSb
Vdd	=	$3V \rightarrow Rss = 4 \ k\Omega$
Temperature	=	85°C (system max.)

EQUATION 2-1: ACQUISITION TIME

TACQ	=	Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient
	=	TAMP + TC + TCOFF

EQUATION 2-2: A/D MINIMUM CHARGING TIME

VHOLD	=	$(\text{VREF} - (\text{VREF}/4096)) \bullet (1 - e^{(-\text{TC/CHOLD}(\text{RIC} + \text{RSS} + \text{RS}))})$
or		
TC	=	- (Chold)(Ric + Rss + Rs) ln(1/4096)

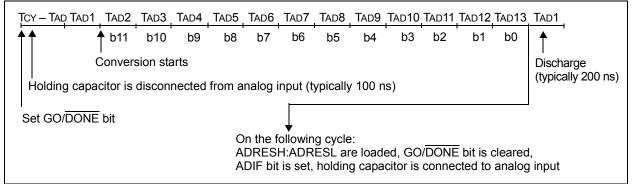
EQUATION 2-3: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME

TACQ	=	TAMP + TC + TCOFF
TAMP	=	0.2 μs
TCOFF	=	(Temp – 25°C)(0.02 μs/°C) (85°C – 25°C)(0.02 μs/°C) 1.2 μs
Tempera	ature c	oefficient is only required for temperatures > 25°C. Below 25°C, TCOFF = 0 μ s.
ТС	=	-(CHOLD)(RIC + RSS + RS) $\ln(1/4096) \mu s$ -(25 pF) (1 k Ω + 4 k Ω + 2.5 k Ω) $\ln(0.0002441) \mu s$ 1.56 μs
TACQ	=	0.2 μs + 1.56 μs + 1.2 μs 2.96 μs

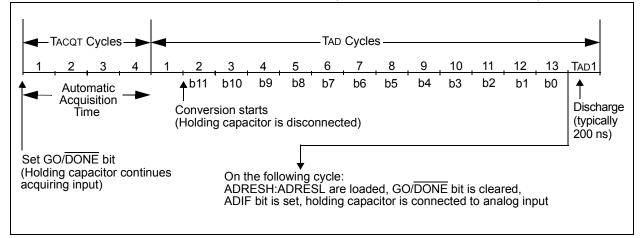
2.6 A/D Conversions

Figure 2-4 shows the operation of the A/D Converter after the GO/DONE bit has been set and the ACQT2:ACQT0 bits are cleared. A conversion is started after the following instruction to allow entry into Sleep mode before the conversion begins.

Figure 2-5 shows the operation of the A/D Converter after the GO/DONE bit has been set, the ACQT2:ACQT0 bits are set to '010' and a 4 TAD acquisition time has been selected before the conversion starts.


Clearing the GO/DONE bit during a conversion will abort the current conversion. The A/D Result register pair will NOT be updated with the partially completed A/D conversion sample. This means the ADRESH:ADRESL registers will continue to contain the value of the last completed conversion (or the last value written to the ADRESH:ADRESL registers). After the A/D conversion is completed or aborted, a 2 TcY wait is required before the next acquisition can be started. After this wait, acquisition on the selected channel is automatically started.

Note:	The GO/DONE bit should NOT be set in								
	the same instruction that turns on the A/D.								
	Code should wait at least 2 µs after								
	enabling the A/D before beginning an								
	acquisition and conversion cycle.								


2.7 Discharge

The discharge phase is used to initialize the value of the holding capacitor. The array is discharged before every sample. This feature helps to optimize the unity gain amplifier, as the circuit always needs to charge the capacitor array, rather than charge/discharge based on previous measure values.

FIGURE 2-4: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 000, TACQ = 0)

FIGURE 2-5: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 010, TACQ = 4 TAD)

APPENDIX A: REVISION HISTORY

Revision A (August 2007)

Original data sheet for the PIC18F8723 family of devices.

Revision B (October 2009)

Updated to remove Preliminary status.

APPENDIX B: DEVICE DIFFERENCES

The differences between the devices listed in this data sheet are shown in Table B-1.

Features	PIC18F6628	PIC18F6723	PIC18F8628	PIC18F8723	
Program Memory (Bytes)	96K	128K	96K	128K	
Program Memory (Instructions)	49152	65536	49152	65536	
Interrupt Sources	28	28	29	29	
I/O Ports	Ports A, B, C, D, E, F, G	Ports A, B, C, D, E, F, G	Ports A, B, C, D, E, F, G, H, J	Ports A, B, C, D, E, F, G, H, J	
Capture/Compare/PWM Modules	2	2	2	2	
Enhanced Capture/Compare/PWM Modules	3	3	3	3	
Parallel Communications (PSP)	Yes	Yes	Yes	Yes	
External Memory Bus	No	No	Yes	Yes	
12-Bit Analog-to-Digital Module	12 Input Channels	12 Input Channels	16 Input Channels	16 Input Channels	
Packages	64-Pin TQFP	64-Pin TQFP	80-Pin TQFP	80-Pin TQFP	

TABLE B-1: PIC18F8723 FAMILY DEVICE DIFFERENCES

NOTES: