

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	EBI/EMI, I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	70
Program Memory Size	128KB (64K × 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f8723t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

64/80-Pin, 1-Mbit, Enhanced Flash Microcontrollers with 12-Bit A/D and nanoWatt Technology

Peripheral Highlights:

- 12-Bit, Up to 16-Channel Analog-to-Digital Converter module (A/D):
 - Auto-acquisition capability
 - Conversion available during Sleep
- Two Master Synchronous Serial Port (MSSP) modules supporting 2/3/4-Wire SPI (all four modes) and I²C[™] Master and Slave modes
- · Two Capture/Compare/PWM (CCP) modules
- Three Enhanced Capture/Compare/PWM (ECCP) modules:
 - One, two or four PWM outputs
 - Selectable polarity
 - Programmable dead time
 - Auto-shutdown and auto-restart
- Two Enhanced Addressable USART modules:
 - Supports RS-485, RS-232 and LIN 1.2
- Auto-wake-up on Start bit
- Auto-Baud Detect
- Dual Analog Comparators with Input Multiplexing
- High-Current Sink/Source 25 mA/25 mA
- Four Programmable External Interrupts
- Four Input Change Interrupts

External Memory Interface:

- Address Capability of Up to 2 Mbytes
- 8-Bit or 16-Bit Interface
- 8, 12, 16 and 20-Bit Address modes

Power-Managed Modes:

- · Run: CPU on, Peripherals on
- Idle: CPU off, Peripherals on
- · Sleep: CPU off, Peripherals off
- Idle mode Currents Down to 15 μA Typical
- Sleep Current Down to 0.2 μA Typical
- Timer1 Oscillator: 1.8 μA, 32 kHz, 2V
- Watchdog Timer: 2.1 μA

Special Microcontroller Features:

- C Compiler Optimized Architecture:
 - Optional extended instruction set designed to optimize re-entrant code
- 100,000 Erase/Write Cycle Enhanced Flash Program Memory Typical
- 1,000,000 Erase/Write Cycle Data EEPROM Memory Typical
- Flash/Data EEPROM Retention: 100 Years Typical
- Self-Programmable under Software Control
- Priority Levels for Interrupts
- 8 x 8 Single-Cycle Hardware Multiplier
- Extended Watchdog Timer (WDT):
 - Programmable period from 4 ms to 131s
- Single-Supply In-Circuit Serial Programming[™] (ICSP[™]) via Two Pins
- · In-Circuit Debug (ICD) via Two Pins
- Wide Operating Voltage Range: 2.0V to 5.5V
- Fail-Safe Clock Monitor
- Two-Speed Oscillator Start-up
- nanoWatt Technology

Note:	This	docum	ent	is	supple	emented	d by	the
	"PIC	18F872	2	Fa	mily	Data	Sh	eet"
	(DS3	9646).	See	Э	Section	on 1.0	"Dev	/ice
	Over	view".						

	Prog	ram Memory	Data	Memory				CCB		MSSP		F	tors	a t	Ē
Device	Flash (bytes)	# Single-Word Instructions	SRAM (bytes)	EEPROM (bytes)	I/O	12-Bit A/D (ch)	ECCP (PWM)		SPI	Master I ² C™	EUSAR	Comparat	Timers 8/16-Bi	Externa Bus	
PIC18F6628	96K	49152	3936	1024	54	12	2/3	2	Y	Y	2	2	2/3	Ν	
PIC18F6723	128K	65536	3936	1024	54	12	2/3	2	Υ	Y	2	2	2/3	Ν	
PIC18F8628	96K	49152	3936	1024	70	16	2/3	2	Y	Y	2	2	2/3	Y	
PIC18F8723	128K	65536	3936	1024	70	16	2/3	2	Y	Y	2	2	2/3	Y	

PIC18F8723

Pin Diagrams

Pin Diagrams (Continued)

1.0 DEVICE OVERVIEW

This document contains device-specific information for the following devices:

- PIC18F6628 PIC18LF6628
- PIC18F6723 PIC18LF6723
- PIC18F8628 PIC18LF8628
- PIC18F8723 PIC18LF8723
- **Note:** This data sheet documents only the devices' features and specifications that are in addition to the features and specifications of the PIC18F8722 family devices. For information on the features and specifications shared by the PIC18F8723 family and PIC18F8722 family devices, see the *"PIC18F8722 Family Data Sheet"* (DS39646).

The PIC18F8723 family of devices offers the advantages of all PIC18 microcontrollers – namely, high computational performance at an economical price – with the addition of high-endurance, Enhanced Flash program memory. In addition to these features, the PIC18F8723 introduces design enhancements that make these microcontrollers a logical choice for many high-performance, power-sensitive applications.

1.1 Special Features

 12-Bit A/D Converter: The PIC18F8723 family implements a 12-bit A/D Converter. A/D Converters in both families incorporate programmable acquisition time. This allows for a channel to be selected and a conversion to be initiated, without waiting for a sampling period and thus, reducing code overhead.

1.2 Details on Individual Family Members

Devices in the PIC18F8723 family are available in 64-pin and 80-pin packages. Block diagrams for the two groups are shown in Figure 1-1 and Figure 1-2.

The devices are differentiated from each other in the following ways:

- Flash program memory (96 Kbytes for PIC18FX628 devices and 128 Kbytes for PIC18FX723).
- A/D channels (12 for PIC18F6628/6723 devices and 16 for PIC18F8628/8723 devices).
- I/O ports (seven bidirectional ports on PIC18F6628/6723 devices and nine bidirectional ports on PIC18F8628/8723 devices).
- External Memory Bus, configurable for 8 and 16-bit operation

All other features for devices in this family are identical. These are summarized in Table 1-1.

The pinouts for all devices are listed in Table 1-2 and Table 1-3.

Like all Microchip PIC18 devices, members of the PIC18F8723 family are available as both standard and low-voltage devices. Standard devices with Enhanced Flash memory, designated with an "F" in the part number (such as PIC18F6628), accommodate an operating VDD range of 4.2V to 5.5V. Low-voltage parts, designated by "LF" (such as PIC18LF6628), function over an extended VDD range of 2.0V to 5.5V.

	Pin Number	Pin	Buffer	<i>i</i>
Pin Name	TQFP	Туре	Туре	Description
				PORTC is a bidirectional I/O port.
RC0/T1OSO/T13CKI RC0 T1OSO	30	I/O O	ST —	Digital I/O. Timer1 oscillator output.
		I	51	Timer // Timer's external clock input.
P2A	29	1/0	OT	
T1OSI		1/0 	CMOS	Timer1 oscillator input.
ECCP2(')		I/O	ST	Enhanced Capture 2 input/Compare 2 output/ PWM2 output.
P2A ⁽¹⁾		0	—	ECCP2 PWM output A.
RC2/ECCP1/P1A RC2 ECCP1	33	I/O I/O	ST ST	Digital I/O. Enhanced Capture 1 input/Compare 1 output/ PW/M1 output
P1A		0	_	ECCP1 PWM output A.
RC3/SCK1/SCL1 RC3 SCK1 SCL1	34	I/O I/O I/O	ST ST ST	Digital I/O. Synchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I ² C™ mode.
RC4/SDI1/SDA1 RC4 SDI1 SDA1	35	I/O I I/O	ST ST ST	Digital I/O. SPI data in. I ² C data I/O.
RC5/SDO1 RC5 SDO1	36	I/O O	ST —	Digital I/O. SPI data out.
RC6/TX1/CK1 RC6 TX1 CK1	31	I/O O I/O	ST — ST	Digital I/O. EUSART1 asynchronous transmit. EUSART1 synchronous clock (see related RX1/DT1).
RC7/RX1/DT1 RC7 RX1 DT1	32	I/O I I/O	ST ST ST	Digital I/O. EUSART1 asynchronous receive. EUSART1 synchronous data (see related TX1/CK1).
Legend: TTL = TTL ST = Schr	compatible inpu nitt Trigger inpu	ut it with Cl	MOS level	CMOS = CMOS compatible input or output s Analog = Analog input O = Output
P = Pow	er			I ² C™ = I ² C/SMBus input buffer

TABLE 1-2: PIC18F6628/6723 (64-PIN) PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for ECCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared.

Din Nama	Pin Number	Pin	Buffer	Deceritien			
Pin Name	TQFP	Туре	Туре	Description			
				PORTE is a bidirectional I/O port.			
RE0/RD/P2D RE0 RD P2D	2	I/O I O	ST TTL	Digital I/O. Read control for Parallel Slave Port. ECCP2 PWM output D.			
RE1/WR/P2C RE1 WR P2C	1	I/O I O	ST TTL —	Digital I/O. Write control for Parallel Slave Port. ECCP2 PWM output C.			
RE2/CS/P2B RE2 CS P2B	64	I/O I O	ST TTL —	Digital I/O. Chip select control for Parallel Slave Port. ECCP2 PWM output B.			
RE3/P3C RE3 P3C	63	I/O O	ST —	Digital I/O. ECCP3 PWM output C.			
RE4/P3B RE4 P3B	62	I/O O	ST —	Digital I/O. ECCP3 PWM output B.			
RE5/P1C RE5 P1C	61	I/O O	ST —	Digital I/O. ECCP1 PWM output C.			
RE6/P1B RE6 P1B	60	I/O O	ST —	Digital I/O. ECCP1 PWM output B.			
RE7/ECCP2/P2A RE7 ECCP2 ⁽²⁾	59	I/O I/O	ST ST	Digital I/O. Enhanced Capture 2 input/Compare 2 output/ PWM2 output.			
P2A ⁽²⁾		0	—	ECCP2 PWM output A.			
Legend: TTL = TTL ST = Schr I = Inpu P = Pow	compatible inpu nitt Trigger inpu t er	it it with Cl	MOS level	$\begin{array}{rcl} CMOS &= CMOS \text{ compatible input or output} \\ s & Analog &= Analog input \\ O &= Output \\ I^2C^{TM} &= I^2C/SMBus input buffer \end{array}$			

TABLE 1-2: PIC18F6628/6723 (64-PIN) PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for ECCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared.

Din Nome	Pin Number	Pin	Buffer	Description
	TQFP	Туре	Туре	Description
				PORTF is a bidirectional I/O port.
RF0/AN5 RF0 AN5	18	I/O I	ST Analog	Digital I/O. Analog input 5.
RF1/AN6/C2OUT RF1 AN6 C2OUT	17	I/O I O	ST Analog —	Digital I/O. Analog input 6. Comparator 2 output.
RF2/AN7/C1OUT RF2 AN7 C1OUT	16	I/O I O	ST Analog —	Digital I/O. Analog input 7. Comparator 1 output.
RF3/AN8 RF3 AN8	15	I/O I	ST Analog	Digital I/O. Analog input 8.
RF4/AN9 RF4 AN9	14	I/O I	ST Analog	Digital I/O. Analog input 9.
RF5/AN10/CVREF RF5 AN10 CVREF	13	I/O I O	ST Analog Analog	Digital I/O. Analog input 10. Comparator reference voltage output.
RF6/AN11 RF6 AN11	12	I/O I	ST Analog	Digital I/O. Analog input 11.
RF7/SS1 <u>RF7</u> SS1	11	I/O I	ST TTL	Digital I/O. SPI slave select input.
Legend: TTL = TTL ST = Schr I = Inpu P = Pow	compatible inpu mitt Trigger inpu t er	ut it with Cl	MOS level	CMOS = CMOS compatible input or output s Analog = Analog input O = Output I ² C TM = I ² C/SMBus input buffer

TABLE 1-2:	PIC18F6628/6723 (64-PIN) PINOUT I/O DESCR	

Note 1: Default assignment for ECCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared.

Din Nome	Pin Number	Pin	Buffer	Description
	TQFP	Туре	Туре	Description
RG5/MCLR/Vpp	9			Master Clear (input) or programming voltage (input).
RG5		I	ST	Digital input.
MCLR		I	ST	Master Clear (Reset) input. This pin is an active-low
Vpp		Р		Programming voltage input.
OSC1/CLKI/RA7	49			Oscillator crystal or external clock input.
OSC1		I	ST	Oscillator crystal input or external clock source input.
				ST buffer when configured in RC mode, CMOS
				otherwise.
CLKI		I	CMOS	External clock source input. Always associated with
				pin function OSC1. (See related OSC1/CLKI,
D 4 7				OSC2/CLKO pins.)
RA/		1/0	IIL	General purpose I/O pin.
OSC2/CLKO/RA6	50			Oscillator crystal or clock output.
OSC2		0	—	Oscillator crystal output. Connects to crystal or
0.140				resonator in Crystal Oscillator mode.
CLKO		0	—	In RC mode, OSC2 pin outputs CLKO, which has 1/4 the
				frequency of OSC1 and denotes the
DAG		1/0	тті	Instruction cycle rate.
RAO		1/0	IIL	General purpose 1/O pin.
Legend: TTL = TTL o	compatible inpu	t		CMOS = CMOS compatible input or output
SI = Schr	ntt Trigger inpu	t with CI	VIOS leve	is Analog = Analog input
I = Input				O = Output
P = Powe	er			I ⁺ C [™] /SMB = I ⁺ C/SMBus input buffer

TABLE 1-3:	PIC18F8628/8723 (80-PIN)	PINOUT I/O	DESCRIPTIONS
_				

Note 1: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared (all operating modes except Microcontroller mode).

2: Default assignment for ECCP2 in all operating modes (CCP2MX is set).

3: Alternate assignment for ECCP2 when CCP2MX is cleared (Microcontroller mode only).

4: Default assignment for P1B/P1C/P3B/P3C (ECCPMX is set).

5: Alternate assignment for P1B/P1C/P3B/P3C (ECCPMX is clear).

Dis Norre	Pin Number	Pin	Buffer	Description
Pin Name	TQFP	Туре	Туре	Description
				PORTC is a bidirectional I/O port.
RC0/T1OSO/T13CKI	36			
RC0		1/0	ST	Digital I/O.
T13CKI		I	ST	Timer1/Timer3 external clock input.
RC1/T1OSI/ECCP2/ P2A	35			
RC1		I/O	ST	Digital I/O.
T1OSI		I	CMOS	Timer1 oscillator input.
ECCP2 ⁽²⁾		1/0	SI	Enhanced Capture 2 input/Compare 2 output/ PWM2 output.
P2A ⁽²⁾		0	—	ECCP2 PWM output A.
RC2/ECCP1/P1A	43			
RC2		I/O	ST	Digital I/O.
ECCPT		1/0	51	PWM1 output
P1A		0	—	ECCP1 PWM output A.
RC3/SCK1/SCL1	44			
RC3		I/O	ST	Digital I/O.
SCK1		1/0	ST	Synchronous serial clock input/output for SPI mode.
	45	1/0	51	Synchronous serial clock inpurouput for 1 C mode.
RC4/SDI1/SDA1	45	1/0	ST	
SDI1		"C	ST	SPI data in.
SDA1		I/O	ST	I ² C data I/O.
RC5/SDO1	46			
RC5		I/O	ST	Digital I/O.
SDOT		0	—	SPI data out.
RC6/TX1/CK1	37	1/0	от	Disting 1/0
		0	51	Digital I/O. EUSART1 asynchronous transmit
CK1		1/0	ST	EUSART1 synchronous clock (see related RX1/DT1).
RC7/RX1/DT1	38			
RC7		I/O	ST	Digital I/O.
RX1			ST	EUSART1 asynchronous receive.
DI1		1/0	SI	EUSAR11 synchronous data (see related 1X1/CK1).
Legend: $TTL = TTL$	compatible inpu	lt t with C		CMOS = CMOS compatible input or output
= lnput	internigger inpu			O = Output
P = Powe	er			I ² C™/SMB = I ² C/SMBus input buffer

TABLE 1-3: PIC18F8628/8723 (80-PIN) PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared (all operating modes except Microcontroller mode).

2: Default assignment for ECCP2 in all operating modes (CCP2MX is set).

3: Alternate assignment for ECCP2 when CCP2MX is cleared (Microcontroller mode only).

4: Default assignment for P1B/P1C/P3B/P3C (ECCPMX is set).

5: Alternate assignment for P1B/P1C/P3B/P3C (ECCPMX is clear).

Die Norre	Pin Number	Pin	Buffer	Description
Pin Name	TQFP	Туре	Туре	Description
				PORTF is a bidirectional I/O port.
RF0/AN5 RF0 AN5	24	I/O I	ST Analog	Digital I/O. Analog input 5.
RF1/AN6/C2OUT RF1 AN6 C2OUT	23	I/O I O	ST Analog —	Digital I/O. Analog input 6. Comparator 2 output.
RF2/AN7/C1OUT RF2 AN7 C1OUT	18	I/O I O	ST Analog —	Digital I/O. Analog input 7. Comparator 1 output.
RF3/AN8 RF3 AN8	17	I/O I	ST Analog	Digital I/O. Analog input 8.
RF4/AN9 RF4 AN9	16	I/O I	ST Analog	Digital I/O. Analog input 9.
RF5/AN10/CVREF RF5 AN10 CVREF	15	I/O I O	ST Analog Analog	Digital I/O. Analog input 10. Comparator reference voltage output.
RF6/AN11 RF6 AN11	14	I/O I	ST Analog	Digital I/O. Analog input 11.
RF7/ <u>SS1</u> <u>RF7</u> SS1	13	I/O I	ST TTL	Digital I/O. SPI slave select input.
Legend: TTL = TTL ST = Schn	compatible inpu nitt Trigger inpu	t t with C	MOS leve	CMOS = CMOS compatible input or output ls Analog = Analog input O = Output

TABLE 1-3: PIC18F8628/8723 (80-PIN) PINOUT I/O DESCRIPTIONS (CONTINUED)

Ρ = Power

 $I^2C^{\text{TM}}/\text{SMB} = I^2C/\text{SMBus input buffer}$

Note 1: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared (all operating modes except Microcontroller mode).

2: Default assignment for ECCP2 in all operating modes (CCP2MX is set).

3: Alternate assignment for ECCP2 when CCP2MX is cleared (Microcontroller mode only).

4: Default assignment for P1B/P1C/P3B/P3C (ECCPMX is set).

5: Alternate assignment for P1B/P1C/P3B/P3C (ECCPMX is clear).

REGISTER 2-2: ADCON1: A/D CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'

bit 5-4 VCFG1:VCFG0: Voltage Reference Configuration bits

	A/D VREF+	A/D VREF-
00	AVDD	AVss
01	External VREF+	AVss
10	AVDD	External VREF-
11	External VREF+	External VREF-

bit 3-0

PCFG3:PCFG0: A/D Port Configuration Control bits:

PCFG<3:0>	AN15 ⁽¹⁾	AN14 ⁽¹⁾	AN13 ⁽¹⁾	AN12 ⁽¹⁾	AN11	AN10	AN9	AN8	AN7	AN6	AN5	AN4	AN3	AN2	AN1	ANO
0000	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0001	D	D	А	А	Α	А	А	А	А	Α	А	А	А	А	А	Α
0010	D	D	D	А	Α	А	А	А	А	Α	А	А	А	А	А	Α
0011	D	D	D	D	Α	А	Α	А	А	Α	А	А	А	А	А	Α
0100	D	D	D	D	D	А	А	А	Α	Α	А	А	Α	А	А	А
0101	D	D	D	D	D	D	Α	А	А	Α	А	А	Α	А	А	А
0110	D	D	D	D	D	D	D	А	Α	Α	А	А	Α	А	А	Α
0111	D	D	D	D	D	D	D	D	Α	Α	А	А	Α	А	А	Α
1000	D	D	D	D	D	D	D	D	D	Α	А	А	Α	А	А	Α
1001	D	D	D	D	D	D	D	D	D	D	А	А	Α	А	А	Α
1010	D	D	D	D	D	D	D	D	D	D	D	А	Α	А	А	Α
1011	D	D	D	D	D	D	D	D	D	D	D	D	Α	А	А	Α
1100	D	D	D	D	D	D	D	D	D	D	D	D	D	А	А	Α
1101	D	D	D	D	D	D	D	D	D	D	D	D	D	D	А	А
1110	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	Α
1111	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D

A = Analog input

D = Digital I/O

Note 1: AN15 through AN12 are available only on PIC18F8628/8723 devices.

The analog reference voltage is software selectable to either the device's positive and negative supply voltage (VDD and Vss), or the voltage level on the RA3/AN3/ VREF+ and RA2/AN2/VREF-/CVREF pins.

The A/D Converter has a unique feature of being able to operate while the device is in Sleep mode. To operate in Sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

The output of the sample and hold is the input into the converter, which generates the result via successive approximation.

A device Reset forces all registers to their Reset state. This forces the A/D module to be turned off and any conversion in progress is aborted.

Each port pin associated with the A/D Converter can be configured as an analog input or a digital I/O. The ADRESH and ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRESH:ADRESL register pair, the GO/DONE bit (ADCON0<1>) is cleared and the A/D Interrupt Flag bit, ADIF, is set. The block diagram of the A/D module is shown in Figure 2-1.

2.1 A/D Acquisition Requirements

For the A/D Converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 2-3. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor, CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 2.5 k Ω . After the analog input channel is selected (changed), the channel must be sampled for at least the minimum acquisition time before starting a conversion.

Note:	When	the	conversion	is	started,	the
	holding	j capa	acitor is disco	nne	ected from	n the
	input p	in.				

To calculate the minimum acquisition time, Equation 2-1 may be used. This equation assumes that 1/2 LSb error is used (4096 steps for the 12-bit A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

Example 2-3 shows the calculation of the minimum required acquisition time, TACQ. This calculation is based on the following application system assumptions:

CHOLD	=	25 pF
Rs	=	2.5 kΩ
Conversion Error	\leq	1/2 LSb
Vdd	=	$3V \rightarrow Rss = 4 \ k\Omega$
Temperature	=	85°C (system max.)

EQUATION 2-1: ACQUISITION TIME

TACQ	=	Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient
	=	TAMP + TC + TCOFF

EQUATION 2-2: A/D MINIMUM CHARGING TIME

VHOLD	=	$(\text{VREF} - (\text{VREF}/4096)) \cdot (1 - e^{(-\text{TC/CHOLD}(\text{Ric} + \text{Rss} + \text{Rs}))})$
or		
TC	=	- (Chold)(Ric + Rss + Rs) ln(1/4096)

EQUATION 2-3: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME

TACQ	=	TAMP + TC + TCOFF				
TAMP	=	0.2 μs				
TCOFF	=	(Temp – 25°C)(0.02 μs/°C) (85°C – 25°C)(0.02 μs/°C) 1.2 μs				
Temperature coefficient is only required for temperatures > 25°C. Below 25°C, TCOFF = 0 μ s.						
ТС	=	-(CHOLD)(RIC + RSS + RS) $\ln(1/4096) \mu s$ -(25 pF) (1 k Ω + 4 k Ω + 2.5 k Ω) $\ln(0.0002441) \mu s$ 1.56 μs				
TACQ	=	0.2 μs + 1.56 μs + 1.2 μs 2.96 μs				

2.6 A/D Conversions

Figure 2-4 shows the operation of the A/D Converter after the GO/DONE bit has been set and the ACQT2:ACQT0 bits are cleared. A conversion is started after the following instruction to allow entry into Sleep mode before the conversion begins.

Figure 2-5 shows the operation of the A/D Converter after the GO/DONE bit has been set, the ACQT2:ACQT0 bits are set to '010' and a 4 TAD acquisition time has been selected before the conversion starts.

Clearing the GO/DONE bit during a conversion will abort the current conversion. The A/D Result register pair will NOT be updated with the partially completed A/D conversion sample. This means the ADRESH:ADRESL registers will continue to contain the value of the last completed conversion (or the last value written to the ADRESH:ADRESL registers). After the A/D conversion is completed or aborted, a 2 TcY wait is required before the next acquisition can be started. After this wait, acquisition on the selected channel is automatically started.

Note:	The GO/DONE bit should NOT be set in
	the same instruction that turns on the A/D.
	Code should wait at least 2 µs after
	enabling the A/D before beginning an
	acquisition and conversion cycle.

2.7 Discharge

The discharge phase is used to initialize the value of the holding capacitor. The array is discharged before every sample. This feature helps to optimize the unity gain amplifier, as the circuit always needs to charge the capacitor array, rather than charge/discharge based on previous measure values.

FIGURE 2-4: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 000, TACQ = 0)

FIGURE 2-5: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 010, TACQ = 4 TAD)

REGISTER 3-1: DEVID1: DEVICE ID REGISTER 1 FOR PIC18F8723 FAMILY DEVICES

R	R	R	R	R	R	R	R
DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0
bit 7							bit 0
Legend:							

R = Reau-only bit P -	= Programmable bit	U = Unimplemented bit, read as 'U
-n = Value when device is unprog	grammed	u = Unchanged from programmed state

bit 7-5 DEV2:DEV0: Device ID bits See Register 3-2 for a complete listing. bit 4-0 REV4:REV0: Revision ID bits

These bits are used to indicate the device revision.

REGISTER 3-2: DEVID2: DEVICE ID REGISTER 2 FOR PIC18F8723 FAMILY DEVICES

R	R	R	R	R	R	R	R
DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3
bit 7							bit 0

Legend:

- R = Read-only bit P = Programmable bit -n = Value when device is unprogrammed
- U = Unimplemented bit, read as '0'

u = Unchanged from programmed state

bit 7-0 DEV10:DEV3: Device ID bits

DEV10:DEV3 (DEVID2<7:0>)	DEV2:DEV0 (DEVID1<7:5>)	Device
0100 1001	110	PIC18F6628
0100 1010	000	PIC18F6723
0100 1001	111	PIC18F8628
0100 1010	001	PIC18F8723

4.0 ELECTRICAL CHARACTERISTICS

Note: Other than some basic data, this section documents only the PIC18F8723 family's specifications that differ from those of the PIC18F8722 family devices. For detailed information on the electrical specifications shared by the PIC18F8723 family and PIC18F8722 family devices, see the "PIC18F8722 Family Data Sheet" (DS39646).

Absolute Maximum Ratings^(†)

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD and MCLR)	-0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	-0.3V to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0V to +13.25V
Total power dissipation (Note 1)	
Maximum current out of Vss pin	
Maximum current into VDD pin	
Input clamp current, lik (VI < 0 or VI > VDD)	±20 mA
Output clamp current, Iok (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O pin	
Maximum current sunk by all ports	
Maximum current sourced by all ports	

- Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD $-\sum$ IOH} + \sum {(VDD - VOH) x IOH} + \sum (VOL x IOL)
 - 2: Voltage spikes below Vss at the RG5/MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the RG5/MCLR/ VPP pin, rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

APPENDIX A: REVISION HISTORY

Revision A (August 2007)

Original data sheet for the PIC18F8723 family of devices.

Revision B (October 2009)

Updated to remove Preliminary status.

APPENDIX B: DEVICE DIFFERENCES

The differences between the devices listed in this data sheet are shown in Table B-1.

Features	PIC18F6628	PIC18F6723	PIC18F8628	PIC18F8723		
Program Memory (Bytes)	96K	128K	96K	128K		
Program Memory (Instructions)	49152	65536	49152	65536		
Interrupt Sources	28	28	29	29		
I/O Ports	Ports A, B, C, D, E, F, G	Ports A, B, C, D, E, F, G	Ports A, B, C, D, E, F, G, H, J	Ports A, B, C, D, E, F, G, H, J		
Capture/Compare/PWM Modules	2	2	2	2		
Enhanced Capture/Compare/PWM Modules	3	3	3	3		
Parallel Communications (PSP)	Yes	Yes	Yes	Yes		
External Memory Bus	No	No	Yes	Yes		
12-Bit Analog-to-Digital Module	12 Input Channels	12 Input Channels	16 Input Channels	16 Input Channels		
Packages	64-Pin TQFP	64-Pin TQFP	80-Pin TQFP	80-Pin TQFP		

TABLE B-1: PIC18F8723 FAMILY DEVICE DIFFERENCES

APPENDIX C: CONVERSION CONSIDERATIONS

This appendix discusses the considerations for converting from previous versions of a device to the ones listed in this data sheet. Typically, these changes are due to the differences in the process technology used. An example of this type of conversion is from a PIC16C74A to a PIC16C74B.

Not Applicable

APPENDIX D: MIGRATION FROM BASELINE TO ENHANCED DEVICES

This section discusses how to migrate from a Baseline device (i.e., PIC16C5X) to an Enhanced MCU device (i.e., PIC18FXXX).

The following are the list of modifications over the PIC16C5X microcontroller family:

Not Currently Available

PIC18F8723 FAMILY PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART N	<u>io. x /xx xxx</u>	Ex	amples:
Devic	e Temperature Package Pattern Range	a)	PIC18LF6723-I/PT 301 = Industrial temp., TQFP package, Extended VDD limits, QTP pattern #301.
Device ^{(1) (2)}	PIC18F6628/6723, PIC18F8628/8723, VDD range 4.2V to 5.5V PIC18LF6628/6723, PIC18LF6628/6723 ⁽ VDD range 2.0V to 5.5V	b)	PIC18F6723-E/PT = Extended temp., TQFP package, standard VDD limits.
Temperature Range	$I = -40^{\circ}C \text{ to } +85^{\circ}C \text{ (Industrial)}$ $E = -40^{\circ}C \text{ to } +125^{\circ}C \text{ (Extended)}$		
Package	PT = TQFP (Thin Quad Flatpack)		
Pattern	QTP, SQTP, Code or Special Requirements (blank otherwise)	No	te 1: F = Standard Voltage Range LF = Wide Voltage Range 2: T = in tape and reel TQFP packages only.