

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	54
Program Memory Size	96KB (48K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf6628t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

64/80-Pin, 1-Mbit, Enhanced Flash Microcontrollers with 12-Bit A/D and nanoWatt Technology

Peripheral Highlights:

- 12-Bit, Up to 16-Channel Analog-to-Digital Converter module (A/D):
 - Auto-acquisition capability
 - Conversion available during Sleep
- Two Master Synchronous Serial Port (MSSP) modules supporting 2/3/4-Wire SPI (all four modes) and I²C[™] Master and Slave modes
- Two Capture/Compare/PWM (CCP) modules
- Three Enhanced Capture/Compare/PWM (ECCP) modules:
 - One, two or four PWM outputs
 - Selectable polarity
 - Programmable dead time
 - Auto-shutdown and auto-restart
- Two Enhanced Addressable USART modules:
 - Supports RS-485, RS-232 and LIN 1.2
- Auto-wake-up on Start bit
- Auto-Baud Detect
- Dual Analog Comparators with Input Multiplexing
- High-Current Sink/Source 25 mA/25 mA
- Four Programmable External Interrupts
- Four Input Change Interrupts

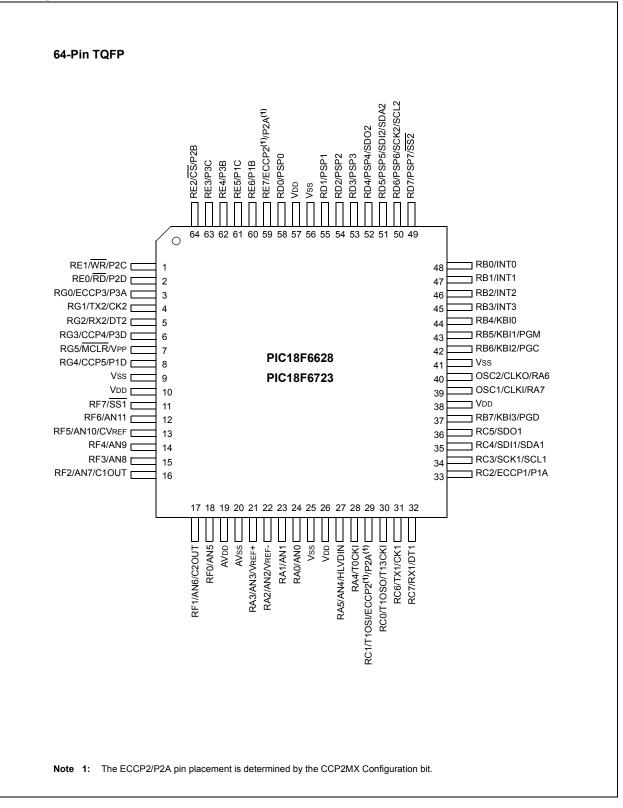
External Memory Interface:

- Address Capability of Up to 2 Mbytes
- 8-Bit or 16-Bit Interface
- 8, 12, 16 and 20-Bit Address modes

Power-Managed Modes:

- Run: CPU on, Peripherals on
- Idle: CPU off, Peripherals on
- · Sleep: CPU off, Peripherals off
- Idle mode Currents Down to 15 μA Typical
- Sleep Current Down to 0.2 μA Typical
- Timer1 Oscillator: 1.8 μA, 32 kHz, 2V
- Watchdog Timer: 2.1 μA

Special Microcontroller Features:


- C Compiler Optimized Architecture:
 - Optional extended instruction set designed to optimize re-entrant code
- 100,000 Erase/Write Cycle Enhanced Flash Program Memory Typical
- 1,000,000 Erase/Write Cycle Data EEPROM Memory Typical
- Flash/Data EEPROM Retention: 100 Years Typical
- Self-Programmable under Software Control
- Priority Levels for Interrupts
- 8 x 8 Single-Cycle Hardware Multiplier
- Extended Watchdog Timer (WDT):
 - Programmable period from 4 ms to 131s
- Single-Supply In-Circuit Serial Programming[™] (ICSP[™]) via Two Pins
- · In-Circuit Debug (ICD) via Two Pins
- Wide Operating Voltage Range: 2.0V to 5.5V
- Fail-Safe Clock Monitor
- Two-Speed Oscillator Start-up
- nanoWatt Technology

Note:	This document is supplemented by the	
	"PIC18F8722 Family Data Sheet"	
	(DS39646). See Section 1.0 "Device	
	Overview".	

	Prog	ram Memory	Data Memory				CCP/		MSS	P	н	tors	a ti	lal
Device	Flash (bytes)	# Single-Word Instructions	SRAM (bytes)	EEPROM (bytes)	I/O	12-Bit A/D (ch)	ECCP (PWM)		SPI	Master I ² C™	EUSAR	Comparators	Timers 8/16-Bit	Externa Bus
PIC18F6628	96K	49152	3936	1024	54	12	2/3	2	Y	Y	2	2	2/3	Ν
PIC18F6723	128K	65536	3936	1024	54	12	2/3	2	Υ	Y	2	2	2/3	Ν
PIC18F8628	96K	49152	3936	1024	70	16	2/3	2	Y	Y	2	2	2/3	Y
PIC18F8723	128K	65536	3936	1024	70	16	2/3	2	Y	Y	2	2	2/3	Y

PIC18F8723

Pin Diagrams

1.0 DEVICE OVERVIEW

This document contains device-specific information for the following devices:

- PIC18F6628 PIC18LF6628
- PIC18F6723 PIC18LF6723
- PIC18F8628 PIC18LF8628
- PIC18F8723 PIC18LF8723
- **Note:** This data sheet documents only the devices' features and specifications that are in addition to the features and specifications of the PIC18F8722 family devices. For information on the features and specifications shared by the PIC18F8723 family and PIC18F8722 family devices, see the *"PIC18F8722 Family Data Sheet"* (DS39646).

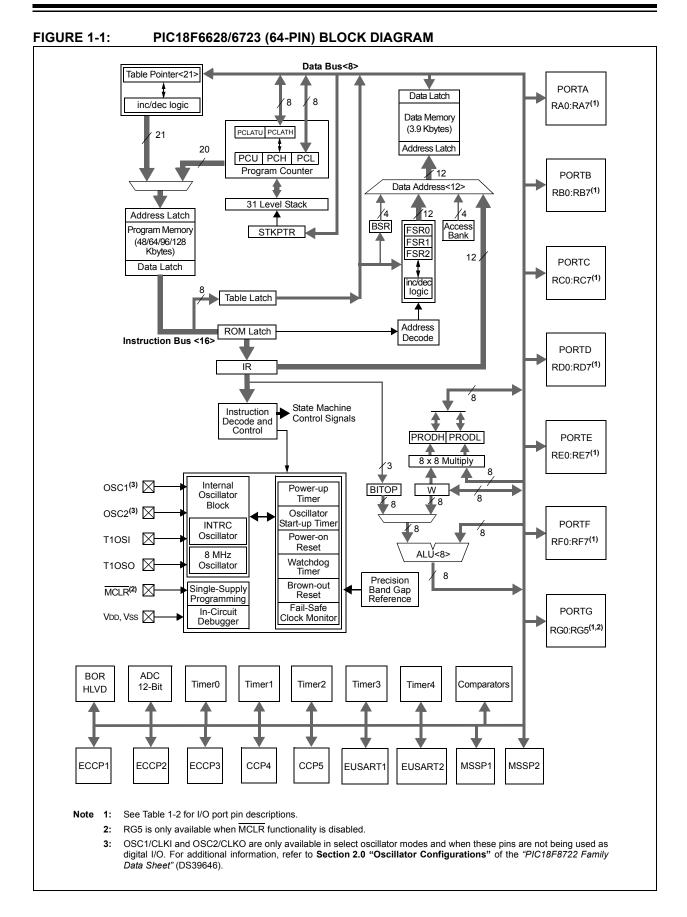
The PIC18F8723 family of devices offers the advantages of all PIC18 microcontrollers – namely, high computational performance at an economical price – with the addition of high-endurance, Enhanced Flash program memory. In addition to these features, the PIC18F8723 introduces design enhancements that make these microcontrollers a logical choice for many high-performance, power-sensitive applications.

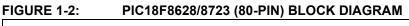
1.1 Special Features

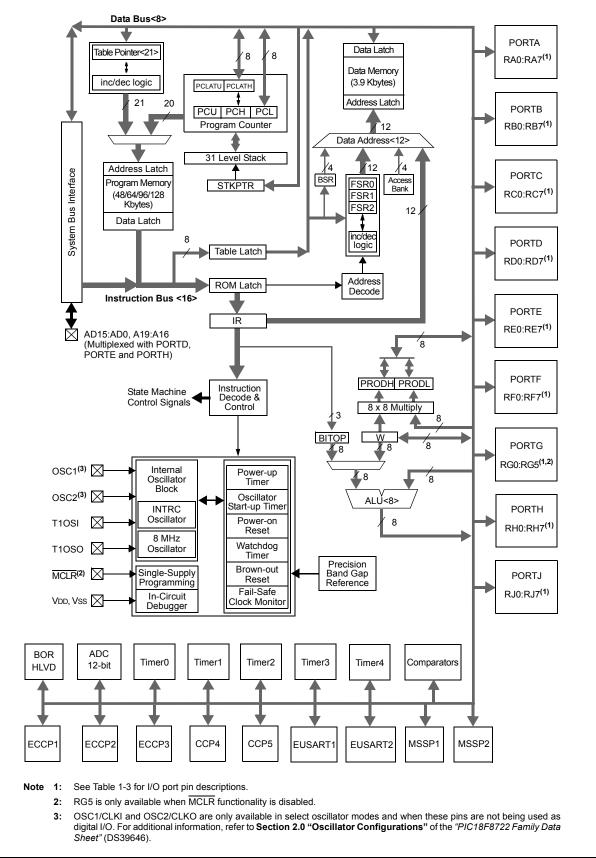
• **12-Bit A/D Converter:** The PIC18F8723 family implements a 12-bit A/D Converter. A/D Converters in both families incorporate programmable acquisition time. This allows for a channel to be selected and a conversion to be initiated, without waiting for a sampling period and thus, reducing code overhead.

1.2 Details on Individual Family Members

Devices in the PIC18F8723 family are available in 64-pin and 80-pin packages. Block diagrams for the two groups are shown in Figure 1-1 and Figure 1-2.


The devices are differentiated from each other in the following ways:


- Flash program memory (96 Kbytes for PIC18FX628 devices and 128 Kbytes for PIC18FX723).
- A/D channels (12 for PIC18F6628/6723 devices and 16 for PIC18F8628/8723 devices).
- I/O ports (seven bidirectional ports on PIC18F6628/6723 devices and nine bidirectional ports on PIC18F8628/8723 devices).
- External Memory Bus, configurable for 8 and 16-bit operation


All other features for devices in this family are identical. These are summarized in Table 1-1.

The pinouts for all devices are listed in Table 1-2 and Table 1-3.

Like all Microchip PIC18 devices, members of the PIC18F8723 family are available as both standard and low-voltage devices. Standard devices with Enhanced Flash memory, designated with an "F" in the part number (such as PIC18F6628), accommodate an operating VDD range of 4.2V to 5.5V. Low-voltage parts, designated by "LF" (such as PIC18LF6628), function over an extended VDD range of 2.0V to 5.5V.

	Pin Number	Ì	<i>,</i>	I I/O DESCRIPTIONS
Pin Name	Pin Number	Pin	Buffer	Description
	TQFP	Туре	Туре	•
RG5/MCLR/Vpp	7			Master Clear (input) or programming voltage (input).
RG5		I	ST	Digital input.
MCLR		I	ST	Master Clear (Reset) input. This pin is an active-low
. <i>.</i>		_		Reset to the device.
Vpp		Р		Programming voltage input.
DSC1/CLKI/RA7	39			Oscillator crystal or external clock input.
OSC1		I	ST	Oscillator crystal input or external clock source input.
				ST buffer when configured in RC mode, CMOS
CLKI			CMOS	otherwise.
ULKI		I	CIVIOS	External clock source input. Always associated with pin function OSC1. (See related OSC1/CLKI,
				OSC2/CLKO pins.)
RA7		I/O	TTL	General purpose I/O pin.
DSC2/CLKO/RA6	40			Oscillator crystal or clock output.
OSC2	10	0		Oscillator crystal output. Connects to crystal or
				resonator in Crystal Oscillator mode.
CLKO		0	_	In RC mode, OSC2 pin outputs CLKO, which has
				1/4 the frequency of OSC1 and denotes the
				instruction cycle rate.
RA6		I/O	TTL	General purpose I/O pin.
	compatible input			CMOS = CMOS compatible input or output
ST = Sch	mitt Trigger inpu	ut with Cl	MOS level	
l = Inpu				O = Output
P = Pow	er			$I^2C^{TM} = I^2C/SMB$ us input buffer

TABLE 1-2:	PIC18F6628/6723 (64-PIN) PINOUT I/O DESCRIPTION	1S
			•••

Note 1: Default assignment for ECCP2 when Configuration bit, CCP2MX, is set.2: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared.

Dia Nama	Pin Number	Pin	Buffer	Description		
Pin Name	TQFP	Туре	Туре			
				PORTA is a bidirectional I/O port.		
RA0/AN0	24					
RA0		I/O	TTL	Digital I/O.		
AN0		I	Analog	Analog input 0.		
RA1/AN1	23					
RA1		I/O	TTL	Digital I/O.		
AN1		I	Analog	Analog input 1.		
RA2/AN2/VREF-	22					
RA2		I/O	TTL	Digital I/O.		
AN2		I	Analog	Analog input 2.		
VREF-		I	Analog	A/D reference voltage (low) input.		
RA3/AN3/VREF+	21					
RA3		I/O	TTL	Digital I/O.		
AN3		I	Analog	Analog input 3.		
VREF+		I	Analog	A/D reference voltage (high) input.		
RA4/T0CKI	28					
RA4		I/O	ST	Digital I/O.		
TOCKI		I	ST	Timer0 external clock input.		
RA5/AN4/HLVDIN	27					
RA5		I/O	TTL	Digital I/O.		
AN4		Ι	Analog	Analog input 4.		
HLVDIN		I	Analog	High/Low-Voltage Detect input.		
RA6				See the OSC2/CLKO/RA6 pin.		
RA7				See the OSC1/CLKI/RA7 pin.		
	L compatible inpu		-	CMOS = CMOS compatible input or output		
	hmitt Trigger inpu	it with Cl	MOS level			
				O = Output		
P = Po	wer			$I^2C^{\text{TM}} = I^2C/SMB$ us input buffer		

TABLE 1-2: PIC18F6628/6723 (64-PIN) PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for ECCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared.

Din Nomo	Pin Number	Pin	Buffer	B ased the			
Pin Name	TQFP	Туре	Туре	Description			
				PORTC is a bidirectional I/O port.			
RC0/T1OSO/T13CKI RC0 T1OSO T13CKI	30	I/O O I	ST — ST	Digital I/O. Timer1 oscillator output. Timer1/Timer3 external clock input.			
RC1/T1OSI/ECCP2/ P2A	29						
RC1 T1OSI ECCP2 ⁽¹⁾		I/O I I/O	ST CMOS ST	Digital I/O. Timer1 oscillator input. Enhanced Capture 2 input/Compare 2 output/ PWM2 output.			
P2A ⁽¹⁾		0	_	ECCP2 PWM output A.			
RC2/ECCP1/P1A RC2 ECCP1	33	I/O I/O	ST ST	Digital I/O. Enhanced Capture 1 input/Compare 1 output/ PWM1 output.			
P1A		0	_	ECCP1 PWM output A.			
RC3/SCK1/SCL1 RC3 SCK1 SCL1	34	I/O I/O I/O	ST ST ST	Digital I/O. Synchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I ² C™ mode.			
RC4/SDI1/SDA1 RC4 SDI1 SDA1	35	I/O I I/O	ST ST ST	Digital I/O. SPI data in. I ² C data I/O.			
RC5/SDO1 RC5 SDO1	36	I/O O	ST —	Digital I/O. SPI data out.			
RC6/TX1/CK1 RC6 TX1 CK1	31	I/O O I/O	ST — ST	Digital I/O. EUSART1 asynchronous transmit. EUSART1 synchronous clock (see related RX1/DT1).			
RC7/RX1/DT1 RC7 RX1 DT1	32	I/O I I/O	ST ST ST	Digital I/O. EUSART1 asynchronous receive. EUSART1 synchronous data (see related TX1/CK1).			
D11I/OS1EUSART1 synchronous data (see related 1X1/CK1).Legend:TTL = TTL compatible inputCMOS= CMOS compatible input or outputST = Schmitt Trigger input with CMOS levelsAnalog= Analog inputI= InputO= OutputP= Power $I^2 C^{TM}$ = $I^2 C/SMBus$ input buffer							

TABLE 1-2: PIC18F6628/6723 (64-PIN) PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for ECCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared.

Pin Name	Pin Number	Pin	Buffer	Description			
	TQFP	Туре	Туре	Description			
				PORTE is a bidirectional I/O port.			
RE0/RD/P2D RE0 RD P2D	2	I/O I O	ST TTL	Digital I/O. Read control for Parallel Slave Port. ECCP2 PWM output D.			
RE1/WR/P2C RE1 WR P2C	1	I/O I O	ST TTL	Digital I/O. Write control for Parallel Slave Port. ECCP2 PWM output C.			
RE2/CS/P2B RE2 CS P2B	64	I/O I O	ST TTL	Digital I/O. Chip select control for Parallel Slave Port. ECCP2 PWM output B.			
RE3/P3C RE3 P3C	63	I/O O	ST —	Digital I/O. ECCP3 PWM output C.			
RE4/P3B RE4 P3B	62	I/O O	ST —	Digital I/O. ECCP3 PWM output B.			
RE5/P1C RE5 P1C	61	I/O O	ST —	Digital I/O. ECCP1 PWM output C.			
RE6/P1B RE6 P1B	60	I/O O	ST —	Digital I/O. ECCP1 PWM output B.			
RE7/ECCP2/P2A RE7 ECCP2 ⁽²⁾	59	I/O I/O	ST ST	Digital I/O. Enhanced Capture 2 input/Compare 2 output/ PWM2 output.			
P2A ⁽²⁾ O—ECCP2 PWM output A.Legend:TTL = TTL compatible inputCMOS= CMOS compatible input or outputST = Schmitt Trigger input with CMOS levelsAnalog= Analog inputI= InputO= OutputP= Power $I^2 C^{TM}$ = $I^2 C/SMBus$ input buffer							

TABLE 1-2: PIC18F6628/6723 (64-PIN) PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for ECCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared.

Din Nama	Pin Number	Pin	Pin Buffer	Description				
Pin Name	TQFP	Туре	Туре	Description				
				PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.				
RB0/INT0/FLT0 RB0 INT0 FLT0	58	I/O I I	TTL ST ST	Digital I/O. External interrupt 0. PWM Fault input for ECCPx.				
RB1/INT1 RB1 INT1	57	I/O I	TTL ST	Digital I/O. External interrupt 1.				
RB2/INT2 RB2 INT2	56	I/O I	TTL ST	Digital I/O. External interrupt 2.				
RB3/INT3/ECCP2/P2A RB3 INT3 ECCP2 ⁽¹⁾	55	I/O I O	TTL ST	Digital I/O. External interrupt 3. Enhanced Capture 2 input/Compare 2 output/ PWM2 output.				
P2A ⁽¹⁾		0	—	ECCP2 PWM output A.				
RB4/KBI0 RB4 KBI0	54	I/O I	TTL TTL	Digital I/O. Interrupt-on-change pin.				
RB5/KBI1/PGM RB5 KBI1 PGM	53	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. Low-Voltage ICSP™ Programming enable pin.				
RB6/KBI2/PGC RB6 KBI2 PGC	52	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP™ programming clock pin.				
RB7/KBI3/PGD RB7 KBI3 PGD	47	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming data pin.				
Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels Analog = Analog input I = Input O = Output								

TABLE 1-3: PIC18F8628/8723 (80-PIN) PINOUT I/O DESCRIPTIONS (CONTINUED)

P = Power
 Note 1: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared (all operating modes except Microcontroller mode).

- 2: Default assignment for ECCP2 in all operating modes (CCP2MX is set).
- 3: Alternate assignment for ECCP2 when CCP2MX is cleared (Microcontroller mode only).
- 4: Default assignment for P1B/P1C/P3B/P3C (ECCPMX is set).

Pin Name	Pin Number	Pin	Buffer	Description		
	TQFP	Туре	Туре	Description		
				PORTF is a bidirectional I/O port.		
RF0/AN5 RF0 AN5	24	I/O I	ST Analog	Digital I/O. Analog input 5.		
RF1/AN6/C2OUT RF1 AN6 C2OUT	23	I/O I O	ST Analog —	Digital I/O. Analog input 6. Comparator 2 output.		
RF2/AN7/C1OUT RF2 AN7 C1OUT	18	I/O I O	ST Analog —	Digital I/O. Analog input 7. Comparator 1 output.		
RF3/AN8 RF3 AN8	17	I/O I	ST Analog	Digital I/O. Analog input 8.		
RF4/AN9 RF4 AN9	16	I/O I	ST Analog	Digital I/O. Analog input 9.		
RF5/AN10/CVREF RF5 AN10 CVREF	15	I/O I O	ST Analog Analog	Digital I/O. Analog input 10. Comparator reference voltage output.		
RF6/AN11 RF6 AN11	14	I/O I	ST Analog	Digital I/O. Analog input 11.		
RF7/ <u>SS1</u> <u>RF7</u> SS1	13	I/O I	ST TTL	Digital I/O. SPI slave select input.		
Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels Analog = Analog input I = Input O = Output						

TABLE 1-3: PIC18F8628/8723 (80-PIN) PINOUT I/O DESCRIPTIONS (CONTINUED)

Ρ = Power

 $I^2C^{\text{TM}}/\text{SMB} = I^2C/\text{SMBus input buffer}$

Note 1: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared (all operating modes except Microcontroller mode).

2: Default assignment for ECCP2 in all operating modes (CCP2MX is set).

3: Alternate assignment for ECCP2 when CCP2MX is cleared (Microcontroller mode only).

4: Default assignment for P1B/P1C/P3B/P3C (ECCPMX is set).

Pin Name	Pin Number	Pin	Buffer	Description	
Pin Name	TQFP	Туре	Туре	Description	
				PORTH is a bidirectional I/O port.	
RH0/A16 RH0 A16	79	I/O I/O	ST TTL	Digital I/O. External memory address/data 16.	
RH1/A17 RH1 A17	80	I/O I/O	ST TTL	Digital I/O. External memory address/data 17.	
RH2/A18 RH2 A18	1	I/O I/O	ST TTL	Digital I/O. External memory address/data 18.	
RH3/A19 RH3 A19	2	I/O I/O	ST TTL	Digital I/O. External memory address/data 19.	
RH4/AN12/P3C RH4 AN12 P3C ⁽⁵⁾	22	I/O I O	ST Analog —	Digital I/O. Analog input 12. ECCP3 PWM output C.	
RH5/AN13/P3B RH5 AN13 P3B ⁽⁵⁾	21	I/O I O	ST Analog —	Digital I/O. Analog input 13. ECCP3 PWM output B.	
RH6/AN14/P1C RH6 AN14 P1C ⁽⁵⁾	20	I/O I O	ST Analog —	Digital I/O. Analog input 14. ECCP1 PWM output C.	
RH7/AN15/P1B RH7 AN15 P1B ⁽⁵⁾	19	I/O I O	ST Analog —	Digital I/O. Analog input 15. ECCP1 PWM output B.	

TABLE 1-3: PIC18F8628/8723 (80-PIN) PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared (all operating modes except Microcontroller mode).

2: Default assignment for ECCP2 in all operating modes (CCP2MX is set).

3: Alternate assignment for ECCP2 when CCP2MX is cleared (Microcontroller mode only).

4: Default assignment for P1B/P1C/P3B/P3C (ECCPMX is set).

Pin Name	Pin Number	Pin	Buffer	Description			
Fill Name	TQFP	Туре	Туре				
				PORTJ is a bidirectional I/O port.			
RJ0/ALE RJ0 ALE	62	I/O O	ST —	Digital I/O. External memory address latch enable.			
RJ1/OE RJ1 OE	61	I/O O	ST —	Digital I/O. External memory output enable.			
RJ2/WRL RJ2 WRL	60	I/O O	ST —	Digital I/O. External memory write low control.			
RJ3/WRH RJ3 WRH	59	I/O O	ST —	Digital I/O. External memory write high control.			
RJ4/BA0 RJ4 BA0	39	I/O O	ST —	Digital I/O. External memory byte address 0 control.			
RJ5/CE RJ4 CE	40	I/O O	ST —	Digital I/O External memory chip enable control.			
RJ6/LB RJ6 LB	41	I/O O	ST —	Digital I/O. External memory low byte control.			
RJ7/UB RJ7 UB	42	I/O O	ST —	Digital I/O. External memory high byte control.			
Vss	11, 31, 51, 70	Р		Ground reference for logic and I/O pins.			
Vdd	12, 32, 48, 71	Р		Positive supply for logic and I/O pins.			
AVss	26	Р	_	Ground reference for analog modules.			
AVdd	25	Р	_	Positive supply for analog modules.			
Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels Analog = Analog input							

TABLE 1-3: PIC18F8628/8723 (80-PIN) PINOUT I/O DESCRIPTIONS (CONTINUED)

= Output 0

= Input = Power Ρ

Т

 $I^2C^{TM}/SMB = I^2C/SMB$ us input buffer

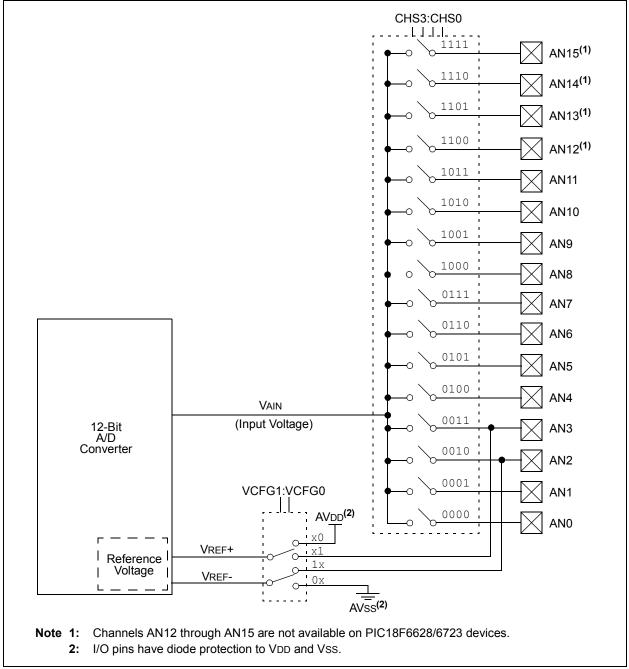
Note 1: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared (all operating modes except Microcontroller mode).

2: Default assignment for ECCP2 in all operating modes (CCP2MX is set).

3: Alternate assignment for ECCP2 when CCP2MX is cleared (Microcontroller mode only).

4: Default assignment for P1B/P1C/P3B/P3C (ECCPMX is set).

The analog reference voltage is software selectable to either the device's positive and negative supply voltage (VDD and Vss), or the voltage level on the RA3/AN3/ VREF+ and RA2/AN2/VREF-/CVREF pins.


The A/D Converter has a unique feature of being able to operate while the device is in Sleep mode. To operate in Sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

The output of the sample and hold is the input into the converter, which generates the result via successive approximation.

A device Reset forces all registers to their Reset state. This forces the A/D module to be turned off and any conversion in progress is aborted.

Each port pin associated with the A/D Converter can be configured as an analog input or a digital I/O. The ADRESH and ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRESH:ADRESL register pair, the GO/DONE bit (ADCON0<1>) is cleared and the A/D Interrupt Flag bit, ADIF, is set. The block diagram of the A/D module is shown in Figure 2-1.

2.1 A/D Acquisition Requirements

For the A/D Converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 2-3. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor, CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 2.5 k Ω . After the analog input channel is selected (changed), the channel must be sampled for at least the minimum acquisition time before starting a conversion.

Note:	When	the	conversion	is	started,	the
	holding capacitor is disconnected from the					
	input p	in.				

To calculate the minimum acquisition time, Equation 2-1 may be used. This equation assumes that 1/2 LSb error is used (4096 steps for the 12-bit A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

Example 2-3 shows the calculation of the minimum required acquisition time, TACQ. This calculation is based on the following application system assumptions:

CHOLD	=	25 pF
Rs	=	2.5 kΩ
Conversion Error	\leq	1/2 LSb
Vdd	=	$3V \rightarrow Rss = 4 \ k\Omega$
Temperature	=	85°C (system max.)

EQUATION 2-1: ACQUISITION TIME

TACQ	=	Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient
	=	TAMP + TC + TCOFF

EQUATION 2-2: A/D MINIMUM CHARGING TIME

VHOLD	=	$(\text{VREF} - (\text{VREF}/4096)) \bullet (1 - e^{(-\text{TC/CHOLD}(\text{RIC} + \text{RSS} + \text{RS}))})$
or		
TC	=	- (Chold)(Ric + Rss + Rs) ln(1/4096)

EQUATION 2-3: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME

TACQ	=	TAMP + TC + TCOFF		
TAMP	=	0.2 μs		
TCOFF	=	(Temp – 25°C)(0.02 μs/°C) (85°C – 25°C)(0.02 μs/°C) 1.2 μs		
Tempera	Temperature coefficient is only required for temperatures > 25°C. Below 25°C, TCOFF = 0 μ s.			
Тс	=	-(CHOLD)(RIC + RSS + RS) $\ln(1/4096) \mu s$ -(25 pF) (1 k Ω + 4 k Ω + 2.5 k Ω) $\ln(0.0002441) \mu s$ 1.56 μs		
TACQ	=	0.2 μs + 1.56 μs + 1.2 μs 2.96 μs		

2.2 Selecting and Configuring Acquisition Time

The ADCON2 register allows the user to select an acquisition time that occurs each time the GO/DONE bit is set. It also gives users the option to use an automatically determined acquisition time.

Acquisition time may be set with the ACQT2:ACQT0 bits (ADCON2<5:3>), which provide a range of 2 to 20 TAD. When the GO/DONE bit is set, the A/D module continues to sample the input for the selected acquisition time, then automatically begins a conversion. Since the acquisition time is programmed, there may be no need to wait for an acquisition time between selecting a channel and setting the GO/DONE bit.

Manual acquisition is selected when ACQT2:ACQT0 = 000. When the GO/DONE bit is set, sampling is stopped and a conversion begins. The user is responsible for ensuring the required acquisition time has passed between selecting the desired input channel and setting the GO/DONE bit. This option is also the default Reset state of the ACQT2:ACQT0 bits and is compatible with devices that do not offer programmable acquisition times.

In either case, when the conversion is completed, the GO/DONE bit is cleared, the ADIF flag is set and the A/D begins sampling the currently selected channel again. If an acquisition time is programmed, there is nothing to indicate if the acquisition time has ended or if the conversion has begun.

2.3 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 13 TAD per 12-bit conversion. The source of the A/D conversion clock is software selectable. There are seven possible options for TAD:

- 2 Tosc
- 4 Tosc
- 8 Tosc
- 16 Tosc
- 32 Tosc
- 64 Tosc
- Internal RC Oscillator

For correct A/D conversions, the A/D conversion clock (TAD) must be as short as possible, but greater than the minimum TAD (see parameter 130 for more information).

Table 2-1 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

TABLE 2-1: TAD VS. DEVICE OPERATING FREQUENCIES

A/D Clock Se	A/D Clock Source (TAD)		
Operation	ADCS2:ADCS0	Maximum Fosc	
2 Tosc	000	2.50 MHz	
4 Tosc	100	5.00 MHz	
8 Tosc	001	10.00 MHz	
16 Tosc	101	20.00 MHz	
32 Tosc	010	40.00 MHz	
64 Tosc	110	40.00 MHz	
RC ⁽¹⁾	x11	1.00 MHz ⁽²⁾	

Note 1: The RC source has a typical TAD time of 2.5 μ s.

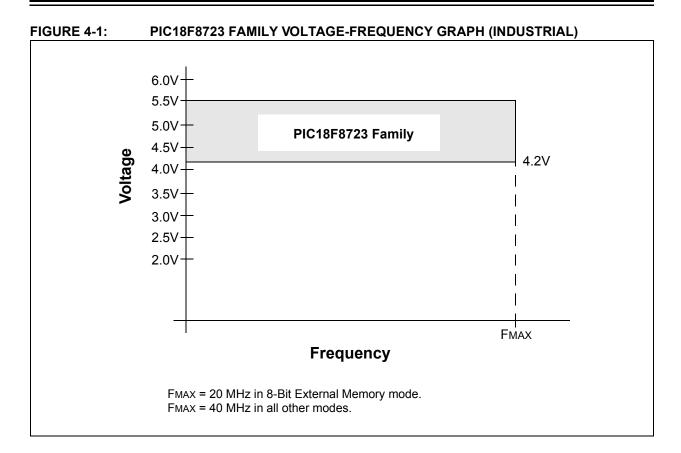
2: For device frequencies above 1 MHz, the device must be in Sleep for the entire conversion or a Fosc divider should be used instead; otherwise, the A/D accuracy specification may not be met.

2.4 Operation in Power-Managed Modes

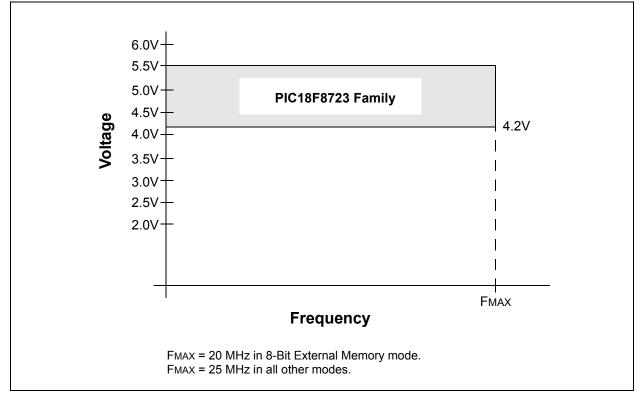
The selection of the automatic acquisition time and A/D conversion clock is determined in part by the clock source and frequency while in a power-managed mode.

If the A/D is expected to operate while the device is in a power-managed mode, the ADCS2:ADCS0 bits in ADCON2 should be updated in accordance with the clock source to be used. The ACQT2:ACQT0 bits do not need to be adjusted as the ADCS2:ADCS0 bits adjust the TAD time for the new clock speed. After entering the mode, an A/D acquisition or conversion may be started. Once started, the device should continue to be clocked by the same clock source until the conversion has been completed.

If desired, the device may be placed into the corresponding Idle mode during the conversion. If the device clock frequency is less than 1 MHz, the A/D RC clock source should be selected.


Operation in Sleep mode requires the A/D FRC clock to be selected. If the ACQT2:ACQT0 bits are set to '000' and a conversion is started, the conversion will be delayed one instruction cycle to allow execution of the SLEEP instruction and entry to Sleep mode. The IDLEN bit (OSCCON<7>) must have already been cleared prior to starting the conversion.

2.5 Configuring Analog Port Pins


The ADCON1, TRISA, TRISF and TRISH registers all configure the A/D port pins. The port pins needed as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS3:CHS0 bits and the TRIS bits.

- Note 1: When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level). Analog conversion on pins configured as digital pins can be performed. The voltage on the pin will be accurately converted.
 - 2: Analog levels on any pin defined as a digital input may cause the digital input buffer to consume current out of the device's specification limits.

FIGURE 4-2: PIC18F8723 FAMILY VOLTAGE-FREQUENCY GRAPH (EXTENDED)

NOTES:

PIC18F8723 FAMILY PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART N Devic	- $+$ $+$ $+$ $+$	Examples: a) PIC18LF6723-I/PT 301 = Industrial temp., TQFP package, Extended VDD limits, QTP pattern #301.
Device ^{(1) (2)}	PIC18F6628/6723, PIC18F8628/8723, VDD range 4.2V to 5.5V PIC18LF6628/6723, PIC18LF6628/6723 ⁽ VDD range 2.0V to 5.5V	 b) PIC18F6723-E/PT = Extended temp., TQFP package, standard VDD limits.
Temperature Range	I = -40° C to $+85^{\circ}$ C (Industrial) E = -40° C to $+125^{\circ}$ C (Extended)	
Package	PT = TQFP (Thin Quad Flatpack)	
Pattern	QTP, SQTP, Code or Special Requirements (blank otherwise)	Note 1:F=Standard Voltage RangeLF=Wide Voltage Range2:T=in tape and reel TQFP packages only.