

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Dectano	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	54
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf6723-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

64/80-Pin, 1-Mbit, Enhanced Flash Microcontrollers with 12-Bit A/D and nanoWatt Technology

Peripheral Highlights:

- 12-Bit, Up to 16-Channel Analog-to-Digital Converter module (A/D):
 - Auto-acquisition capability
 - Conversion available during Sleep
- Two Master Synchronous Serial Port (MSSP) modules supporting 2/3/4-Wire SPI (all four modes) and I²C[™] Master and Slave modes
- Two Capture/Compare/PWM (CCP) modules
- Three Enhanced Capture/Compare/PWM (ECCP) modules:
 - One, two or four PWM outputs
 - Selectable polarity
 - Programmable dead time
 - Auto-shutdown and auto-restart
- Two Enhanced Addressable USART modules:
 - Supports RS-485, RS-232 and LIN 1.2
- Auto-wake-up on Start bit
- Auto-Baud Detect
- Dual Analog Comparators with Input Multiplexing
- High-Current Sink/Source 25 mA/25 mA
- Four Programmable External Interrupts
- Four Input Change Interrupts

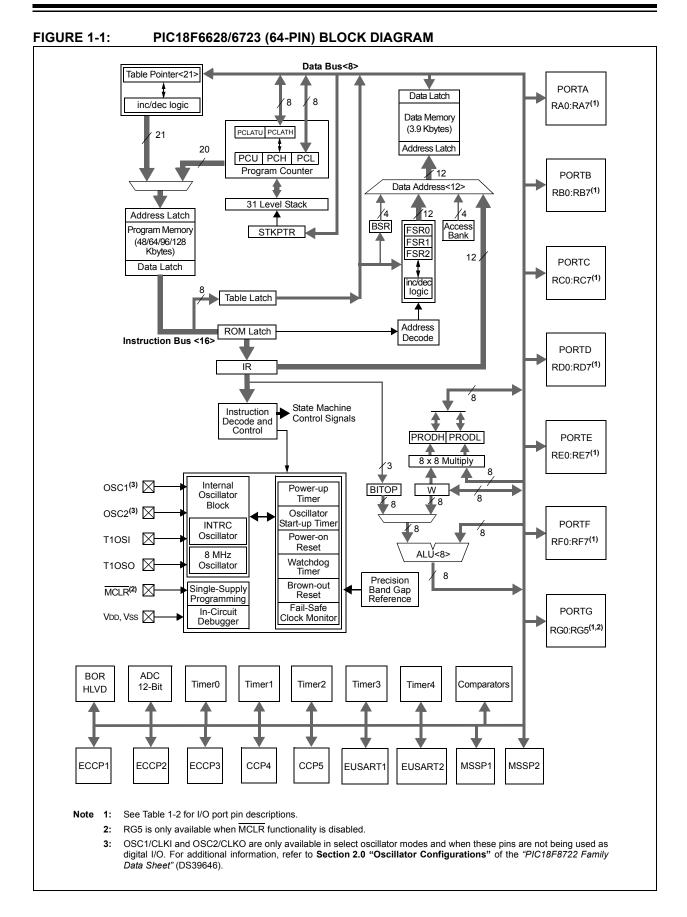
External Memory Interface:

- Address Capability of Up to 2 Mbytes
- 8-Bit or 16-Bit Interface
- 8, 12, 16 and 20-Bit Address modes

Power-Managed Modes:

- Run: CPU on, Peripherals on
- Idle: CPU off, Peripherals on
- · Sleep: CPU off, Peripherals off
- Idle mode Currents Down to 15 μA Typical
- Sleep Current Down to 0.2 μA Typical
- Timer1 Oscillator: 1.8 μA, 32 kHz, 2V
- Watchdog Timer: 2.1 μA

Special Microcontroller Features:


- C Compiler Optimized Architecture:
 - Optional extended instruction set designed to optimize re-entrant code
- 100,000 Erase/Write Cycle Enhanced Flash Program Memory Typical
- 1,000,000 Erase/Write Cycle Data EEPROM Memory Typical
- Flash/Data EEPROM Retention: 100 Years Typical
- Self-Programmable under Software Control
- Priority Levels for Interrupts
- 8 x 8 Single-Cycle Hardware Multiplier
- Extended Watchdog Timer (WDT):
 - Programmable period from 4 ms to 131s
- Single-Supply In-Circuit Serial Programming[™] (ICSP[™]) via Two Pins
- · In-Circuit Debug (ICD) via Two Pins
- Wide Operating Voltage Range: 2.0V to 5.5V
- Fail-Safe Clock Monitor
- Two-Speed Oscillator Start-up
- nanoWatt Technology

Note:	This document is supplemented by the	
	"PIC18F8722 Family Data Sheet"	
	(DS39646). See Section 1.0 "Device	
	Overview".	

	Prog	ram Memory	Data Memory				CCP/		MSS	P	н	tors	a ti	lal
Device	Flash (bytes)	# Single-Word Instructions	SRAM (bytes)	EEPROM (bytes)	I/O	12-Bit A/D (ch)	ECCP (PWM)		SPI	Master I ² C™	EUSAR	Comparators	Timers 8/16-Bit	Externa Bus
PIC18F6628	96K	49152	3936	1024	54	12	2/3	2	Y	Y	2	2	2/3	Ν
PIC18F6723	128K	65536	3936	1024	54	12	2/3	2	Υ	Y	2	2	2/3	Ν
PIC18F8628	96K	49152	3936	1024	70	16	2/3	2	Y	Y	2	2	2/3	Y
PIC18F8723	128K	65536	3936	1024	70	16	2/3	2	Y	Y	2	2	2/3	Y

PIC18F8723

NOTES:

	Pin Number	Ì	<i>,</i>	I I/O DESCRIPTIONS		
Pin Name	Pin Number	Pin	Buffer	Description		
	TQFP	Туре	Туре	• • • •		
RG5/MCLR/Vpp	7			Master Clear (input) or programming voltage (input).		
RG5		I	ST	Digital input.		
MCLR		I	ST	Master Clear (Reset) input. This pin is an active-low		
. <i>.</i>		_		Reset to the device.		
Vpp		Р		Programming voltage input.		
DSC1/CLKI/RA7	39			Oscillator crystal or external clock input.		
OSC1		I	ST	Oscillator crystal input or external clock source input.		
				ST buffer when configured in RC mode, CMOS		
CLKI			CMOS	otherwise.		
ULKI		I	CIVIOS	External clock source input. Always associated with pin function OSC1. (See related OSC1/CLKI,		
				OSC2/CLKO pins.)		
RA7		I/O	TTL	General purpose I/O pin.		
DSC2/CLKO/RA6	40			Oscillator crystal or clock output.		
OSC2	10	0		Oscillator crystal output. Connects to crystal or		
				resonator in Crystal Oscillator mode.		
CLKO		0	_	In RC mode, OSC2 pin outputs CLKO, which has		
				1/4 the frequency of OSC1 and denotes the		
				instruction cycle rate.		
RA6		I/O	TTL	General purpose I/O pin.		
	compatible input			CMOS = CMOS compatible input or output		
ST = Sch	mitt Trigger inpu	ut with Cl	MOS level			
l = Inpu				O = Output		
P = Pow	er			$I^2C^{TM} = I^2C/SMB$ us input buffer		

TABLE 1-2:	PIC18F6628/6723 (64-PIN) PINOUT I/O DESCRIPTION	1S
			•••

Note 1: Default assignment for ECCP2 when Configuration bit, CCP2MX, is set.2: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared.

Pin Name	Pin Number	Pin	Buffer	Description			
Pin Name	TQFP	Туре	Туре	Description			
				PORTD is a bidirectional I/O port.			
RD0/PSP0 RD0 PSP0	58	I/O I/O	ST TTL	Digital I/O. Parallel Slave Port data.			
RD1/PSP1 RD1 PSP1	55	I/O I/O	ST TTL	Digital I/O. Parallel Slave Port data.			
RD2/PSP2 RD2 PSP2	54	I/O I/O	ST TTL	Digital I/O. Parallel Slave Port data.			
RD3/PSP3 RD3 PSP3	53	I/O I/O	ST TTL	Digital I/O. Parallel Slave Port data.			
RD4/PSP4/SDO2 RD4 PSP4 SDO2	52	I/O I/O O	ST TTL	Digital I/O. Parallel Slave Port data. SPI data out.			
RD5/PSP5/SDI2/ SDA2 RD5 PSP5 SDI2 SDA2	51	I/O I/O I I/O	ST TTL ST I ² C/SMB	Digital I/O. Parallel Slave Port data. SPI data in. I ² C™ data I/O.			
RD6/PSP6/SCK2/ SCL2 RD6 PSP6 SCK2 SCL2	50	I/O I/O I/O	ST TTL ST I ² C/SMB	Digital I/O. Parallel Slave Port data. Synchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I ² C mode.			
RD7/PSP7/ <u>SS2</u> RD7 <u>PSP</u> 7 SS2	49	I/O I/O I	ST TTL TTL	Digital I/O. Parallel Slave Port data. SPI slave select input.			
Legend:TTL = TTL compatible inputCMOS= CMOS compatible input or outputST = Schmitt Trigger input with CMOS levelsAnalog= Analog inputI = InputO= OutputP = Power $l^2 C^{TM}$ = $l^2 C/SMBus$ input buffer							

TABLE 1-2:	PIC18F6628/6723 (64-PIN) PINOUT I/O	DESCRIPTIONS	(CONTINUED)	
		• • • • • •		======		

Note 1: Default assignment for ECCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared.

Pin Name	Pin Number	Pin	Buffer	Description		
Pin Name	TQFP	Туре	Туре			
				PORTF is a bidirectional I/O port.		
RF0/AN5 RF0 AN5	18	I/O I	ST Analog	Digital I/O. Analog input 5.		
RF1/AN6/C2OUT RF1 AN6 C2OUT	17	I/O I O	ST Analog —	Digital I/O. Analog input 6. Comparator 2 output.		
RF2/AN7/C1OUT RF2 AN7 C1OUT	16	I/O I O	ST Analog —	Digital I/O. Analog input 7. Comparator 1 output.		
RF3/AN8 RF3 AN8	15	I/O I	ST Analog	Digital I/O. Analog input 8.		
RF4/AN9 RF4 AN9	14	I/O I	ST Analog	Digital I/O. Analog input 9.		
RF5/AN10/CVREF RF5 AN10 CVREF	13	I/O I O	ST Analog Analog	Digital I/O. Analog input 10. Comparator reference voltage output.		
RF6/AN11 RF6 AN11	12	I/O I	ST Analog	Digital I/O. Analog input 11.		
RF7/ <u>SS1</u> <u>RF7</u> SS1	11	I/O I	ST TTL	Digital I/O. SPI slave select input.		
Legend:TTL = TTL compatible inputCMOS= CMOS compatible input or outputST = Schmitt Trigger input with CMOS levelsAnalog= Analog inputI = InputO= OutputP = Power $l^2 C^{TM}$ = $l^2 C/SMBus$ input buffer						

TABLE 1-2:	PIC18F6628/6723	64-PIN	DESCRIPTIONS	
TADLL 1-2.	FICIOI 0020/0723	04-6 114	DESCRIF HONS	

Note 1: Default assignment for ECCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared.

Din Nama	Pin Number	Pin	Pin Buffer	Description			
Pin Name	TQFP	Туре	Туре				
				PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.			
RB0/INT0/FLT0 RB0 INT0 FLT0	58	I/O I I	TTL ST ST	Digital I/O. External interrupt 0. PWM Fault input for ECCPx.			
RB1/INT1 RB1 INT1	57	I/O I	TTL ST	Digital I/O. External interrupt 1.			
RB2/INT2 RB2 INT2	56	I/O I	TTL ST	Digital I/O. External interrupt 2.			
RB3/INT3/ECCP2/P2A RB3 INT3 ECCP2 ⁽¹⁾	55	I/O I O	TTL ST	Digital I/O. External interrupt 3. Enhanced Capture 2 input/Compare 2 output/ PWM2 output.			
P2A ⁽¹⁾		0	—	ECCP2 PWM output A.			
RB4/KBI0 RB4 KBI0	54	I/O I	TTL TTL	Digital I/O. Interrupt-on-change pin.			
RB5/KBI1/PGM RB5 KBI1 PGM	53	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. Low-Voltage ICSP™ Programming enable pin.			
RB6/KBI2/PGC RB6 KBI2 PGC	52	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP™ programming clock pin.			
RB7/KBI3/PGD RB7 KBI3 PGD	47	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming data pin.			
Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels Analog = Analog input I = Input O = Output							

TABLE 1-3: PIC18F8628/8723 (80-PIN) PINOUT I/O DESCRIPTIONS (CONTINUED)

P = Power
Note 1: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared (all operating modes except Microcontroller mode).

- 2: Default assignment for ECCP2 in all operating modes (CCP2MX is set).
- 3: Alternate assignment for ECCP2 when CCP2MX is cleared (Microcontroller mode only).
- 4: Default assignment for P1B/P1C/P3B/P3C (ECCPMX is set).

5: Alternate assignment for P1B/P1C/P3B/P3C (ECCPMX is clear).

Din Norse	Pin Number	Pin	Buffer			
Pin Name	TQFP	Туре	Туре	Description		
				PORTD is a bidirectional I/O port.		
RD0/AD0/PSP0 RD0 AD0 PSP0	72	I/O I/O I/O	ST TTL TTL	Digital I/O. External memory address/data 0. Parallel Slave Port data.		
RD1/AD1/PSP1 RD1 AD1 PSP1	69	I/O I/O I/O	ST TTL TTL	Digital I/O. External memory address/data 1. Parallel Slave Port data.		
RD2/AD2/PSP2 RD2 AD2 PSP2	68	I/O I/O I/O	ST TTL TTL	Digital I/O. External memory address/data 2. Parallel Slave Port data.		
RD3/AD3/PSP3 RD3 AD3 PSP3	67	I/O I/O I/O	ST TTL TTL	Digital I/O. External memory address/data 3. Parallel Slave Port data.		
RD4/AD4/PSP4/SDO2 RD4 AD4 PSP4 SDO2	66	I/O I/O I/O O	ST TTL TTL —	Digital I/O. External memory address/data 4. Parallel Slave Port data. SPI data out.		
RD5/AD5/PSP5/ SDI2/SDA2 RD5 AD5 PSP5 SDI2 SDA2	65	I/O I/O I/O I I/O	ST TTL TTL ST I ² C/SMB	Digital I/O. External memory address/data 5. Parallel Slave Port data. SPI data in. I ² C™ data I/O.		
RD6/AD6/PSP6/ SCK2/SCL2 RD6 AD6 PSP6 SCK2 SCL2	64	I/O I/O I/O I/O I/O	ST TTL TTL ST I ² C/SMB	Digital I/O. External memory address/data 6. Parallel Slave Port data. Synchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I ² C mode.		
RD7/AD7/PSP7/SS2 RD7 AD7 PSP7 SS2	63	I/O I/O I/O I	ST TTL TTL TTL	Digital I/O. External memory address/data 7. Parallel Slave Port data. SPI slave select input.		
RD7 AD7 <u>PSP7</u> SS2 Legend: TTL = TTL	compatible inpu mitt Trigger inpu t	I/O I/O I	TTL TTL TTL	External memory address/data 7. Parallel Slave Port data. SPI slave select input. CMOS = CMOS compatible input or output		

TABLE 1-3: PIC18F8628/8723 (80-PIN) PINOUT I/O DESCRIPTIONS (CONTINUED)

Microcontroller mode).

2: Default assignment for ECCP2 in all operating modes (CCP2MX is set).

3: Alternate assignment for ECCP2 when CCP2MX is cleared (Microcontroller mode only).

Note 1: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared (all operating modes except

4: Default assignment for P1B/P1C/P3B/P3C (ECCPMX is set).

5: Alternate assignment for P1B/P1C/P3B/P3C (ECCPMX is clear).

Pin Name	Pin Number	Pin	Buffer	Description			
Fill Name	TQFP	Туре	Туре				
				PORTJ is a bidirectional I/O port.			
RJ0/ALE RJ0 ALE	62	I/O O	ST —	Digital I/O. External memory address latch enable.			
RJ1/OE RJ1 OE	61	I/O O	ST —	Digital I/O. External memory output enable.			
RJ2/WRL RJ2 WRL	60	I/O O	ST —	Digital I/O. External memory write low control.			
RJ3/WRH RJ3 WRH	59	I/O O	ST —	Digital I/O. External memory write high control.			
RJ4/BA0 RJ4 BA0	39	I/O O	ST —	Digital I/O. External memory byte address 0 control.			
RJ5/CE RJ4 CE	40	I/O O	ST —	Digital I/O External memory chip enable control.			
RJ6/LB RJ6 LB	41	I/O O	ST —	Digital I/O. External memory low byte control.			
RJ7/UB RJ7 UB	42	I/O O	ST —	Digital I/O. External memory high byte control.			
Vss	11, 31, 51, 70	Р		Ground reference for logic and I/O pins.			
Vdd	12, 32, 48, 71	Р		Positive supply for logic and I/O pins.			
AVss	26	Р	_	Ground reference for analog modules.			
AVdd	25	Р	_	Positive supply for analog modules.			
Legend:TTL = TTL compatible inputCMOS= CMOS compatible input or outputST = Schmitt Trigger input with CMOS levelsAnalog= Analog input							

TABLE 1-3: PIC18F8628/8723 (80-PIN) PINOUT I/O DESCRIPTIONS (CONTINUED)

= Output 0

= Input = Power Ρ

Т

 $I^2C^{TM}/SMB = I^2C/SMB$ us input buffer

Note 1: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared (all operating modes except Microcontroller mode).

2: Default assignment for ECCP2 in all operating modes (CCP2MX is set).

3: Alternate assignment for ECCP2 when CCP2MX is cleared (Microcontroller mode only).

4: Default assignment for P1B/P1C/P3B/P3C (ECCPMX is set).

5: Alternate assignment for P1B/P1C/P3B/P3C (ECCPMX is clear).

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ADFM		ACQT2	ACQT1	ACQTO	ADCS2	ADCS1	ADCS0		
bit 7		nourz	nouri	nouro	1.0002	712001	bit 0		
Legend:									
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 7		esult Format S	Select bit						
	1 = Right justi 0 = Left justifi								
bit 6	Unimplemen	ted: Read as '	0'						
bit 5-3	ACQT2:ACQ	T0: A/D Acquis	sition Time Se	lect bits					
	111 = 20 T AD								
	110 = 16 Tad								
	101 = 12 TAD								
	100 = 8 TAD								
	011 = 6 TAD								
	010 = 4 TAD 001 = 2 TAD								
	001 = 2 TAD 000 = 0 TAD ⁽¹⁾)							
bit 2-0			ursion Clock S	oloct hits					
Dit 2-0	ADCS2:ADCS0: A/D Conversion Clock Select bits 111 = FRC (clock derived from A/D RC oscillator) ⁽¹⁾								
	111 = FRC (Cl) 110 = Fosc/6								
	101 = Fosc/1								
	100 = Fosc/4								
		ock derived fro	m A/D RC os	cillator) ⁽¹⁾					
	010 = Fosc/3			,					
	001 = Fosc/8	l							
	000 = Fosc/2								

REGISTER 2-3: ADCON2: A/D CONTROL REGISTER 2

Note 1: If the A/D FRC clock source is selected, a delay of one TcY (instruction cycle) is added before the A/D clock starts. This allows the SLEEP instruction to be executed before starting a conversion.

2.1 A/D Acquisition Requirements

For the A/D Converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 2-3. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor, CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 2.5 k Ω . After the analog input channel is selected (changed), the channel must be sampled for at least the minimum acquisition time before starting a conversion.

Note:	When	the	conversion	is	started,	the
	holding	g capa	acitor is disco	nne	ected from	the
	input p	in.				

To calculate the minimum acquisition time, Equation 2-1 may be used. This equation assumes that 1/2 LSb error is used (4096 steps for the 12-bit A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

Example 2-3 shows the calculation of the minimum required acquisition time, TACQ. This calculation is based on the following application system assumptions:

CHOLD	=	25 pF
Rs	=	2.5 kΩ
Conversion Error	\leq	1/2 LSb
Vdd	=	$3V \rightarrow Rss = 4 \ k\Omega$
Temperature	=	85°C (system max.)

EQUATION 2-1: ACQUISITION TIME

TACQ	=	Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient
	=	TAMP + TC + TCOFF

EQUATION 2-2: A/D MINIMUM CHARGING TIME

VHOLD	=	$(\text{VREF} - (\text{VREF}/4096)) \bullet (1 - e^{(-\text{TC/CHOLD}(\text{RIC} + \text{RSS} + \text{RS}))})$
or		
TC	=	- (Chold)(Ric + Rss + Rs) ln(1/4096)

EQUATION 2-3: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME

TACQ	=	TAMP + TC + TCOFF			
TAMP	=	0.2 μs			
TCOFF	=	(Temp – 25°C)(0.02 μs/°C) (85°C – 25°C)(0.02 μs/°C) 1.2 μs			
Tempera	Temperature coefficient is only required for temperatures > 25°C. Below 25°C, TCOFF = 0 μ s.				
Тс	=	-(CHOLD)(RIC + RSS + RS) $\ln(1/4096) \mu s$ -(25 pF) (1 k Ω + 4 k Ω + 2.5 k Ω) $\ln(0.0002441) \mu s$ 1.56 μs			
TACQ	=	0.2 μs + 1.56 μs + 1.2 μs 2.96 μs			

2.2 Selecting and Configuring Acquisition Time

The ADCON2 register allows the user to select an acquisition time that occurs each time the GO/DONE bit is set. It also gives users the option to use an automatically determined acquisition time.

Acquisition time may be set with the ACQT2:ACQT0 bits (ADCON2<5:3>), which provide a range of 2 to 20 TAD. When the GO/DONE bit is set, the A/D module continues to sample the input for the selected acquisition time, then automatically begins a conversion. Since the acquisition time is programmed, there may be no need to wait for an acquisition time between selecting a channel and setting the GO/DONE bit.

Manual acquisition is selected when ACQT2:ACQT0 = 000. When the GO/DONE bit is set, sampling is stopped and a conversion begins. The user is responsible for ensuring the required acquisition time has passed between selecting the desired input channel and setting the GO/DONE bit. This option is also the default Reset state of the ACQT2:ACQT0 bits and is compatible with devices that do not offer programmable acquisition times.

In either case, when the conversion is completed, the GO/DONE bit is cleared, the ADIF flag is set and the A/D begins sampling the currently selected channel again. If an acquisition time is programmed, there is nothing to indicate if the acquisition time has ended or if the conversion has begun.

2.3 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 13 TAD per 12-bit conversion. The source of the A/D conversion clock is software selectable. There are seven possible options for TAD:

- 2 Tosc
- 4 Tosc
- 8 Tosc
- 16 Tosc
- 32 Tosc
- 64 Tosc
- Internal RC Oscillator

For correct A/D conversions, the A/D conversion clock (TAD) must be as short as possible, but greater than the minimum TAD (see parameter 130 for more information).

Table 2-1 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

TABLE 2-1: TAD VS. DEVICE OPERATING FREQUENCIES

A/D Clock S	A/D Clock Source (TAD)		
Operation	ADCS2:ADCS0	Maximum Fosc	
2 Tosc	000	2.50 MHz	
4 Tosc	100	5.00 MHz	
8 Tosc	001	10.00 MHz	
16 Tosc	101	20.00 MHz	
32 Tosc	010	40.00 MHz	
64 Tosc	110	40.00 MHz	
RC ⁽¹⁾	x11	1.00 MHz ⁽²⁾	

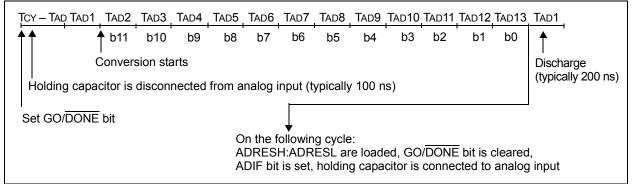
Note 1: The RC source has a typical TAD time of 2.5 μ s.

2: For device frequencies above 1 MHz, the device must be in Sleep for the entire conversion or a Fosc divider should be used instead; otherwise, the A/D accuracy specification may not be met.

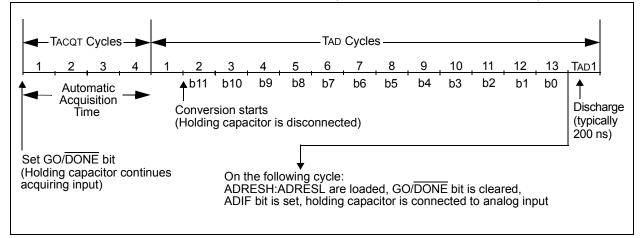
2.6 A/D Conversions

Figure 2-4 shows the operation of the A/D Converter after the GO/DONE bit has been set and the ACQT2:ACQT0 bits are cleared. A conversion is started after the following instruction to allow entry into Sleep mode before the conversion begins.

Figure 2-5 shows the operation of the A/D Converter after the GO/DONE bit has been set, the ACQT2:ACQT0 bits are set to '010' and a 4 TAD acquisition time has been selected before the conversion starts.


Clearing the GO/DONE bit during a conversion will abort the current conversion. The A/D Result register pair will NOT be updated with the partially completed A/D conversion sample. This means the ADRESH:ADRESL registers will continue to contain the value of the last completed conversion (or the last value written to the ADRESH:ADRESL registers). After the A/D conversion is completed or aborted, a 2 TcY wait is required before the next acquisition can be started. After this wait, acquisition on the selected channel is automatically started.

Note:	The GO/DONE bit should NOT be set in
	the same instruction that turns on the A/D.
	Code should wait at least 2 µs after
	enabling the A/D before beginning an
	acquisition and conversion cycle.

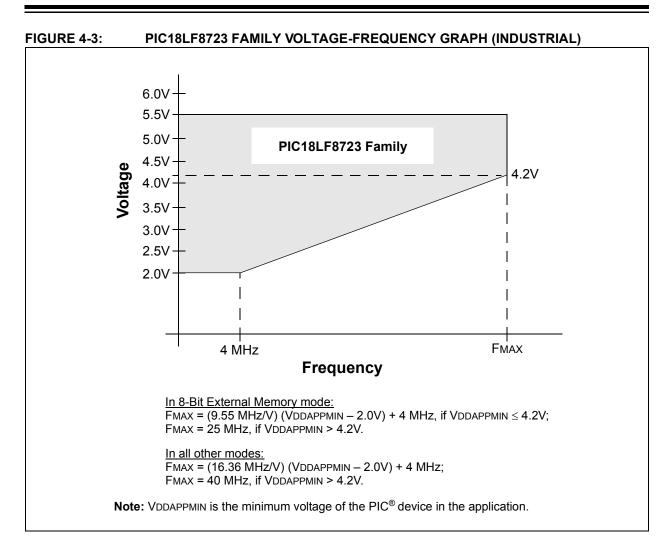

2.7 Discharge

The discharge phase is used to initialize the value of the holding capacitor. The array is discharged before every sample. This feature helps to optimize the unity gain amplifier, as the circuit always needs to charge the capacitor array, rather than charge/discharge based on previous measure values.

FIGURE 2-4: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 000, TACQ = 0)

FIGURE 2-5: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 010, TACQ = 4 TAD)

4.0 ELECTRICAL CHARACTERISTICS


Note: Other than some basic data, this section documents only the PIC18F8723 family's specifications that differ from those of the PIC18F8722 family devices. For detailed information on the electrical specifications shared by the PIC18F8723 family and PIC18F8722 family devices, see the "PIC18F8722 Family Data Sheet" (DS39646).

Absolute Maximum Ratings^(†)

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD and MCLR)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	0.3V to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0V to +13.25V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	300 mA
Maximum current into Vod pin	250 mA
Input clamp current, Iк (Vi < 0 or Vi > VDD)	±20 mA
Output clamp current, loк (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports	200 mA

- Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD $-\sum$ IOH} + \sum {(VDD - VOH) x IOH} + \sum (VOL x IOL)
 - 2: Voltage spikes below Vss at the RG5/MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the RG5/MCLR/ VPP pin, rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

NOTES:

5.0 PACKAGING INFORMATION

For packaging information, see the *"PIC18F8722 Family Data Sheet"* (DS39646).

NOTES:

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4080

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

03/26/09