
Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
	Active
Product Status	
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	54
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf6723t-i-pt

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

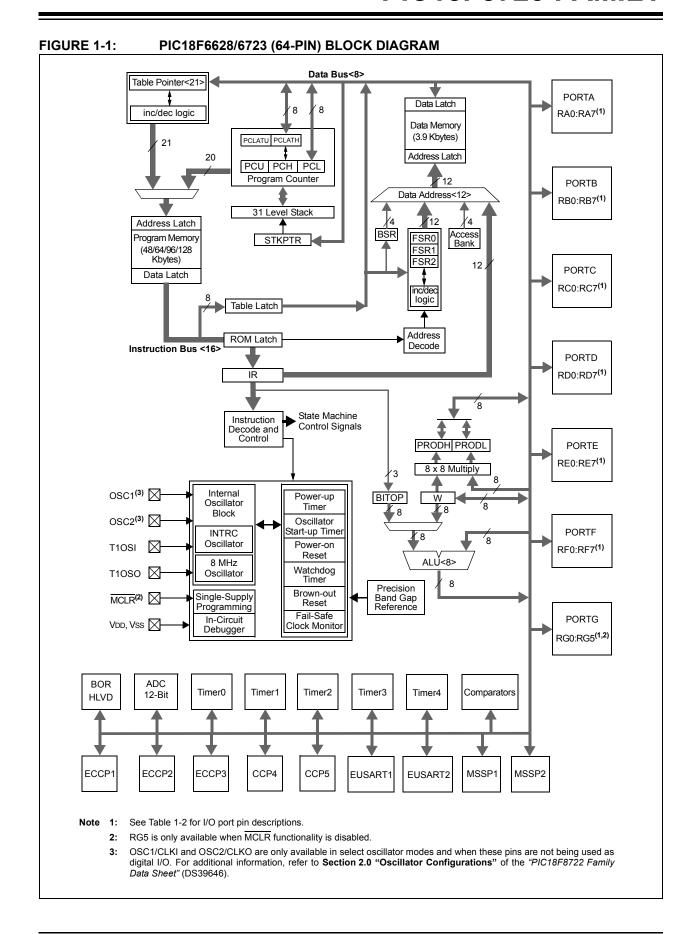
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- · Microchip's Worldwide Web site; http://www.microchip.com
- · Your local Microchip sales office (see last page)


When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

PIC18F8723

NOTES:

© 2009 Microchip Technology Inc.

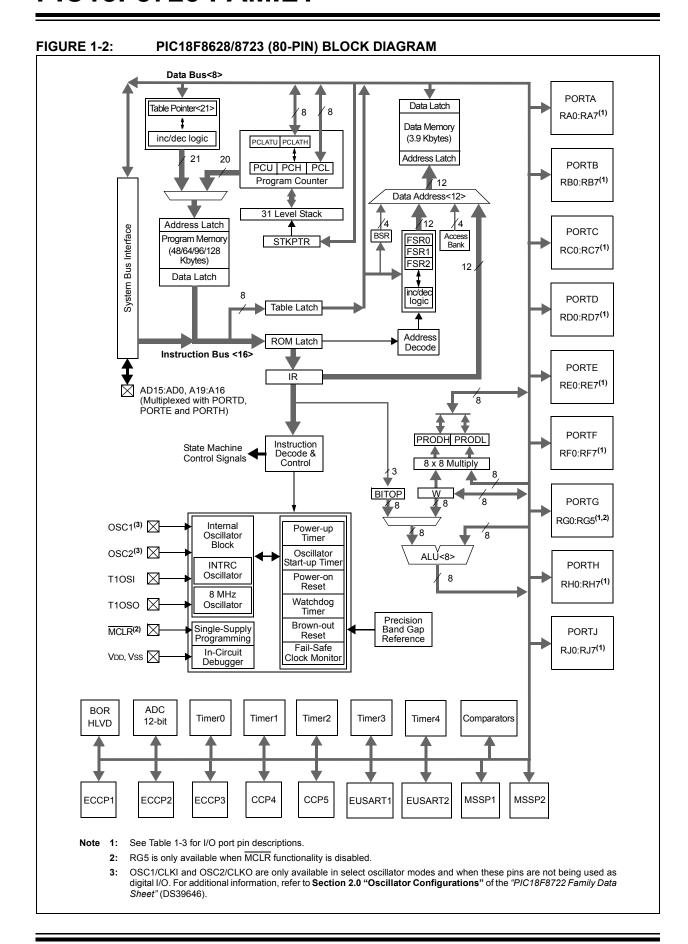


TABLE 1-2: PIC18F6628/6723 (64-PIN) PINOUT I/O DESCRIPTIONS

Din Name	Pin Number		Buffer	Description			
Pin Name	TQFP	Туре	Type	Description			
RG5/MCLR/VPP RG5 MCLR	7	 	ST ST	Master Clear (input) or programming voltage (input). Digital input. Master Clear (Reset) input. This pin is an active-low Reset to the device.			
VPP		Р		Programming voltage input.			
OSC1/CLKI/RA7 OSC1	39	I	ST	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode, CMOS otherwise.			
CLKI		I	CMOS	External clock source input. Always associated with pin function OSC1. (See related OSC1/CLKI, OSC2/CLKO pins.)			
RA7		I/O	TTL	General purpose I/O pin.			
OSC2/CLKO/RA6 OSC2	40	0	_	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.			
CLKO		0	_	In RC mode, OSC2 pin outputs CLKO, which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.			
RA6		I/O	TTL	General purpose I/O pin.			

Legend: TTL = TTL compatible input

ST = Schmitt Trigger input with CMOS levels

I = Input

P = Power

CMOS = CMOS compatible input or output

Analog = Analog input

O = Output

 $I^2C^{TM} = I^2C/SMBus$ input buffer

Note 1: Default assignment for ECCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared.

TABLE 1-2: PIC18F6628/6723 (64-PIN) PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Number	Pin	Buffer	Description			
Pin Name	TQFP	Type	Type				
				PORTC is a bidirectional I/O port.			
RC0/T10SO/T13CKI RC0 T10SO T13CKI	30	I/O O I	ST — ST	Digital I/O. Timer1 oscillator output. Timer1/Timer3 external clock input.			
RC1/T1OSI/ECCP2/ P2A	29						
RC1 T1OSI ECCP2 ⁽¹⁾		I/O I I/O	ST CMOS ST	Digital I/O. Timer1 oscillator input. Enhanced Capture 2 input/Compare 2 output/ PWM2 output.			
P2A ⁽¹⁾		0	_	ECCP2 PWM output A.			
RC2/ECCP1/P1A RC2 ECCP1	33	I/O I/O	ST ST	Digital I/O. Enhanced Capture 1 input/Compare 1 output/ PWM1 output.			
P1A		0	_	ECCP1 PWM output A.			
RC3/SCK1/SCL1 RC3 SCK1 SCL1	34	I/O I/O I/O	ST ST ST	Digital I/O. Synchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I ² C™ mode.			
RC4/SDI1/SDA1 RC4 SDI1 SDA1	35	I/O I I/O	ST ST ST	Digital I/O. SPI data in. I ² C data I/O.			
RC5/SDO1 RC5 SDO1	36	I/O O	ST —	Digital I/O. SPI data out.			
RC6/TX1/CK1 RC6 TX1 CK1	31	I/O O I/O	ST — ST	Digital I/O. EUSART1 asynchronous transmit. EUSART1 synchronous clock (see related RX1/DT1).			
RC7/RX1/DT1 RC7 RX1 DT1	32	I/O I I/O	ST ST ST	Digital I/O. EUSART1 asynchronous receive. EUSART1 synchronous data (see related TX1/CK1).			

Legend: TTL = TTL compatible input

CMOS = CMOS compatible input or output

ST = Schmitt Trigger input with CMOS levels
I = Input

Analog = Analog input
O = Output

P = Power

 $I^2C^{TM} = I^2C/SMBus$ input buffer

Note 1: Default assignment for ECCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared.

TABLE 1-3: PIC18F8628/8723 (80-PIN) PINOUT I/O DESCRIPTIONS

Pin Name	Pin Number	Pin	Buffer	Description				
Pili Name	TQFP	Type Type		Description				
RG5/MCLR/VPP RG5 MCLR VPP	9	l l	ST ST	Master Clear (input) or programming voltage (input). Digital input. Master Clear (Reset) input. This pin is an active-low Reset to the device. Programming voltage input.				
OSC1/CLKI/RA7 OSC1	49	1	ST	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input.				
CLKI		I	CMOS	ST buffer when configured in RC mode, CMOS otherwise. External clock source input. Always associated with pin function OSC1. (See related OSC1/CLKI,				
RA7		I/O	TTL	OSC2/CLKO pins.) General purpose I/O pin.				
OSC2/CLKO/RA6 OSC2	50	0	_	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.				
CLKO		0	_	In RC mode, OSC2 pin outputs CLKO, which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.				
RA6		I/O	TTL	General purpose I/O pin.				

 Legend:
 TTL = TTL compatible input
 CMOS = CMOS compatible input or output

 ST = Schmitt Trigger input with CMOS levels
 Analog = Analog input

 I = Input
 O = Output

 P = Power
 I²C™/SMB = I²C/SMBus input buffer

- **Note 1:** Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared (all operating modes except Microcontroller mode).
 - 2: Default assignment for ECCP2 in all operating modes (CCP2MX is set).
 - 3: Alternate assignment for ECCP2 when CCP2MX is cleared (Microcontroller mode only).
 - 4: Default assignment for P1B/P1C/P3B/P3C (ECCPMX is set).
 - 5: Alternate assignment for P1B/P1C/P3B/P3C (ECCPMX is clear).

TABLE 1-3: PIC18F8628/8723 (80-PIN) PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Number	Pin	Buffer	Description			
Pin Name	TQFP	Type	Туре	Description			
				PORTJ is a bidirectional I/O port.			
RJ0/ALE RJ0 ALE	62	I/O O	ST —	Digital I/O. External memory address latch enable.			
RJ1/OE RJ1 OE	61	I/O O	ST —	Digital I/O. External memory output enable.			
RJ2/WRL RJ2 WRL	60	I/O O	ST —	Digital I/O. External memory write low control.			
RJ3/WRH RJ3 WRH	59	I/O O	ST —	Digital I/O. External memory write high control.			
RJ4/BA0 RJ4 BA0	39	I/O O	ST —	Digital I/O. External memory byte address 0 control.			
RJ5/CE RJ4 CE	40	I/O O	ST —	Digital I/O External memory chip enable control.			
RJ6/LB RJ6 LB	41	I/O O	ST —	Digital I/O. External memory low byte control.			
RJ7/ UB RJ7 UB	42	I/O O	ST —	Digital I/O. External memory high byte control.			
Vss	11, 31, 51, 70	Р	_	Ground reference for logic and I/O pins.			
VDD	12, 32, 48, 71	Р	_	Positive supply for logic and I/O pins.			
AVss	26	Р	_	Ground reference for analog modules.			
AVDD	25	Р	_	Positive supply for analog modules.			

Legend: TTL = TTL compatible input

ST = Schmitt Trigger input with CMOS levels

= Input

P = Power

CMOS = CMOS compatible input or output

Analog = Analog input
O = Output

 $I^2C^{TM}/SMB = I^2C/SMBus$ input buffer

Note 1: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared (all operating modes except Microcontroller mode).

- 2: Default assignment for ECCP2 in all operating modes (CCP2MX is set).
- 3: Alternate assignment for ECCP2 when CCP2MX is cleared (Microcontroller mode only).
- 4: Default assignment for P1B/P1C/P3B/P3C (ECCPMX is set).
- 5: Alternate assignment for P1B/P1C/P3B/P3C (ECCPMX is clear).

2.0 12-BIT ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The Analog-to-Digital (A/D) Converter module has 12 inputs for the 64-pin devices (PIC18F6628/6723) and 16 for the 80-pin devices (PIC18F8628/8723). This module allows conversion of an analog input signal to a corresponding 12-bit digital number.

The module has five registers:

- A/D Result High Register (ADRESH)
- A/D Result Low Register (ADRESL)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)
- · A/D Control Register 2 (ADCON2)

The ADCON0 register, shown in Register 2-1, controls the operation of the A/D module. The ADCON1 register, shown in Register 2-2, configures the functions of the port pins. The ADCON2 register, shown in Register 2-3, configures the A/D clock source, programmed acquisition time and justification.

REGISTER 2-1: ADCON0: A/D CONTROL REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_		CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON
bit 7							bit 0

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 7-6 **Unimplemented:** Read as '0'

bit 5-2 CHS3:CHS0: Analog Channel Select bits

0000 = Channel 0 (AN0)

0001 = Channel 1 (AN1)

0010 = Channel 2 (AN2)

0011 = Channel 3 (AN3)

0100 = Channel 4 (AN4)

0101 = Channel 5 (AN5) 0110 = Channel 6 (AN6)

0111 = Channel 7 (AN7)

Ulli = Channel / (AN/)

1000 = Channel 8 (AN8)

1001 = Channel 9 (AN9)

1010 = Channel 10 (AN10)

1011 = Channel 11 (AN11)

1100 = Channel 12 (AN12)(1,2)

1101 = Channel 13 (AN13) $^{(1,2)}_{(1,2)}$

1110 = Channel 14 (AN14)^(1,2) 1111 = Channel 15 (AN15)^(1,2)

bit 1 GO/DONE: A/D Conversion Status bit

When ADON = 1:

1 = A/D conversion in progress

0 = A/D Idle

bit 0 ADON: A/D On bit

1 = A/D Converter module is enabled

0 = A/D Converter module is disabled

Note 1: These channels are not implemented on PIC18F6628/6723 devices.

2: Performing a conversion on unimplemented channels will return a floating input measurement.

REGISTER 2-3: ADCON2: A/D CONTROL REGISTER 2

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM	_	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0
bit 7							bit 0

 Legend:

 R = Readable bit
 W = Writable bit
 U = Unimplemented bit, read as '0'

 -n = Value at POR
 '1' = Bit is set
 '0' = Bit is cleared
 x = Bit is unknown

bit 7 **ADFM:** A/D Result Format Select bit

1 = Right justified0 = Left justified

bit 6 Unimplemented: Read as '0'

bit 5-3 ACQT2:ACQT0: A/D Acquisition Time Select bits

111 = 20 TAD 110 = 16 TAD 101 = 12 TAD 100 = 8 TAD 011 = 6 TAD 010 = 4 TAD 001 = 2 TAD 000 = 0 TAD⁽¹⁾

bit 2-0 ADCS2:ADCS0: A/D Conversion Clock Select bits

111 = FRC (clock derived from A/D RC oscillator)(1)

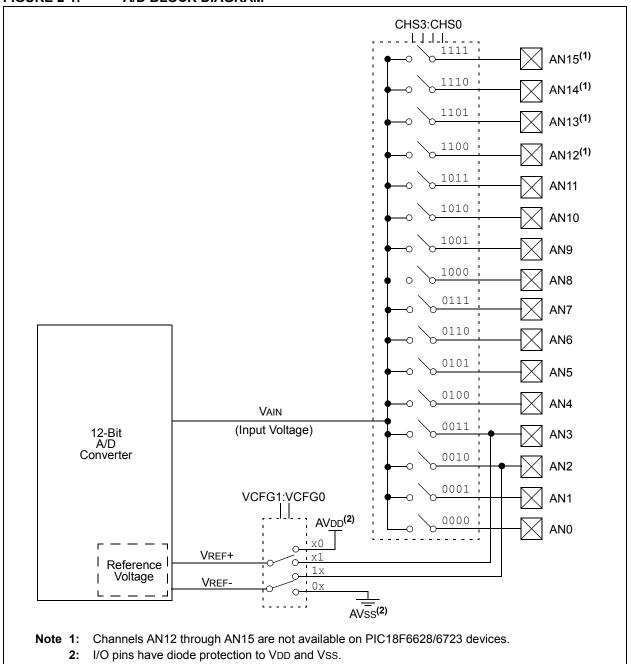
110 = Fosc/64 101 = Fosc/16 100 = Fosc/4

011 = FRC (clock derived from A/D RC oscillator)(1)

010 = Fosc/32 001 = Fosc/8 000 = Fosc/2

Note 1: If the A/D FRC clock source is selected, a delay of one Tcy (instruction cycle) is added before the A/D clock starts. This allows the SLEEP instruction to be executed before starting a conversion.

The analog reference voltage is software selectable to either the device's positive and negative supply voltage (VDD and VSS), or the voltage level on the RA3/AN3/ VREF+ and RA2/AN2/VREF-/CVREF pins.


The A/D Converter has a unique feature of being able to operate while the device is in Sleep mode. To operate in Sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

The output of the sample and hold is the input into the converter, which generates the result via successive approximation.

A device Reset forces all registers to their Reset state. This forces the A/D module to be turned off and any conversion in progress is aborted.

Each port pin associated with the A/D Converter can be configured as an analog input or a digital I/O. The ADRESH and ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRESH:ADRESL register pair, the GO/DONE bit (ADCON0<1>) is cleared and the A/D Interrupt Flag bit, ADIF, is set. The block diagram of the A/D module is shown in Figure 2-1.

FIGURE 2-1: A/D BLOCK DIAGRAM

2.1 A/D Acquisition Requirements

For the A/D Converter to meet its specified accuracy, the charge holding capacitor (Chold) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 2-3. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor, Chold. The sampling switch (Rss) impedance varies over the device voltage (Vdd). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 2.5 k Ω . After the analog input channel is selected (changed), the channel must be sampled for at least the minimum acquisition time before starting a conversion.

Note:

When the conversion is started, the holding capacitor is disconnected from the input pin.

To calculate the minimum acquisition time, Equation 2-1 may be used. This equation assumes that 1/2 LSb error is used (4096 steps for the 12-bit A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

Example 2-3 shows the calculation of the minimum required acquisition time, TACQ. This calculation is based on the following application system assumptions:

CHOLD = 25 pF Rs = $2.5 \text{ k}\Omega$ Conversion Error \leq 1/2 LSb

VDD = $3V \rightarrow Rss = 4 \text{ k}\Omega$ Temperature = 85°C (system max.)

EQUATION 2-1: ACQUISITION TIME

```
TACQ = Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient
= TAMP + TC + TCOFF
```

EQUATION 2-2: A/D MINIMUM CHARGING TIME

```
VHOLD = (VREF - (VREF/4096)) \cdot (1 - e^{(-TC/CHOLD(RIC + RSS + RS))})

or

TC = -(CHOLD)(RIC + RSS + RS) \ln(1/4096)
```

EQUATION 2-3: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME

```
TACQ
                    TAMP + TC + TCOFF
TAMP
                    0.2~\mu s
TCOFF
                    (Temp - 25^{\circ}C)(0.02 \mu s/^{\circ}C)
                    (85^{\circ}C - 25^{\circ}C)(0.02 \mu s/^{\circ}C)
                    1.2 us
Temperature coefficient is only required for temperatures > 25°C. Below 25°C, TCOFF = 0 \mus.
TC
                    -(CHOLD)(RIC + RSS + RS) ln(1/4096) \mu s
                    -(25 \text{ pF}) (1 \text{ k}\Omega + 4 \text{ k}\Omega + 2.5 \text{ k}\Omega) \ln(0.0002441) \,\mu\text{s}
                    1.56 \mu s
                    0.2 \mu s + 1.56 \mu s + 1.2 \mu s
TACO
                    2.96 us
```

2.2 Selecting and Configuring Acquisition Time

The ADCON2 register allows the user to select an acquisition time that occurs each time the GO/DONE bit is set. It also gives users the option to use an automatically determined acquisition time.

Acquisition time may be set with the ACQT2:ACQT0 bits (ADCON2<5:3>), which provide a range of 2 to 20 TAD. When the GO/DONE bit is set, the A/D module continues to sample the input for the selected acquisition time, then automatically begins a conversion. Since the acquisition time is programmed, there may be no need to wait for an acquisition time between selecting a channel and setting the GO/DONE bit.

Manual acquisition is selected when ACQT2:ACQT0 = 000. When the GO/DONE bit is set, sampling is stopped and a conversion begins. The user is responsible for ensuring the required acquisition time has passed between selecting the desired input channel and setting the GO/DONE bit. This option is also the default Reset state of the ACQT2:ACQT0 bits and is compatible with devices that do not offer programmable acquisition times.

In either case, when the conversion is completed, the GO/DONE bit is cleared, the ADIF flag is set and the A/D begins sampling the currently selected channel again. If an acquisition time is programmed, there is nothing to indicate if the acquisition time has ended or if the conversion has begun.

2.3 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 13 TAD per 12-bit conversion. The source of the A/D conversion clock is software selectable. There are seven possible options for TAD:

- 2 Tosc
- 4 Tosc
- 8 Tosc
- 16 Tosc
- 32 Tosc
- 64 Tosc
- Internal RC Oscillator

For correct A/D conversions, the A/D conversion clock (TAD) must be as short as possible, but greater than the minimum TAD (see parameter 130 for more information).

Table 2-1 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

TABLE 2-1: TAD vs. DEVICE OPERATING FREQUENCIES

A/D Clock So	A/D Clock Source (TAD)				
Operation	ADCS2:ADCS0	Maximum Fosc			
2 Tosc	000	2.50 MHz			
4 Tosc	100	5.00 MHz			
8 Tosc	001	10.00 MHz			
16 Tosc	101	20.00 MHz			
32 Tosc	010	40.00 MHz			
64 Tosc	110	40.00 MHz			
RC ⁽¹⁾	x11	1.00 MHz ⁽²⁾			

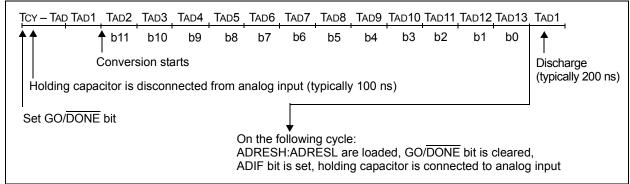
- **Note 1:** The RC source has a typical TAD time of 2.5 μ s.
 - 2: For device frequencies above 1 MHz, the device must be in Sleep for the entire conversion or a Fosc divider should be used instead; otherwise, the A/D accuracy specification may not be met.

2.6 A/D Conversions

Figure 2-4 shows the operation of the A/D Converter after the GO/DONE bit has been set and the ACQT2:ACQT0 bits are cleared. A conversion is started after the following instruction to allow entry into Sleep mode before the conversion begins.

Figure 2-5 shows the operation of the A/D Converter after the GO/DONE bit has been set, the ACQT2:ACQT0 bits are set to '010' and a 4 TAD acquisition time has been selected before the conversion starts.

Clearing the GO/DONE bit during a conversion will abort the current conversion. The A/D Result register pair will NOT be updated with the partially completed A/D conversion sample. This means the ADRESH:ADRESL registers will continue to contain the value of the last completed conversion (or the last value written to the ADRESH:ADRESL registers).


After the A/D conversion is completed or aborted, a 2 Tcy wait is required before the next acquisition can be started. After this wait, acquisition on the selected channel is automatically started.

Note: The GO/DONE bit should NOT be set in the same instruction that turns on the A/D. Code should wait at least 2 μs after enabling the A/D before beginning an acquisition and conversion cycle.

2.7 Discharge

The discharge phase is used to initialize the value of the holding capacitor. The array is discharged before every sample. This feature helps to optimize the unity gain amplifier, as the circuit always needs to charge the capacitor array, rather than charge/discharge based on previous measure values.

FIGURE 2-4: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 000, TACQ = 0)

FIGURE 2-5: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 010, TACQ = 4 TAD)

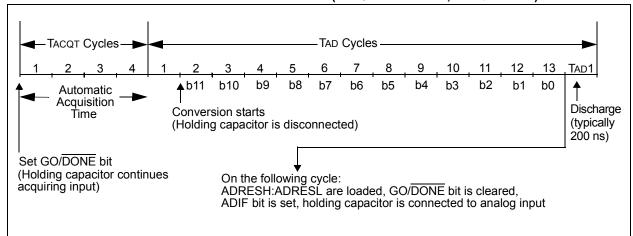


TABLE 4-1: A/D CONVERTER CHARACTERISTICS: PIC18F8723 FAMILY (INDUSTRIAL)

Param No.	Sym	Characteristic	Min	Тур	Мах	Units		Conditions
A01	NR	Resolution	_	_	12	bit		ΔV REF $\geq 3.0V$
A03	EIL	Integral Linearity Error	_	<±1	±2.0	LSB	VDD = 3.0V	ΔV REF $\geq 3.0V$
			_	_	±2.0	LSB	VDD = 5.0V	
A04	EDL	Differential Linearity Error	_	<±1	+1.5/-1.0	LSB	VDD = 3.0V	$\Delta VREF \ge 3.0V$
			_	_	+1.5/-1.0	LSB	VDD = 5.0V	
A06	Eoff	Offset Error	_	<±1	±5	LSB	VDD = 3.0V	$\Delta VREF \ge 3.0V$
			_	_	±3	LSB	VDD = 5.0V	
A07	Egn	Gain Error	_	<±1	±1.25	LSB	VDD = 3.0V	$\Delta VREF \ge 3.0V$
			_	_	±2.00	LSB	VDD = 5.0V	
A10	_	Monotonicity	Gı	uarantee	d ⁽¹⁾	_		VSS ≤ VAIN ≤ VREF
A20	ΔVREF	Reference Voltage Range (VREFH – VREFL)	3	_	VDD – VSS	V		For 12-bit resolution
A21	VREFH	Reference Voltage High	Vss + 3.0V	_	VDD + 0.3V	V		For 12-bit resolution
A22	VREFL	Reference Voltage Low	Vss - 0.3V	_	VDD - 3.0V	V		For 12-bit resolution
A25	VAIN	Analog Input Voltage	VREFL	_	VREFH	V		
A30	ZAIN	Recommended Impedance of Analog Voltage Source	_	_	2.5	kΩ		
A50	IREF	VREF Input Current ⁽²⁾		_	5 150	μA μA		During VAIN acquisition. During A/D conversion cycle.

Note 1: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

^{2:} VREFH current is from the RA3/AN3/VREF+ pin or VDD, whichever is selected as the VREFH source. VREFL current is from the RA2/AN2/VREF-/CVREF pin or VSS, whichever is selected as the VREFL source.

NOTES:

INDEX

A		F	
A/D	31	Features Summary Table	3
A/D Converter Interrupt, Configuring	35		
Acquisition Requirements	36	I	
ADCON0 Register	31	Internet Address	57
ADCON1 Register	31	Interrupt Sources	
ADCON2 Register	31	A/D Conversion Complete	35
ADRESH Register	31, 34	М	
ADRESL Register	31		
Analog Port Pins, Configuring	38	Microchip Internet Web Site	
Associated Registers	40	Migration From Baseline to Enhanced Devices	
Configuring the Module	35	Migration From High-End to Enhanced Devices	
Conversion Clock (TAD)	37	Migration From Mid-Range to Enhanced Devices	
Conversion Status (GO/DONE Bit)	34	More Information	
Conversions	39	Customer Notification System	
Converter Characteristics	46	Errata	7
Discharge	39	0	
Operation in Power-Managed Modes	38		
Selecting and Configuring Acquisition Time	37	Overview	_
Special Event Trigger (ECCP2)	40	External Memory Interface	
Transfer Function	35	Features Summary Table	
Use of the ECCP2 Trigger	40	Peripheral Highlights	
Absolute Maximum Ratings	43	Power-Managed Modes	
ADCON0 Register	31	Special Microcontroller Features	3
GO/DONE Bit	34	Р	
ADCON1 Register	31	Dealer sing Information	40
ADCON2 Register	31	Packaging Information	
ADRESH Register	31	Peripheral Highlights	c
ADRESL Register	31, 34	Pin Diagrams 64-Pin TQFP	,
Analog-to-Digital Converter. See A/D.			
В		80-Pin TQFPPin Functions	5
			20
Block Diagrams		AVDD (64-pin)	
A/D		AVDD (80-pin)	
Analog Input Model		AVSS (04-pin)	
PIC18F6628/6723			
PIC18F8628/8723	12	OSC1/CLKI/RA7 OSC2/CLKO/RA6	
С		RA0/AN0	
		RA1/AN1	-
Compare (ECCP2 Module)		RA2/AN2/VREF-	
Special Event Trigger		RA3/AN3/VREF+	,
Conversion Considerations		RA4/T0CKI	
Customer Change Notification Service		RA5/AN4/HLVDIN	
Customer Notification Service		RB0/INT0/FLT0	
Customer Notification System		RB1/INT1	
Customer Support	57	RB2/INT2	
D		RB3/INT3	,
Device Differences	E1	RB3/INT3/ECCP2/P2A	
Device ID Registers		RB4/KBI0	
•	41	RB5/KBI1/PGM	,
Device Overview	10	RB6/KBI2/PGC	
Features (table)		RB7/KBI3/PGD	
Special Features	9	RC0/T10S0/T13CKI	
E		RC1/T10SI/ECCP2/P2A	
Electrical Characteristics	13	RC2/ECCP1/P1A	-
Equations	4J	RC2/ECCP1/P1A	
·	36	RC4/SDI1/SDA1	,
A/D Minimum Charging Time		RC5/SD01	,
A/D Minimum Charging Time		RC6/TX1/CK1	
Calculating the Minimum Required Acquisition			
Errata		RC7/RX1/DT1 RD0/AD0/PSP0	
External Memory Interface	3		
		RD0/PSP0	17

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- · Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- · Technical Support
- · Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

lo:	Technical Publications Manager	Total Pages Sent
RE:	Reader Response	
Fron	n: Name	
	• •	
		FAV. (
Δnnl	Telephone: () lication (optional):	FAX: ()
	ıld you like a reply?YN	
	· —	Liv. A. Al. A. Boosse (B.
Devi	ice: PIC18F8723 Family	Literature Number: DS39894B
Que	stions:	
1. \	What are the best features of this do	cument?
-		
-		
2.	How does this document meet your h	nardware and software development needs?
-		
-		
3. I	Do you find the organization of this d	ocument easy to follow? If not, why?
-		
4. \	What additions to the document do y	ou think would enhance the structure and subject?
-		
5. \	Mhat dalations from the decument of	ould be made without affecting the overall usefulness?
5.	what deletions from the document of	ould be made without affecting the overall dselumess?
-		
6. I	Is there any incorrect or misleading in	nformation (what and where)?
0	is there any moon out of microading in	manation (what and micro).
-		
7. I	How would you improve this docume	ent?
-		
-		