

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

ĿХF

Product Status	Active
Core Processor	ARM® Cortex®-A5
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	536MHz
Co-Processors/DSP	-
RAM Controllers	LPDDR, LPDDR2, DDR2
Graphics Acceleration	No
Display & Interface Controllers	Touchscreen
Ethernet	10/100/1000Mbps (1)
SATA	-
USB	USB 2.0 (3)
Voltage - I/O	1.2V, 1.8V, 3.3V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	AES, SHA, TDES, TRNG
Package / Case	324-LFBGA
Supplier Device Package	324-LFBGA (15x15)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsama5d35a-cn

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

10.5 Debug and Test Pin Description

Pin Name	Function	Туре	Active Level		
	Reset/Test				
NRST	Microcontroller Reset	Input/Output	Low		
TST	Test Mode Select	Input	High		
	ICE and JTAG				
NTRST	Test Reset Signal	Input	Low		
ТСК	Test Clock	Input			
TDI	Test Data In	Input			
TDO	Test Data Out	Output			
TMS	Test Mode Select	Input			
JTAGSEL	JTAG Selection	Input			
	SWD				
SWCLK	Serial Debug Clock	Input			
SWDIO	Serial Debug IO	Input/Output			
	Debug Unit				
DRXD	Debug Receive Data	Input			
DTXD	Debug Transmit Data	Output			

Table 10-1. Debug and Test Pin List

15.3.2 OHCI Interrupt Configuration Register

Name:	SFR_OHCIICR						
Address:	0xF0038010						
Access:	Read/Write						
31	30	29	28	27	26	25	24
-	-	_	_	-	_	_	_
23	22	21	20	19	18	17	16
UDPPUDIS	6 –	_	_	_	_	_	-
15	14	13	12	11	10	9	8
-	-	_	_	-	_	_	-
7	6	5	4	3	2	1	0
_	_	APPSTART	ARIE	_	RES2	RES1	RES0

• RESx: USB PORTx RESET

0: Resets USB PORT.

1: Usable USB PORT.

ARIE: OHCI Asynchronous Resume Interrupt Enable

0: Interrupt disabled.

1: Interrupt enabled.

• APPSTART: Reserved

0: Must write 0.

UDPPUDIS: USB DEVICE PULL-UP DISABLE

0: USB device pull-up connection is enabled.

1: USB device pull-up connection is disabled.

APDE: Active Power Down Exit Time

Reset value is 1.

This mode is unique to the DDR2-SDRAM devices.

This mode manages the active Power-down mode which determines performance versus power saving.

Val	ue Nai	ime	Description
0	DD	DR2_FAST_EXIT	Fast Exit from Power Down. DDR2-SDRAM devices only.
1	DD	DR2_SLOW_EXIT	Slow Exit from Power Down. DDR2-SDRAM devices only.

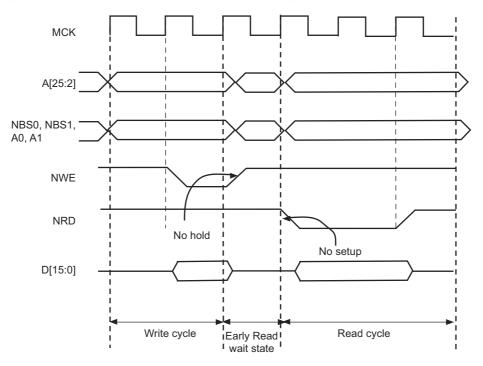
After the initialization sequence, as soon as the APDE field is modified, the Extended Mode Register (located in the memory of the external device) is accessed automatically and APDE bits are updated. Depending on the UPD_MR bit, update is done before entering Self-refresh mode or during a refresh command and a pending read or write access

• UPD_MR: Update Load Mode Register and Extended Mode Register

Reset value is 0.

This bit is used to enable or disable automatic update of the Load Mode Register and Extended Mode Register. This update depends on the MPDDRC integration in a system. MPDDRC can either share or not an external bus with another controller.

Value	Name	Description
0	NO_UPDATE	Update of Load Mode and Extended Mode registers is disabled.
1	UPDATE_SHAREDBUS	MPDDRC shares an external bus. Automatic update is done during a refresh command and a pending read or write access in the SDRAM device.
2	UPDATE_NOSHAREDBUS	MPDDRC does not share an external bus. Automatic update is done before entering Self- refresh mode.
3	_	Reserved

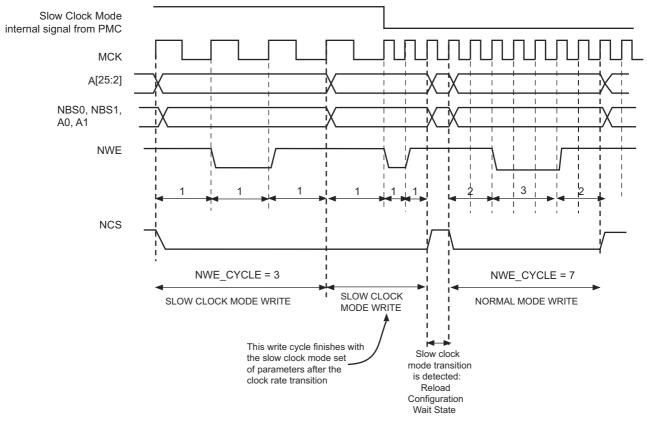

30.12.2 Early Read Wait State

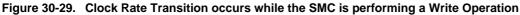
In some cases, the SMC inserts a wait state cycle between a write access and a read access to allow time for the write cycle to end before the subsequent read cycle begins. This wait state is not generated in addition to a chip select wait state. The early read cycle thus only occurs between a write and read access to the same memory device (same chip select).

An early read wait state is automatically inserted if at least one of the following conditions is valid:

- if the write controlling signal has no hold time and the read controlling signal has no setup time (Figure 30-14).
- in NCS Write Controlled mode (WRITE_MODE = 0), if there is no hold timing on the NCS signal and the NCS_RD_SETUP parameter is configured to 0, regardless of the Read mode (Figure 30-15). The write operation must end with an NCS rising edge. Without an Early Read Wait State, the write operation could not complete properly.
- in NWE Controlled mode (WRITE_MODE = 1) and if there is no hold timing (NWE_HOLD = 0), the feedback of the write control signal is used to control address, data, chip select and byte select lines. If the external write control signal is not inactivated as expected due to load capacitances, an Early Read Wait State is inserted and address, data and control signals are maintained one more cycle. See Figure 30-16.

Figure 30-14. Early Read Wait State: Write with No Hold Followed by Read with No Setup





30.15.2 Switching from (to) Slow Clock Mode to (from) Normal Mode

When switching from Slow Clock mode to Normal mode, the current Slow Clock mode transfer is completed at high clock rate, with the set of Slow Clock mode parameters. See Figure 30-29. The external device may not be fast enough to support such timings.

Figure 30-30 illustrates the recommended procedure to properly switch from one mode to the other.

30.17.2.4 NFC DATA Status

Name:	NFCDATA_STATUS									
Access:	Read-only									
31	30	29	28	27	26	25	24			
-	_	_	-	NFCBUSY	NFCWR	DATAEN	CSID			
23	22	21	20	19	18	17	16			
	CSID		ACYCLE		VCMD2	CM	ID2			
15	14	13	12	11	10	9	8			
		CI	MD2			CM	ID1			
7	6	5	4	3	2	1	0			
		CI	MD1			-	-			

CMD1: Command Register Value for Cycle 1

When a Read or Write Access occurs, the Physical Memory Interface drives the IO bus with CMD1 field during the Command Latch cycle 1.

CMD2: Command Register Value for Cycle 2

When VCMD2 bit is set to true, the Physical Memory Interface drives the IO bus with CMD2 field during the Command Latch cycle 2.

• VCMD2: Valid Cycle 2 Command

When set to true, the CMD2 field is issued after addressing cycle.

ACYCLE: Number of Address Required for the Current Command

When ACYCLE field is different from zero, ACYCLE Address cycles are performed after Command Cycle 1.

• CSID: Chip Select Identifier

Chip select used

• DATAEN: NFC Data Phase Enable

When set to true, the NFC data phase is enabled.

• NFCWR: NFC Write Enable

0: NFC is in Read mode.

1: NFC is in Write mode.

• NFCBUSY: NFC Busy Status Flag

If set to true, it indicates that the NFC is busy.

30.20.6 NFC Interrupt Mask Register

Name: Address:	HSMC_IMR 0xFFFFC014						
Access:	Read-only						
31	30	29	28	27	26	25	24
_	_	_	_	_	_	_	RB_EDGE0
00	-	04	-	10	40	47	40
23	22	21	20	19	18	17	16
NFCASE	AWB	UNDEF	DTOE	-	-	CMDDONE	XFRDONE
15	14	13	12	11	10	9	8
-	-	-	-	-	-	-	-
7	6	5	4	3	2	1	0
_	—	RB_FALL	RB_RISE	_	_	_	_

• RB_RISE: Ready Busy Rising Edge Detection Interrupt Mask

- 0: Interrupt source disabled
- 1: Interrupt source enabled

• RB_FALL: Ready Busy Falling Edge Detection Interrupt Mask

- 0: Interrupt source disabled
- 1: Interrupt source enabled

• XFRDONE: Transfer Done Interrupt Mask

- 0: Interrupt source disabled
- 1: Interrupt source enabled

CMDDONE: Command Done Interrupt Mask

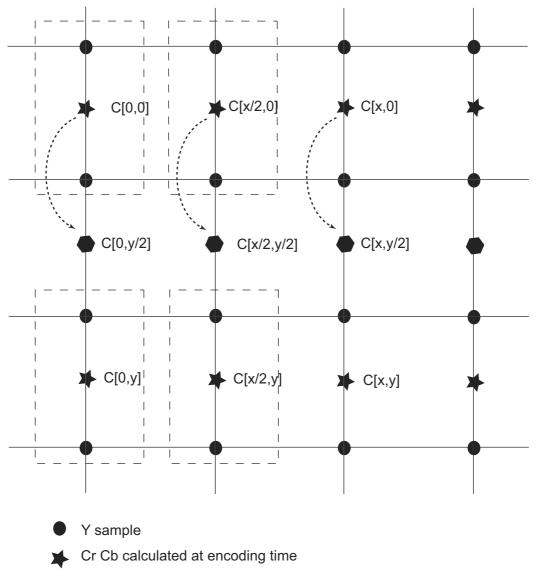
- 0: Interrupt source disabled
- 1: Interrupt source enabled

• DTOE: Data Timeout Error Interrupt Mask

- 0: Interrupt source disabled
- 1: Interrupt source enabled

UNDEF: Undefined Area Access Interrupt Mask5

- 0: Interrupt source disabled
- 1: Interrupt source enabled


AWB: Accessing While Busy Interrupt Mask

- 0: Interrupt source disabled
- 1: Interrupt source enabled

Figure 32-3. 4:2:2 Packed Upsampling Algorithm

Vertical and Horizontal upsampling 4:2:2 to 4:4:4 conversion 90 or 270 degree

Cr Cb from the previous line (interpolated)

33.6.5 ISI Color Space Conversion YCrCb to RGB Set 0 Register

Name:	ISI_Y2R_SET0									
Address:	0xF0034010									
Access:	Read/Write									
31	30	29	28	27	26	25	24			
			C	3						
23	22	21	20	19	18	17	16			
			C	2						
15	14	13	12	11	10	9	8			
	C1									
7	6	5	4	3	2	1	0			
			C)						

• C0: Color Space Conversion Matrix Coefficient C0

C0 element default step is 1/128, ranges from 0 to 1.9921875.

• C1: Color Space Conversion Matrix Coefficient C1

C1 element default step is 1/128, ranges from 0 to 1.9921875.

• C2: Color Space Conversion Matrix Coefficient C2

C2 element default step is 1/128, ranges from 0 to 1.9921875.

• C3: Color Space Conversion Matrix Coefficient C3

C3 element default step is 1/128, ranges from 0 to 1.9921875.

33.6.13 ISI Interrupt Disable Register

Name: Address:	ISI_IDR 0xF0034030						
Access:	Read/Write						
31	30	29	28	27	26	25	24
_	_	_	_	FR_OVR	CRC_ERR	C_OVR	P_OVR
23	22	21	20	19	18	17 CXFR_DONE	16 PXFR_DONE
15	14	13	12	11	10	9	8
—	-	-	—	—	VSYNC	-	—
7	6	5	4	3	2	1	0
_	_	_	—	-	SRST	DIS_DONE	-

• DIS_DONE: Disable Done Interrupt Disable

0: No effect.

1: Disables the corresponding interrupt.

• SRST: Software Reset Interrupt Disable

- 0: No effect.
- 1: Disables the corresponding interrupt.

• VSYNC: Vertical Synchronization Interrupt Disable

- 0: No effect.
- 1: Disables the corresponding interrupt.

• PXFR_DONE: Preview DMA Transfer Done Interrupt Disable

0: No effect.

1: Disables the corresponding interrupt.

CXFR_DONE: Codec DMA Transfer Done Interrupt Disable

0: No effect.

1: Disables the corresponding interrupt.

• P_OVR: Preview Datapath Overflow Interrupt Disable

0: No effect.

1: Disables the corresponding interrupt.

• C_OVR: Codec Datapath Overflow Interrupt Disable

- 0: No effect.
- 1: Disables the corresponding interrupt.

• RXRDY_TXKL: Received OUT Data Interrupt Enable

0: No effect.

1: Enable Received OUT Data Interrupt.

• TX_COMPLT: Transmitted IN Data Complete Interrupt Enable

0: No effect.

1: Enable Transmitted IN Data Complete Interrupt.

• TXRDY_TRER: TX Packet Ready/Transaction Error Interrupt Enable

0: No effect.

1: Enable TX Packet Ready/Transaction Error Interrupt.

• ERR_FL_ISO: Error Flow Interrupt Enable

0: No effect.

1: Enable Error Flow ISO Interrupt.

• ERR_CRC_NTR: ISO CRC Error/Number of Transaction Error Interrupt Enable

0: No effect.

1: Enable Error CRC ISO/Error Number of Transaction Interrupt.

• ERR_FLUSH: Bank Flush Error Interrupt Enable

0: No effect.

1: Enable Bank Flush Error Interrupt.

• BUSY_BANK: Busy Bank Interrupt Enable

0: No effect.

1: Enable Busy Bank Interrupt.

• SHRT_PCKT: Short Packet Send/Short Packet Interrupt Enable

For OUT endpoints:

0: No effect.

1: Enable Short Packet Interrupt.

For IN endpoints: Guarantees short packet at end of DMA Transfer if the UDPHS_DMACONTROLx register END_B_EN and UDPHS_EPTCTLx register AUTOVALID bits are also set.

At reset all interrupts are disabled. To enable an interrupt, write to Interrupt Enable register with the pertinent interrupt bit set to 1. To disable an interrupt, write to Interrupt Disable register with the pertinent interrupt bit set to 1. To check whether an interrupt is enabled or disabled, read Interrupt Mask register. If the bit is set to 1, the interrupt is disabled.

36.7.1.7 Transmitting Frames

The procedure to set up a frame for transmission is the following:

- 1. Enable transmit in the Network Control register.
- 2. Allocate an area of system memory for transmit data. This does not have to be contiguous, varying byte lengths can be used if they conclude on byte borders.
- 3. Set-up the transmit buffer list by writing buffer addresses to word zero of the transmit buffer descriptor entries and control and length to word one.
- 4. Write data for transmission into the buffers pointed to by the descriptors.
- 5. Write the address of the first buffer descriptor to transmit buffer descriptor queue pointer.
- 6. Enable appropriate interrupts.
- 7. Write to the transmit start bit (TSTART) in the Network Control register.

• WOL: Wake On LAN

WOL interrupt. Indicates a WOL event has been received.

37.6.9 Interrupt Enable Register

Name: Address: Access:	EMAC_IER 0xF802C028 Write-only						
ALLESS.	write-only						
31	30	29	28	27	26	25	24
-	-	-	-	-	-	_	-
			-		-		<u>.</u>
23	22	21	20	19	18	17	16
_	-	_	-	-	-	_	-
	-	-	-		-		
15	14	13	12	11	10	9	8
_	WOL	PTZ	PFR	HRESP	ROVR	_	—
7	6	5	4	3	2	1	0
TCOMP	TXERR	RLE	TUND	TXUBR	RXUBR	RCOMP	MFD

• MFD: Management Frame Done

Enable management done interrupt.

• RCOMP: Receive Complete

Enable receive complete interrupt.

• RXUBR: Receive Used Bit Read

Enable receive used bit read interrupt.

• TXUBR: Transmit Used Bit Read

Enable transmit used bit read interrupt.

• TUND: Ethernet Transmit Buffer Underrun

Enable transmit underrun interrupt.

• RLE: Retry Limit Exceeded

Enable retry limit exceeded interrupt.

• TXERR: Transmit Error

Enable transmit buffers exhausted in mid-frame interrupt.

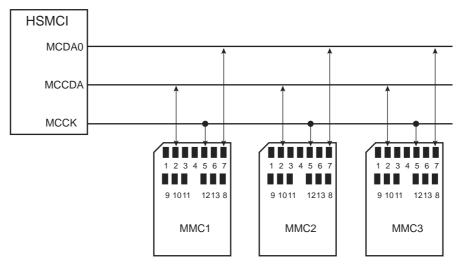
• TCOMP: Transmit Complete

Enable transmit complete interrupt.

• ROVR: Receive Overrun

Enable receive overrun interrupt.

• HRESP: Hresp Not OK


Enable Hresp not OK interrupt.

PFR: Pause Frame Received

Enable pause frame received interrupt.

Figure 38-5. MMC Bus Connections (One Slot)

Note: When several HSMCI (x HSMCI) are embedded in a product, MCCK refers to HSMCIx_CK, MCCDA to HSMCIx_CDA MCDAy to HSMCIx_DAy.

Figure 38-6. SD Memory Card Bus Topology

The SD Memory Card bus includes the signals listed in Table 38-6.

 Table 38-6.
 SD Memory Card Bus Signals

Pin Number	Name	Type ⁽¹⁾	Description	HSMCI Pin Name ⁽²⁾ (Slot z)
1	CD/DAT[3]	I/O/PP	Card detect/ Data line Bit 3	MCDz3
2	CMD	PP	Command/response	MCCDz
3	VSS1	S	Supply voltage ground	VSS
4	VDD	S	Supply voltage	VDD
5	CLK	I/O	Clock	MCCK
6	VSS2	S	Supply voltage ground	VSS
7	DAT[0]	I/O/PP	Data line Bit 0	MCDz0
8	DAT[1]	I/O/PP	Data line Bit 1 or Interrupt	MCDz1
9	DAT[2]	I/O/PP	Data line Bit 2	MCDz2

Notes: 1. I: input, O: output, PP: Push Pull, OD: Open Drain.

2. When several HSMCI (x HSMCI) are embedded in a product, MCCK refers to HSMCIx_CK, MCCDA to HSMCIx_CDA, MCCDB to HSMCIx_CDB, MCDAy to HSMCIx_DAy, MCDBy to HSMCIx_DBy.

41.8.10 Register Write Protection

To prevent any single software error from corrupting AIC behavior, certain registers in the address space can be write-protected by setting the WPEN bit in the SSC Write Protection Mode Register (SSC_WPMR).

If a write access to a write-protected register is detected, the WPVS flag in the SSC Write Protection Status Register (SSC_WPSR) is set and the field WPVSRC indicates the register in which the write access has been attempted.

The WPVS bit is automatically cleared after reading the SSC_WPSR.

The following registers can be write-protected:

- SSC Clock Mode Register
- SSC Receive Clock Mode Register
- SSC Receive Frame Mode Register
- SSC Transmit Clock Mode Register
- SSC Transmit Frame Mode Register
- SSC Receive Compare 0 Register
- SSC Receive Compare 1 Register

• RXSYN: Rx Sync Interrupt Enable

0: No effect.

1: Enables the Rx Sync Interrupt.

• ETRGS: External Trigger

0: No effect.

1: Disables the External Trigger Interrupt.

• ETRGS: External Trigger

- 0: The External Trigger Interrupt is disabled.
- 1: The External Trigger Interrupt is enabled.

49.7.19 ADC Analog Control Register

Name:	ADC_ACR						
Address:	0xF8018094						
Access:	Read/Write						
31	30	29	28	27	26	25	24
_	-	-	-	-	-	_	-
23	22	21	20	19	18	17	16
_	-	—	_	-	—	_	-
15	14	13	12	11	10	9	8
_	-	-	_	-	-	-	-
7	6	5	4	3	2	1	0
-	_	-	-	-	-	PENDE	TSENS

This register can only be written if the WPEN bit is cleared in the ADC Write Protection Mode Register.

• PENDETSENS: Pen Detection Sensitivity

Modifies the pen detection input pull-up resistor value. See the section 'Electrical Characteristics' for further details.