

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	e200z2, e200z4, e200z4
Core Size	32-Bit Tri-Core
Speed	80MHz/160MHz
Connectivity	CANbus, Ethernet, FlexRay, I ² C, LINbus, SPI, UART/USART
Peripherals	DMA, LVD, POR, Zipwire
Number of I/O	-
Program Memory Size	2.5MB (2.5M x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 12b SAR, 16b Sigma-Delta
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP Exposed Pad
Supplier Device Package	176-eLQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/spc574k72e7c6far

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	3.12.2	External oscillator (XOSC)	53
	3.12.3	Internal oscillator (IRCOSC)	55
3.13	ADC sp	pecifications	56
	3.13.1	ADC input description	56
	3.13.2	SAR ADC electrical specification	59
	3.13.3	S/D ADC electrical specification	64
3.14	Temper	rature sensor	72
3.15	LVDS F	Fast Asynchronous Serial Transmission (LFAST) pad electrical	 72
	3.15.1	LFAST interface timing diagrams	73
	3.15.2	LFAST and MSC/DSPI LVDS interface electrical characteristics .	74
	3.15.3	LFAST PLL electrical characteristics	77
3.16	Aurora	LVDS electrical characteristics	78
3.17	Power	management: PMC, POR/LVD, sequencing	79
	3.17.1	Power management integration	80
	3.17.2	Main voltage regulator electrical characteristics	80
	3.17.3	Device voltage monitoring	82
	3.17.4	Power up/down sequencing	84
3.18	Flash n	nemory electrical characteristics	85
	3.18.1	Flash read wait state and address pipeline control settings	88
3.19	AC spe	cifications	89
	3.19.1	Debug and calibration interface timing	89
	3.19.2	DSPI timing with CMOS and LVDS pads	96
	3.19.3	FEC timing	112
	3.19.4	FlexRay timing	115
	3.19.5	PSI5 timing	118
	3.19.6	UART timing	119
	3.19.7	I2C timing	119
	3.19.8	GPIO delay timing	121
Packa	age cha	aracteristics	122
4.1	ECOPA	ACK [®] ·····	122
4.2	eTQFP	144 case drawing	123
4.3	eLQFP	176 case drawing	125
4.4	Fusion	Quad [®] case drawing	126
4.5	Therma	al characteristics	131

DocID023601 Rev 6

4

DocID023601 Rev 6

13/160

SPC574Kx

2 Package pinouts and signal descriptions

2.1 Package pinouts

The QFP and FusionQuad[®] package pinouts are shown in *Figure 3* and *Figure 4*.

DocID023601 Rev 6

	Port				Package p	in number
Functional block	pin	Signal	Signal description	Direction	eTQFP144, FQ172	eLQFP176, FQ216
Differential DSPI 2	PD[3]	SCK_N	Differential DSPI 2 Clock, LVDS Negative Terminal	0	128	156
	PD[2]	SCK_P	Differential DSPI 2 Clock, LVDS Positive Terminal	0	129	157
	PD[1]	SOUT_N	Differential DSPI 2 Serial Output, LVDS Negative Terminal	0	130	158
	PD[0]	SOUT_P	Differential DSPI 2 Serial Output, LVDS Positive Terminal	0	131	159
	PF[13]	SIN_N	Differential DSPI 2 Serial Input, LVDS Negative Terminal	I	84	107
	PD[7]	SIN_P	Differential DSPI 2 Serial Input, LVDS Positive Terminal	I	85	108
Differential DSPI 5	PF[9]	SCK_N	Differential DSPI 5 Clock, LVDS Negative Terminal	0	74	95
	PF[10]	SCK_P	Differential DSPI 5 Clock, LVDS Positive Terminal	0	75	96
	PF[11]	SOUT_N	Differential DSPI 5 Serial Output, LVDS Negative Terminal	0	76	97
	PF[12]	SOUT_P	Differential DSPI 5 Serial Output, LVDS Positive Terminal	0	77	98
	PF[13]	SIN_N	Differential DSPI 5 Serial Input, LVDS Negative Terminal	I	84	107
	PD[7]	SIN_P	Differential DSPI 5 Serial Input, LVDS Positive Terminal	I	85	108

Table 4. LVDSM pin descriptions(Continued)

 DRCLK and TCK/DRCLK usage for SIPI LFAST and Debug LFAST are described in the SPC574Kxx reference manual, refer to SIPI LFAST and Debug LFAST chapters.

2. Pads use special enable signal from DCI block: DCI driven enable for Debug LFAST pads is transparent to user.

3.12 Oscillator and FMPLL

3.12.1 FMPLL

Two frequency-modulated phase-locked loop (FMPLL) modules, the Reference PLL (PLL0) and the System PLL (PLL1) generate the system and auxiliary clocks from the main oscillator driver.

Table 26. PLL0 electrical characteristics

Symbol		6	Paramatar	Conditions		Value	ŀ	Unit
Symbol		C	Falameter	Conditions	Min	Тур	Max	Unit
f _{PLL0IN}	SR	_	PLL0 input clock ^{(1),(2)}	—	8		44	MHz
Δ_{PLL0IN}	SR		PLL0 input clock duty cycle ⁽¹⁾		40	_	60	%
f _{PLL0VCO}	СС	Р	PLL0 VCO frequency	—	600	—	1250	MHz
f _{PLL0PHI}	СС	D	PLL0 clock output frequency on PHI	_	_	_	400	MHz
f _{PLL0PHI1}	СС	D	PLL0 clock output frequency on PHI1	_	_	—	78	MHz
t _{PLL0LOCK}	СС	Ρ	PLL0 lock time	—		—	110	μs
Apllophiospjit	СС	Т	PLL0_PHI0 single period jitter f _{PLL0IN} = 20 MHz (resonator)	f _{PLL0PHI0} = 400 MHz, 6- sigma pk-pk	_	_	200	ps
	СС	Т	PLL0_PHI1 single period jitter f _{PLL0IN} = 20 MHz (resonator)	f _{PLL0PHI1} = 40MHz, 6- sigma pk-pk	_	_	300 ⁽³⁾	ps

1. The typical user trim step size δf_{TRIM} = 0.35 %.

3.13 ADC specifications

3.13.1 ADC input description

Figure 15 shows the input equivalent circuit for fast SARn channels.

Figure 15. Input equivalent circuit (Fast SARn channels)

Figure 16 shows the input equivalent circuit for SARB channels.

Symbol		~	Parameter Conditions			Value		Unit
Бульог		U	Parameter	Conditions	Min	Тур	Max	Unit
R _{BIAS}	CC	D	bias resistance	—	110	144	180	kΩ
ΔV _{INTCM}	СС	D	Common mode input reference voltage	_	-12		12	%
V _{BIAS}	СС	D	Bias voltage	_	—	V _{DD_HV_} _{ADR} /2	_	V
δV _{BIAS}	СС	D	Bias voltage accuracy	_	-2.5	—	+2.5	%
CMRR	SR	D	Common mode rejection ratio	_	54	—		dB
R _{Caaf}	SR	D	Anti-aliasing filter	External series resistance		—	20	kΩ
	CC	D		Filter capacitances	180	—		pF
f _{PASSBAND}	СС	D	Pass band ⁽¹⁶⁾	_	0.01	—	0.333 * f _{ADCD_S}	KHz
δ _{RIPPLE}	CC	D	Pass band ripple ⁽¹⁷⁾	0.333 * f _{ADCD_S}	-1	—	1	%
F _{rolloff}	CC	D	Stop band	[0.5 * f _{ADCD_S} , 1.0 * f _{ADCD_S}]	40	—		dB
			attenuation	[1.0 * f _{ADCD_S} , 1.5 * f _{ADCD_S}]	45	—	-	
				[1.5 * f _{ADCD_S} , 2.0 * f _{ADCD_S}]	50	—		
				[2.0 * f _{ADCD_S} , 2.5 * f _{ADCD_S}]	55	_	_	
				[2.5 * f _{ADCD_S} , f _{ADCD_M} /2]	60	_	_	

Table 34. SDn ADC electrical specification⁽¹⁾(Continued)

- Valid for maximum data rate f_{DATA}. Value given is the capacitance on each terminal of the differential pair, as shown in Figure 21.
- 4. Valid for maximum external load C_L.

3.15.3 LFAST PLL electrical characteristics

The following table contains the electrical characteristics for the LFAST PLL.

Symbo	ol	C	Parameter	Conditions		Unit		
Symbo		5	Falameter	Conditions	Min	Nominal	Max	Unit
f _{RF_REF}	SR	D	PLL reference clock frequency	—	10	_	26	MHz
ERR _{REF}	СС	D	PLL input reference clock frequency error		-1	_	1	%
DC _{REF}	CC	D	PLL input reference clock duty cycle	—	45	—	55	%

Table 39. LFAST PLL electrical characteristics⁽¹⁾

3. Startup time is defined as the time taken by LVDS receiver for settling after its pwr_down (power down) has been deasserted. Here it is assumed that current reference is already stable (see Bias start-up time). LVDS functionality is guaranteed only after the startup time.

3.19.1.4 Aurora debug port timing

#	Symbol		6	Characteristic		Value		Unit
#	Symbo	1	C	Characteristic		Min	Max	Unit
1	t _{REFCLK}	CC	Т	Reference clock frequency		625	1250	MHz
1a	t _{MCYC}	CC	Т	Reference clock rise/fall time		_	400	ps
2	t _{RCDC}	CC	D	Reference clock duty cycle		45	55	%
3	J _{RC}	CC	D	Reference clock jitter			40	ps
4	t _{STABILITY}	CC	D	Reference clock stability	Reference clock stability			PPM
5	BER	CC	D	Bit error rate		_	10 ⁻¹²	—
6	J _D	SR	D	Transmit lane deterministic jitter		_	0.17	OUI
7	J _T	SR	D	Transmit lane total jitter			0.35	OUI
8	S _O	CC	Т	Differential output skew		_	20	ps
9	S _{MO}	CC	Т	Lane to lane output skew			1000	ps
10	OUI	CC	D	Aurora lane unit interval ⁽¹⁾	625 Mbps	1600	1600	ps
			D		1.25 Gbps	800	800	

Table 51. Aurora debug port timing

1. ± 100 PPM

	Table 52. DSPT channel nequency support (continued)							
	DSPI use mode	Max usable frequency (MHz) ^{(1),(2)}						
LVDS (Master mode)	Full duplex – Modified timing (<i>Table 55</i>)	33						
	Output only mode TSB mode (SCK/SOUT/PCS) (Table 56)	40						
CMOS Slave mode	Full duplex (<i>Table 58</i>)	16						

Table 52. DSPI channel frequency support(Continued)

1. Maximum usable frequency can be achieved if used with fastest configuration of the highest drive pads.

2. Maximum usable frequency does not take into account external device propagation delay.

3.19.2.1 DSPI master mode full duplex timing with CMOS and LVDS pads

3.19.2.1.1 DSPI CMOS Master Mode – Classic Timing

Table 53. DSPI CMOS master classic timing (full duplex and output only) – MTFE = 0, CPHA =	0 or
1 ⁽¹⁾	

#	Sumb	.	6	Characteristic	Conc	dition	Value ⁽²	2)	l lmit
#	Symp	OI	C	Characteristic	Pad drive ⁽³⁾	Load (C _L)	Min	Мах	Unit
1	t _{SCK}	CC	D	SCK cycle time	SCK drive streng	gth			
					Very strong	25 pF	33.0	-	ns
					Strong	50 pF	80.0		
					Medium	50 pF	200.0		
2	t _{CSC}	СС	D	PCS to SCK delay	SCK and PCS d	rive strength			
					Very strong	25 pF	$(N^{(4)} \times t_{SYS}^{(5)}) - 16$	—	ns
					Strong	50 pF	$(N^{(4)} \times t_{SYS}^{(5)}) - 16$	—	
					Medium	50 pF	$(N^{(4)} \times t_{SYS}^{(5)}) - 16$	—	
					PCS medium and SCK strong	PCS = 50 pF SCK = 50 pF	$(N^{(4)} \times t_{SYS}^{(5)}) - 29$	—	
3	t _{ASC}	СС	D	After SCK delay	SCK and PCS d	rive strength			•
					Very strong	PCS = 0 pF SCK = 50 pF	$(M^{(6)} \times t_{SYS}^{(5)}) - 35$	—	ns
					Strong	PCS = 0 pF SCK = 50 pF	$(M^{(6)} \times t_{SYS}^{(5)}) - 35$	—	
					Medium	PCS = 0 pF SCK = 50 pF	$(M^{(6)} \times t_{SYS}^{(5)}) - 35$	—	
					PCS medium and SCK strong	PCS = 0 pF SCK = 50 pF	$(M^{(6)} \times t_{SYS}^{(5)}) - 35$	—	

- 4. N is the number of clock cycles added to time between PCS assertion and SCK assertion and is software programmable using DSPI_CTARx[PSSCK] and DSPI_CTARx[CSSCK]. The minimum value is 2 cycles unless TSB mode or Continuous SCK clock mode is selected, in which case, N is automatically set to 0 clock cycles (PCS and SCK are driven by the same edge of DSPI_CLKn).
- 5. t_{SYS} is the period of DSPI_CLKn clock, the input clock to the DSPI module. Maximum frequency is 100 MHz (min t_{SYS} = 10 ns).
- 6. M is the number of clock cycles added to time between SCK negation and PCS negation and is software programmable using DSPI_CTARx[PASC] and DSPI_CTARx[ASC]. The minimum value is 2 cycles unless TSB mode or Continuous SCK clock mode is selected, in which case, M is automatically set to 0 clock cycles (PCS and SCK are driven by the same edge of DSPI_CLKn).
- 7. t_{SDC} is only valid for even divide ratios. For odd divide ratios the fundamental duty cycle is not 50:50. For these odd divide ratios cases, the absolute spec number is applied as jitter/uncertainty to the nominal high time and low time.
- 8. PCSx and PCSS using same pad configuration.
- 9. Input timing assumes an input slew rate of 1 ns (10% 90%) and uses TTL / Automotive voltage thresholds.
- 10. SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the same value.

3.19.4 FlexRay timing

This section provides the FlexRay Interface timing characteristics for the input and output signals.

These are recommended numbers as per the FlexRay EPL v3.0 specification, and subject to change per the final timing analysis of the device.

3.19.4.1 TxEN

Table 62. TxEN output characteristics⁽¹⁾

Symbol		c	Charactoristic	Va	ue	Unit
Gymbol		>	onaracteristic	Min	Max	onin
dCCTxEN _{RISE25}	СС	D	Rise time of TxEN signal at CC	—	9	ns
dCCTxEN _{FALL25}	CC	D	Fall time of TxEN signal at CC	_	9	ns

			U				
Symbo	1	c	Barrantan		Value		
Symbo	1	C	Parameter	Min	Мах	Unit	
t _{MSG_DLY}	CC	D	Delay from last bit of frame (CRC0) to assertion of new message received interrupt	_	3	μs	
t _{SYNC_DLY}	CC	D	Delay from internal sync pulse to sync pulse trigger at the SDOUT_PSI5_n pin	_	2	μs	
t _{MSG_JIT}	CC	D	Delay jitter from last bit of frame (CRC0) to assertion of new message received interrupt	_	1	cycles ⁽¹⁾	
t _{SYNC_JIT}	CC	D	Delay jitter from internal sync pulse to sync pulse trigger at the SDOUT_PSI5_n pin	_	±(1 PSI5_1µs_CLK + 1 PBRIDGEn_CLK)	cycles	

Table 65. PSI5 timing

1. Measured in PSI5 clock cycles (PBRIDGEn_CLK on the device). Minimum PSI5 clock period is 20 ns.

3.19.6 UART timing

UART channel frequency support is shown in the following table.

LINFlexD clock frequency LIN_CLK (MHz)	Oversampling rate	Voting scheme	Max usable frequency (Mbaud)
80	16	3:1 majority voting	5
	8		10
	6	Limited voting on one	13.33
	5	sample with configurable sampling point	16
	4		20
100	16	3:1 majority voting	6.25
	8		12.5
	6	Limited voting on one	16.67
	5	sample with configurable sampling point	20
	4		25

Table 66. UART frequency support

3.19.7 I²C timing

The I²C AC timing specifications are provided in the following tables.

No Symbo		bol	c	Beremeter	Value		Unit	
NO.	. Symbol C		0	Falameter		Max		
1	_	CC	D	Start condition hold time	2		PER_CLK Cycle ⁽²⁾	
2	_	CC	D	Clock low time	8	_	PER_CLK Cycle	

Table 67. I^2C input timing specifications — SCL and SDA⁽¹⁾

3.19.8 GPIO delay timing

The GPIO delay timing specification is provided in the following table.

Table 69. GPIO delay timing

Symbol		6	Parameter		Unit	
		C		Min	Max	Unit
IO_delay	CC	D	Delay from MSCR bit update to pad function enable	5	25	ns

4.2 eTQFP144 case drawing

Figure 50. eTQFP144 – STMicroelectronics package mechanical drawing (1 of 2)

DocID023601 Rev 6

Figure 55. FusionQuad[®] QFP172 package mechanical drawing (2 of 2)

MECHANICAL OUTLINE ASSEMBLY NOTES 1. ALL DIMENSIONING AND TOLERANCING CONFORM ALL DIMENSIONS IN MILLIMETERS TO ANSI Y14.5-1982 /2 DATUM PLANE H LOCATED AT MOLD PARTING LINE AND COINCIDENT WITH LEAD, WHERE LEAD EXITS PLASTIC BODY AT BOTTOM OF PARTING LINE. VARIATIONS FUSION SYMBOL NOTE /3\ DATUMS A-B AND D TO BE DETERMINED AT MIN NOM MAX CENTERLINE BETWEEN LEADS WHERE LEADS EXIT PLASTIC BODY AT DATUM PLANE H. 1.20 Α A1 0.05 0.10 0.15 4 TO BE DETERMINED AT SEATING PLANE C A2 0.95 1.00 1.05 ∕5∖ DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD -0.05 0.00 0.05 A3 PROTRUSION. ALLOWABLE MOLD PROTRUSION IS A4 0.152 REF 0.254 MM ON D1 AND E1 DIMENSIONS. D 22.00 BSC 4 'N' IS THE NUMBER OF TERMINALS FOR PERIPHERAL 6. LEADS, AND M'IS THE NUMBER OF TERMINALS FOR BOTTOM LANDS ON BOTTOM SURFACE OF PACKAGE BODY. THE BOTTOM LANDS ARE IDENTIFIED BY D1 20.00 BSC 5 D2 17.50 BSC D3 8.32 8.42 8.52 ALPHANUMERICS | A1~A# E 22.00 BSC 4 THESE DIMENSIONS TO BE DETERMINED AT DATUM 20.00 BSC F1 PLANE H 5 E2 17.50 BSC THE TOP OF PACKAGE MAY BE SMALLER THAN THE BOTTOM OF PACKAGE BY 0.15 MM. 8. F3 8.20 8.30 9.40 ∕₀` DIMENSION b DOES NOT INCLUDE DAMBAR 10.00 REF E4 PROTRUSION. ALLOWABLE DAMBAR PROTRUSION 0.45 0.75 L 0.60 SHALL BE 0.08 MM TOTAL IN EXCESS OF THE b DIMENSION AT MAXIMUM MATERIAL CONDITION. Ν 144 6 DAMBAR CANNOT BE LOCATED ON THE LOWER 0.50 BSC е RADIUS OR THE FOOT. b 0.17 0.22 0.27 10. CONTROLLING DIMENSION | MILLIMETERS. c.c.c 0.08 11. MAXIMUM ALLOWABLE DIE THICKNESS TO BE d.d.d 0.08 ASSEMBLED IN THIS PACKAGE FAMILY IS 0.38 MM. /12 A1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY. 13. DIMENSIONS D2 AND E2 REPRESENT THE SIZE OF THE EXPOSED PAD. THE ACTUAL DIMENSIONS ARE DETERMINED BY EACH INDIVIDUAL LEADFRAME PITCH VARIATIONS FUSION DRAWING. THE EXPOSED PAD SIZE TOLERANCE IS SYMBOL NOTE MIN NOM MAX 0.10 MAX. 0.50 BSC eТ 14. EXPOSED PAD SHALL BE COPLANAR WITH BOTTOM eC 0.39 BSC 18 OF PACKAGE WITHIN 0.05 MM. Μ 28 6 15. UNILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. La 0.30 0.40 0.50 0.17 0.27 16. MECHANICAL CONNECT TABS ARE COUNTED FOR f 0 22 GROUND (VSS) SIGNAL PINS. THOSE ARE INCLUDED 999 0.08 INTO PACKAGÉ TOTAL PIN COUNTS THESE DIMENSIONS APPLY TO THE FLAT SECTION /17\ OF THE LEAD BETWEEN 0.10 MM AND 0.25 MM FROM THE LEAD TIP. THE FusionQuad PACKAGE IS A REGISTERED 18 THESE DIMENSIONS APPLY TO ALL 4 SYMMETRIC TRADEMARK OF AMKOR TECHNOLOGIES. I OCATIONS THE EusionQuad PACKAGE IS ASSEMBLED /19\ GATE PROTRUSION HEIGHT OR CHIP OUT DEPTH | BY AMKOR TECHNOLOGIES. 0.049 MM MAX

Symbol		c	Barometor	Conditions	Value		Unit
		C	Farameter	Conditions	Min	Max	onit
$R_{ extsf{ heta}JA}$	CC	D	Junction-to-ambient, natural convection ⁽²⁾	Four layer board—2s2p	25	28	°C/W
R _{θJMA}	СС	D	Junction-to-moving-air, ambient ⁽²⁾	At 200 ft./min., four layer board—2s2p	18	22	°C/W
$R_{ extsf{ heta}JB}$	СС	D	Junction-to-board ⁽³⁾	—	12	16	°C/W
R _{0JCtop}	СС	D	Junction-to-case top ⁽⁴⁾	—	12	15	°C/W
$R_{\theta JCbottom}$	СС	D	Junction-to-case bottom ⁽⁵⁾	—	1.5	3.5	°C/W
Ψ_{JT}	СС	D	Junction-to-package top ⁽⁶⁾	Natural convection	3	4.5	°C/W
Pd	СС	D	Device power dissipation	Maximum power and voltage condition	_	2	W

Table 72. Thermal characteristics for eLQFP176⁽¹⁾

 The lower number in the ranges specified in the 'Value' column are based on simulation; actual data may vary in the given range. The specified characteristics are subject to change per final device design and characterization. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

- 2. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.
- 3. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 4. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 5. Thermal resistance between the die and the solder pad on the bottom of the package based on simulation without any interface resistance.
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2.

4.5.1 General notes for specifications at maximum junction temperature

An estimation of the chip junction temperature, T_J, can be obtained from the equation:

Equation 3 $T_J = T_A + (R_{\theta JA} * P_D)$

where:

 T_A = ambient temperature for the package (°C)

 $R_{\theta JA}$ = junction-to-ambient thermal resistance (°C/W)

 P_D = power dissipation in the package (W)

The thermal resistance values used are based on the JEDEC JESD51 series of standards to provide consistent values for estimations and comparisons. The difference between the values determined for the single-layer (1s) board compared to a four-layer board that has two signal layers, a power and a ground plane (2s2p), demonstrate that the effective thermal resistance is not a constant. The thermal resistance depends on the:

- Construction of the application board (number of planes)
- Effective size of the board which cools the component
- Quality of the thermal and electrical connections to the planes
- Power dissipated by adjacent components

Revision	Date	Description of changes
Revision 3 (cont'd)	Date 31 Jan 2014	Description of changes Table 42 (Voltage monitor electrical characteristics): VLVD108 specification, changed Min value from "1080" to "1120" VLVD108 specification, changed Max value from "140" to "1170" VLVD108 changed Parameter name "LV internal supply low voltage monitoring" to "Core LV internal supply low voltage monitoring" and added note to conditions "This is combination of LVD108_C, P, and F. Min is from min value of LVD108_F, and P which is the lowest one. Max is the max value of LVD108_C which is the highest one of three." -V _{PORUP_LV} Falling voltage (power down) condition, added footnote "assume all of LVDs on LV supplies disabled". - Added "HVD140 does not cause reset" at end of footnote "HVD is released after tyDRELEASE temporization when lower threshold is crossed." -V _{LVD295} Rising voltage condition changed Min value "3100" to "3120". -V _{LVD295} Rising voltage condition changed Min value "3420" to "3435" and Max value "3610" to "3650". -V _{HVD360} Rising voltage condition changed Min value "3400" to "3415". Table 44 (Functional terminals state during power-up and reset): - Replaced "ERROR" with "ERROR[0]" - Updated note 6 - ESR1 POWER-UP Pad State changed to Weak pull-down. Table 46 (Flash memory Life Specification): Replaced "K" with "k" in the unit column Section 3.18.1, Flash read wait state and address pipeline control settings: Added this section Moved I ² C AC timing specification after sect
		 In row t_{dwprogram}: removed Initial max parameter classification Lifetime max changed to 650 In row t_{pprogra}: Initial max parameter classification removed Added row t_{pprogrameep} [KGD] In row t_{approgram}:
		Typical end of life changed to 396 Added row t _{qprogrameep} [KGD]

Table 74. Revision history(Continued)

Revision	Date	Description of changes
5 (conťd)	30 March 2015	Table 39 (LFAST PLL electrical characteristics):Replaced "P" with "T" in the classification column of f _{VCO} parameter and updated note 2.
		<i>Table 38 (MSC/DSPI LVDS transmitter electrical characteristics)</i> : Replaced "C" with "T" in the classification column of I _{LVDS_TX} parameter.
		Table 40 (Aurora LVDS electrical characteristics): For $ \Delta V_{OD_LVDS} $ parameter, removed the " <u>+</u> " from the values.
		<i>Table 41 (Device Power Supply Integration)</i> : Replaced maximum value of "300" with "350" for IDD _{MREG} parameter.
		<i>Table 59 (RMII serial management channel timing)</i> : For M10 parameter, replaced the minimum value of "0" with "-10". For M13 parameter, replaced the minimum value of "-10" with "10". Updated the third footnote.
		<i>Table 64 (RxD input characteristics)</i> : Removed "Automotive and" from table footnote.
		<i>Table 71 (Thermal characteristics for eTQFP144)</i> : Added P _d parameter.
		<i>Table 72 (Thermal characteristics for eLQFP176):</i> Added P _d parameter.

Table 74. Revision history(Continued)

