

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	192KB (192K x 8)
Program Memory Type	FLASH
EEPROM Size	6K x 8
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 10x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l082kzt6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		3.17.5	Independent watchdog (IWDG)	32
		3.17.6	Window watchdog (WWDG)	32
	3.18	Comm	unication interfaces	33
		3.18.1	I2C bus	33
		3.18.2	Universal synchronous/asynchronous receiver transmitter (U	SART)34
		3.18.3	Low-power universal asynchronous receiver transmitter (LPL	JART) 34
		3.18.4	Serial peripheral interface (SPI)/Inter-integrated sound (I2S)	35
		3.18.5	Universal serial bus (USB)	35
	3.19	Clock r	ecovery system (CRS)	36
	3.20	Cyclic	redundancy check (CRC) calculation unit	
	3.21	Serial	wire debug port (SW-DP)	36
4	Pin c	lescript	ions	37
5	Mem	ory ma	pping	47
6	Elect	trical ch	aracteristics	48
	6.1	Param	eter conditions	48
		6.1.1	Minimum and maximum values	48
		6.1.2	Typical values	48
		6.1.3	Typical curves	
		6.1.4	Loading capacitor	
		6.1.5	Pin input voltage	
		6.1.6	Power supply scheme	49
		6.1.7	Current consumption measurement	49
	6.2	Absolu	te maximum ratings	50
	6.3	Operat	ing conditions	52
		6.3.1	General operating conditions	52
		6.3.2	Embedded reset and power control block characteristics	54
		6.3.3	Embedded internal reference voltage	55
		6.3.4	Supply current characteristics	56
		6.3.5	Wakeup time from low-power mode	69
		6.3.6	External clock source characteristics	71
		6.3.7	Internal clock source characteristics	75
		6.3.8	PLL characteristics	
		6.3.9	Memory characteristics	
		6.3.10	EMC characteristics	80

• Stop mode without RTC

The Stop mode achieves the lowest power consumption while retaining the RAM and register contents. All clocks are stopped, the PLL, MSI RC, HSI and LSI RC, HSE and LSE crystal oscillators are disabled.

Some peripherals featuring wakeup capability can enable the HSI RC during Stop mode to detect their wakeup condition.

The voltage regulator is in the low-power mode. The device can be woken up from Stop mode by any of the EXTI line, in 3.5 μ s, the processor can serve the interrupt or resume the code. The EXTI line source can be any GPIO. It can be the PVD output, the comparator 1 event or comparator 2 event (if internal reference voltage is on). It can also be wakened by the USB/USART/I2C/LPUART/LPTIMER wakeup events.

• Standby mode with RTC

The Standby mode is used to achieve the lowest power consumption and real time clock. The internal voltage regulator is switched off so that the entire V_{CORE} domain is powered off. The PLL, MSI RC, HSE crystal and HSI RC oscillators are also switched off. The LSE or LSI is still running. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32 KHz oscillator, RCC_CSR register).

The device exits Standby mode in 60 µs when an external reset (NRST pin), an IWDG reset, a rising edge on one of the three WKUP pins, RTC alarm (Alarm A or Alarm B), RTC tamper event, RTC timestamp event or RTC Wakeup event occurs.

Standby mode without RTC

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire V_{CORE} domain is powered off. The PLL, MSI RC, HSI and LSI RC, HSE and LSE crystal oscillators are also switched off. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32 KHz oscillator, RCC_CSR register).

The device exits Standby mode in 60 μ s when an external reset (NRST pin) or a rising edge on one of the three WKUP pin occurs.

Note: The RTC, the IWDG, and the corresponding clock sources are not stopped automatically by entering Stop or Standby mode.

3.3 ARM[®] Cortex[®]-M0+ core with MPU

The Cortex-M0+ processor is an entry-level 32-bit ARM Cortex processor designed for a broad range of embedded applications. It offers significant benefits to developers, including:

- a simple architecture that is easy to learn and program
- ultra-low power, energy-efficient operation
- excellent code density
- deterministic, high-performance interrupt handling
- upward compatibility with Cortex-M processor family
- platform security robustness, with integrated Memory Protection Unit (MPU).

The Cortex-M0+ processor is built on a highly area and power optimized 32-bit processor core, with a 2-stage pipeline Von Neumann architecture. The processor delivers exceptional energy efficiency through a small but powerful instruction set and extensively optimized design, providing high-end processing hardware including a single-cycle multiplier.

The Cortex-M0+ processor provides the exceptional performance expected of a modern 32bit architecture, with a higher code density than other 8-bit and 16-bit microcontrollers.

Owing to its embedded ARM core, the STM32L082xx are compatible with all ARM tools and software.

Nested vectored interrupt controller (NVIC)

The ultra-low-power STM32L082xx embed a nested vectored interrupt controller able to handle up to 32 maskable interrupt channels and 4 priority levels.

The Cortex-M0+ processor closely integrates a configurable Nested Vectored Interrupt Controller (NVIC), to deliver industry-leading interrupt performance. The NVIC:

- includes a Non-Maskable Interrupt (NMI)
- provides zero jitter interrupt option
- provides four interrupt priority levels

The tight integration of the processor core and NVIC provides fast execution of Interrupt Service Routines (ISRs), dramatically reducing the interrupt latency. This is achieved through the hardware stacking of registers, and the ability to abandon and restart load-multiple and store-multiple operations. Interrupt handlers do not require any assembler wrapper code, removing any code overhead from the ISRs. Tail-chaining optimization also significantly reduces the overhead when switching from one ISR to another.

To optimize low-power designs, the NVIC integrates with the sleep modes, that include a deep sleep function that enables the entire device to enter rapidly stop or standby mode.

This hardware block provides flexible interrupt management features with minimal interrupt latency.

Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while having an extremely low energy consumption. Higher speed clock can be used to reach higher baudrates.

LPUART interface can be served by the DMA controller.

3.18.4 Serial peripheral interface (SPI)/Inter-integrated sound (I2S)

Up to two SPIs are able to communicate at up to 16 Mbits/s in slave and master modes in full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes.

The USARTs with synchronous capability can also be used as SPI master.

One standard I2S interfaces (multiplexed with SPI2) is available. It can operate in master or slave mode, and can be configured to operate with a 16-/32-bit resolution as input or output channels. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When the I2S interfaces is configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency.

The SPIs can be served by the DMA controller.

SPI features ⁽¹⁾	SPI1	SPI2
Hardware CRC calculation	Х	Х
I2S mode	-	Х
TI mode	Х	Х

Table 13. SPI/I2S implementation

1. X = supported.

3.18.5 Universal serial bus (USB)

The STM32L082xx embeds a full-speed USB device peripheral compliant with the USB specification version 2.0. The internal USB PHY supports USB FS signaling, embedded DP pull-up and also battery charging detection according to Battery Charging Specification Revision 1.2. The USB interface implements a full-speed (12 Mbit/s) function interface with added support for USB 2.0 Link Power Management. It has software-configurable endpoint setting with packet memory up to 1 KB and suspend/resume support. It requires a precise 48 MHz clock which can be generated from the internal main PLL (the clock source must use a HSE crystal oscillator) or by the internal 48 MHz oscillator in automatic trimming mode. The synchronization for this oscillator can be taken from the USB data stream itself (SOF signalization) which allows crystal-less operation.

Pi	n num	ber		-	-	•	oin definition (continue	
LQFP32	UFQFPN32 ⁽¹⁾	WLCSP49	Pin name (function after reset)	Pin type	I/O structure	Note	Alternate functions	Additional functions
15	15	D3	PB1	I/O	FT	-	TIM3_CH4, TSC_G3_IO3, LPUART1_RTS	ADC_IN9, VREF_OUT
-	-	E3	PB2	I/O	FT	-	LPTIM1_OUT, TSC_G3_IO4, I2C3_SMBA	-
-	-	G3	PB10	I/O	FT	-	TIM2_CH3, TSC_SYNC, LPUART1_TX, SPI2_SCK, I2C2_SCL, LPUART1_RX	-
-	-	F3	PB11	I/O	FT	-	EVENTOUT, TIM2_CH4, TSC_G6_IO1, LPUART1_RX, I2C2_SDA, LPUART1_TX	-
16	16	D4	VSS	S		-	-	-
17	17	G2	VDD	S		-	-	-
-	-	G1	PB12	I/O	FT	-	SPI2_NSS/I2S2_WS, LPUART1_RTS_DE, TSC_G6_I02, I2C2_SMBA, EVENTOUT	-
-	-	F2	PB13	I/O	FTf	-	SPI2_SCK/I2S2_CK, MCO, TSC_G6_IO3, LPUART1_CTS, I2C2_SCL, TIM21_CH1	-
-	-	F1	PB14	I/O	FTf		SPI2_MISO/I2S2_MCK, RTC_OUT, TSC_G6_IO4, LPUART1_RTS_DE, I2C2_SDA, TIM21_CH2	-
-	-	E1	PB15	I/O	FT	-	SPI2_MOSI/I2S2_SD, RTC_REFIN	-
18	18	D1	PA8	I/O	FTf	-	MCO, USB_CRS_SYNC, EVENTOUT, USART1_CK, I2C3_SCL	-

Table 15. STM32L072xxx pin definition (continued)

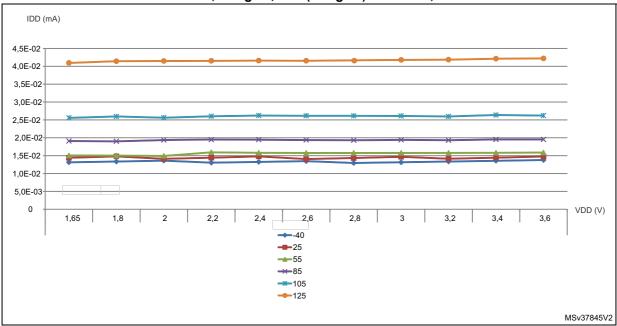


Figure 13. I_{DD} vs V_{DD}, at T_A= 25 °C, Low-power run mode, code running from RAM, Range 3, MSI (Range 0) at 64 KHz, 0 WS

Symbol	Parameter		Condition		Тур	Max (1)	Unit	
			MSI clock = 65 kHz, f _{HCLK} = 32 kHz, Flash memory OFF	$T_{A} = -40 \text{ to } 25^{\circ}\text{C}$	4,7	-		
				$T_A = -40$ to $25^{\circ}C$	Iyp (1) 25°C 4,7 - 25°C 17 24 C 19,5 30 °C 23 47 °C 32,5 70 25°C 17 24 °C 32,5 70 25°C 17 24 °C 23,5 47 °C 32,5 70 25°C 19,5 27 °C 20,5 28 °C 22,5 33 °C 26 50	24		
			MSI clock = 65 kHz,	T _A = 85°C				
			f _{HCLK} = 32 kHz	T _A = 105°C	23	47		
$(LP Sleep) \begin{bmatrix} Supply current in Low-power sleep mode \end{bmatrix} All peripherals OFF, code executed from Flash memory, V_{DD} from 1.65 to 3.6 V \begin{bmatrix} All peripherals OFF, code executed from Flash memory, V_{DD} from 1.65 to 3.6 V \end{bmatrix} ASI clock = 65 kHz, T_A = 85°C 19,5 T_A = 105°C 23 T_A = 105°C 23 T_A = 105°C 23 T_A = 105°C 20 T_A = 105°C 23,5 T_A = 105°C 2$	70							
	I _{DD} Sleep) Supply current in OFF, code Low-power sleep executed from mode Flash memory, V _D			T_A = - 40 to 25°C	17	24		
(LP Sleep)		n n		MSI clock = 65 kHz,	T _A = 85°C	20	yp (1) 4,7 - 17 24 9,5 30 23 47 2,5 70 17 24 20 31 3,5 47 2,5 70 9,5 27 0,5 28 2,5 33 26 50	μA
	mode			T _A = 105°C	23,5	47		
		$ \begin{array}{ c c c c c c c } \mbox{MSI clock} = 65 \ \mbox{kHz}, \\ f_{HCLK} = 32 \ \mbox{kHz}, \\ Flash \ \mbox{memory OFF} \end{array} & T_A = -40 \ \mbox{to } 25^{\circ} \mbox{C} 4,7 & - \\ \hline T_A = -40 \ \mbox{to } 25^{\circ} \mbox{C} 17 & 24 \\ \hline T_A = 85^{\circ} \mbox{C} 19,5 & 30 \\ \hline T_A = 105^{\circ} \mbox{C} 23 & 47 \\ \hline T_A = 125^{\circ} \mbox{C} 32,5 & 70 \\ \hline T_A = 125^{\circ} \mbox{C} 32,5 & 70 \\ \hline T_A = 105^{\circ} \mbox{C} 23,5 & 70 \\ \hline T_A = 105^{\circ} \mbox{C} 23,5 & 47 \\ \hline T_A = 105^{\circ} \mbox{C} 23,5 & 47 \\ \hline T_A = 105^{\circ} \mbox{C} 23,5 & 47 \\ \hline T_A = 125^{\circ} \mbox{C} 32,5 & 70 \\ \hline T_A = 125^{\circ} \mbox{C} 32,5 & 70 \\ \hline T_A = 125^{\circ} \mbox{C} 32,5 & 70 \\ \hline T_A = 125^{\circ} \mbox{C} 32,5 & 70 \\ \hline T_A = 125^{\circ} \mbox{C} 23,5 & 47 \\ \hline T_A = 125^{\circ} \mbox{C} 23,5 & 47 \\ \hline T_A = 55^{\circ} \mbox{C} 20,5 & 28 \\ \hline T_A = 55^{\circ} \mbox{C} 20,5 & 28 \\ \hline T_A = 85^{\circ} \mbox{C} 22,5 & 33 \\ \hline T_A = 105^{\circ} \mbox{C} 22,5 & 33 \\ \hline T_A = 105^{\circ} \mbox{C} 22,5 & 33 \\ \hline T_A = 105^{\circ} \mbox{C} 22,5 & 33 \\ \hline T_A = 105^{\circ} \mbox{C} 22,5 & 33 \\ \hline T_A = 105^{\circ} \mbox{C} 22,5 & 33 \\ \hline T_A = 105^{\circ} \mbox{C} 22,5 & 33 \\ \hline T_A = 105^{\circ} \mbox{C} 22,5 & 33 \\ \hline T_A = 105^{\circ} \mbox{C} 22,5 & 33 \\ \hline T_A = 105^{\circ} \mbox{C} 26 & 50 \\ \hline \end{array} $						
				T_A = - 40 to 25°C	19,5	27		
$ (LP Sleep) \begin{cases} Supply current in Low-power sleep mode \end{cases} All peripherals OFF, code executed from Flash memory, V_{DD} from 1.65 to 3.6 V \end{cases} \begin{array}{c c c c c c c c c c c c c c c c c c c $	28							
			$ \begin{array}{c} T_{A}=-40 \ \text{to} \ 25^{\circ}\text{C} & 17 & 24 \\ \hline T_{A}=85^{\circ}\text{C} & 19,5 & 30 \\ \hline T_{A}=105^{\circ}\text{C} & 23 & 47 \\ \hline T_{A}=125^{\circ}\text{C} & 32,5 & 70 \\ \hline T_{A}=125^{\circ}\text{C} & 32,5 & 70 \\ \hline T_{A}=125^{\circ}\text{C} & 32,5 & 70 \\ \hline T_{A}=125^{\circ}\text{C} & 20 & 31 \\ \hline T_{A}=105^{\circ}\text{C} & 23,5 & 47 \\ \hline T_{A}=105^{\circ}\text{C} & 23,5 & 47 \\ \hline T_{A}=125^{\circ}\text{C} & 32,5 & 70 \\ \hline T_{A}=55^{\circ}\text{C} & 20,5 & 28 \\ \hline T_{A}=85^{\circ}\text{C} & 22,5 & 33 \\ \hline T_{A}=105^{\circ}\text{C} & 22,5 & 33 \\ \hline T_{A}=105^{\circ}\text{C} & 26 & 50 \\ \hline \end{array} $					
				HULK TOT KILZ	T _A = 105°C	b 25°C 4,7 - c 25°C 17 24 o°C 19,5 30 5°C 23 47 5°C 32,5 70 o 25°C 17 24 o°C 20 31 5°C 32,5 70 o 25°C 17 24 o°C 20 31 5°C 32,5 70 o 25°C 19,5 27 5°C 20,5 28 5°C 22,5 33 5°C 26 50		
				T _A = 125°C	Iyp I 4,7 I 17 I 19,5 I 32,5 I 17 I 20 I 32,5 I 32,5 I 19,5 I 20,5 I	73		

Table 33. Current consumption in Low-power sleep mode

1. Guaranteed by characterization results at 125 °C, unless otherwise specified.

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in the following tables. The MCU is placed under the following conditions:

- all I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- all peripherals are disabled unless otherwise mentioned
- the given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on

Table 37. Peripheral current consumption in Run or Sleep mode⁽¹⁾

		Typical	consumption, V	/ _{DD} = 3.0 V, T _A =	25 °C	
Per	ipheral	Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	Range 3, V _{CORE} =1.2 V VOS[1:0] = 11	Low-power sleep and run	Unit
	CRS	2.5	2	2	2	
	DAC1/2	4	3.5	3	2.5	
	I2C1	11	9.5	7.5	9	
	I2C2	4	3.5	3	2.5	
	I2C3	11	9	7	9	
	LPTIM1	10	8.5	6.5	8	
	LPUART1	8	6.5	5.5	6	
	USB	8.5	4.5	4	4.5	µA/MHz
APB1	USART2	14.5	12	9.5	11	(f _{HCLK})
	USART4	5	4	3	5	
	USART5	5	4	3	5	
	TIM2	10.5	8.5	7	9	
	TIM3	12	10	8	11	
	TIM6	3.5	3	2.5	2	
	TIM7	3.5	3	2.5	2	
	WWDG	3	2	2	2	

		Typical	consumption, V			_
Peripheral		Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	Range 3, V _{CORE} =1.2 V VOS[1:0] = 11	Low-power sleep and run	Unit
	ADC1 ⁽²⁾	5.5	5	3.5	4	
	SPI1	4	3	3	2.5	
	USART1	14.5	11.5	9.5	12	
APB2	TIM21	7.5	6	5	5.5	µA/MHz
AFDZ	TIM22	7	6	5	6	(f _{HCLK})
	FIREWALL	1.5	1	1	0.5	
	DBGMCU	1.5	1	1	0.5	
	SYSCFG	2.5	2	2	1.5	
	GPIOA	3.5	3	2.5	2.5	
	GPIOB	3.5	2.5	2	2.5	
Cortex-	GPIOC	8.5	6.5	5.5	7	µA/MHz
Cortex- M0+ core I/O port	GPIOH	1.5	1	1	0.5	(f _{HCLK})
	CRC	1.5	1	1	1	
Cortex- M0+ core I/O port	FLASH	0 ⁽³⁾	0 ⁽³⁾	0 ⁽³⁾	0 ⁽³⁾	
	DMA1	10	8	6.5	8.5	µA/MHz
АПБ	RNG	5.5	1	0.5	0.5	(f _{HCLK})
	TSC	3	2.5	2	3	
	AES	0 ⁽³⁾	0 ⁽³⁾	0 ⁽³⁾	0 ⁽³⁾	
AES All enabled		204	162	130	202	µA/MHz (f _{HCLK})
F	WR	2.5	2	2	1	µA/MHz (f _{HCLK})

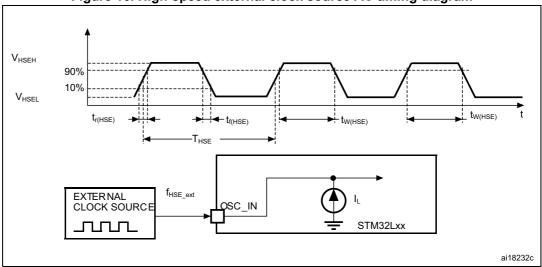
 Table 37. Peripheral current consumption in Run or Sleep mode⁽¹⁾ (continued)

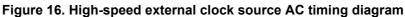
 Data based on differential I_{DD} measurement between all peripherals off an one peripheral with clock enabled, in the following conditions: f_{HCLK} = 32 MHz (range 1), f_{HCLK} = 16 MHz (range 2), f_{HCLK} = 4 MHz (range 3), f_{HCLK} = 64kHz (Low-power run/sleep), f_{APB1} = f_{HCLK}, f_{APB2} = f_{HCLK}, default prescaler value for each peripheral. The CPU is in Sleep mode in both cases. No I/O pins toggling. Not tested in production.

2. HSI oscillator is off for this measure.

3. Current consumption is negligible and close to 0 µA.

6.3.6 External clock source characteristics


High-speed external user clock generated from an external source


In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.The external clock signal has to respect the I/O characteristics in *Section 6.3.12*. However, the recommended clock input waveform is shown in *Figure 16*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f	User external clock source	CSS is on or PLL is used	1	8	32	MHz
^f HSE_ext	frequency	CSS is off, PLL not used	0	8	_	MHz
V _{HSEH}	OSC_IN input pin high level voltage		$0.7V_{DD}$	-	V _{DD}	V
V _{HSEL}	OSC_IN input pin low level voltage		V_{SS}	-	$0.3V_{\text{DD}}$	v
t _{w(HSE)} t _{w(HSE)}	OSC_IN high or low time		12	-	-	ns
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time	-	-	-	20	115
C _{in(HSE)}	OSC_IN input capacitance		-	2.6	-	pF
DuCy _(HSE)	Duty cycle		45	-	55	%
١ _L	OSC_IN Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μA

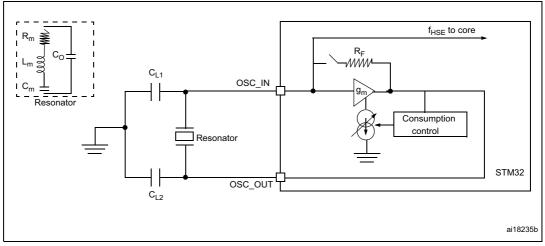
 Table 40. High-speed external user clock characteristics⁽¹⁾

1. Guaranteed by design.

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 1 to 25 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 42*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{OSC_IN}	Oscillator frequency	-	1		25	MHz
R _F	Feedback resistor	-	-	200	-	kΩ
G _m	Maximum critical crystal transconductance	Startup	-	-	700	μΑ /V
t _{SU(HSE)}	Startup time	V_{DD} is stabilized	-	2	-	ms


Table 42. HSE oscillator characteristics⁽¹⁾

1. Guaranteed by design.

2. Guaranteed by characterization results. t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 18*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} . Refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website *www.st.com*.

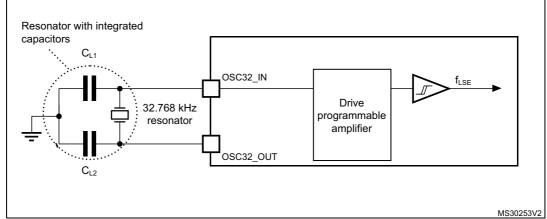
Figure 18. HSE oscillator circuit diagram

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 43*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽²⁾	Min ⁽²⁾	Тур	Max	Unit
f _{LSE}	LSE oscillator frequency		-	32.768	-	kHz
		LSEDRV[1:0]=00 lower driving capability	-	-	2.768 - H - 0.5 - 0.75	
6	Maximum critical crystal	LSEDRV[1:0]= 01 medium low driving capability	-	- 0.75	uA/V	
G _m	transconductance	crystal medium low driving capability 0.75	μΑνν			
		LSEDRV[1:0]=11 higher driving capability	-	-	2.7	
t _{SU(LSE)} ⁽³⁾	Startup time	V _{DD} is stabilized	-	2	-	s

Table 43. LSE oscillator characteristics ⁽¹⁾


1. Guaranteed by design.

2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".

3. Guaranteed by characterization results. t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer. To increase speed, address a lower-drive quartz with a high- driver mode.

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one.

Symbol	Parameter	Condition	Тур	Max	Unit
		MSI range 0	-	40	
Symbol		MSI range 1	-	20	
		MSI range 2	-	10	
		MSI range 3	-	4	
	MSI oscillator stabilization time	MSI range 4	-	2.5	μs
		MSI range 5	-	2	
		MSI range 6, Voltage range 1 and 2	-	2	
		MSI range 3, Voltage range 3	-	3	
	MSI oscillator frequency overshoot	Any range to range 5	-	4	MHz
f _{OVER(MSI)}		Any range to range 6	-	6	

Table 47. MSI oscillator characteristics (continued)

1. This is a deviation for an individual part, once the initial frequency has been measured.

2. Guaranteed by characterization results.

6.3.8 PLL characteristics

The parameters given in *Table 48* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 23*.

Symbol	Parameter		Unit		
Symbol	Faidilieter	Min	Тур	Max ⁽¹⁾	Unit
£	PLL input clock ⁽²⁾	2	-	24	MHz
f _{PLL_IN}	PLL input clock duty cycle	45	-	55	%
f _{PLL_OUT}	PLL output clock	2	-	32	MHz
t _{LOCK}	PLL input = 16 MHz PLL VCO = 96 MHz	-	115	160	μs
Jitter	Cycle-to-cycle jitter	-		± 600	ps
I _{DDA} (PLL)	Current consumption on V _{DDA}	-	220	450	μA
I _{DD} (PLL)	Current consumption on V _{DD}	-	120	150	μΑ

1. Guaranteed by characterization results.

2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by $\rm f_{PLL_OUT}$.

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 23* and *Table 59*, respectively.

Unless otherwise specified, the parameters given in *Table 59* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 23*.

OSPEEDRx[1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Max ⁽²⁾	Unit	
	f	Maximum frequency ⁽³⁾	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	100		
00	f _{max(IO)out}		C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	100	— kHz	
00	t _{f(IO)out}	Output rise and fall time	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	125	200	
	t _{r(IO)out}		C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	320	ns	
	f	Maximum frequency ⁽³⁾ $C_L = 50 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$		-	2		
01	f _{max(IO)out}		C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	0.6	MHz	
01	t _{f(IO)out}	$C_L = 50 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$		-	30		
	t _{r(IO)out}	Output rise and fall time	C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	65	ns	
	-	Maximum frequency ⁽³⁾	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	10	MHz	
10	F _{max(IO)out} M	maximum frequency.	C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	2		
10	t _{f(IO)out}	Output rise and fall time	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	13	ns	
	t _{r(IO)out}		C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	28	115	
	E	Maximum frequency ⁽³⁾	C_L = 30 pF, V_{DD} = 2.7 V to 3.6 V	-	35	MHz	
11	F _{max(IO)out}	max(IO)out Maximum requency	C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	F, V _{DD} = 1.65 V to 2.7 V -			
11	t _{f(IO)out} t _{r(IO)out}	Output rise and fall time	C_{L} = 30 pF, V_{DD} = 2.7 V to 3.6 V	-	6		
			C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	F, V _{DD} = 1.65 V to 2.7 V -		ns	
	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	1	MHz	
	t _{f(IO)out}	Output fall time	C_{L} = 50 pF, V_{DD} = 2.5 V to 3.6 V	-	10		
Fm+	t _{r(IO)out}	Output rise time	-		30	ns	
configuration ⁽⁴⁾	f _{max(IO)out}	Maximum frequency ⁽³⁾	C _L = 50 pF, V _{DD} = 1.65 V to 3.6 V		350	KHz	
	t _{f(IO)out}	Output fall time			15		
	t _{r(IO)out}	Output rise time		-	60	ns	
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller	-	8	-	ns	

 Table 59. I/O AC characteristics⁽¹⁾

1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the line reference manual for a description of GPIO Port configuration register.

2. Guaranteed by design.

3. The maximum frequency is defined in *Figure* 23.

4. When Fm+ configuration is set, the I/O speed control is bypassed. Refer to the line reference manual for a detailed description of Fm+ I/O configuration.

DocID027099 Rev 4

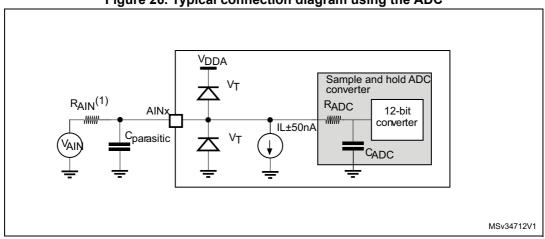


Figure 26. Typical connection diagram using the ADC

- 1. Refer to Table 61: ADC characteristics for the values of RAIN, RADC and CADC.
- C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high C_{parasitic} value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced.

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 27* or *Figure 28*, depending on whether V_{REF+} is connected to V_{DDA} or not. The 10 nF capacitors should be ceramic (good quality). They should be placed as close as possible to the chip.

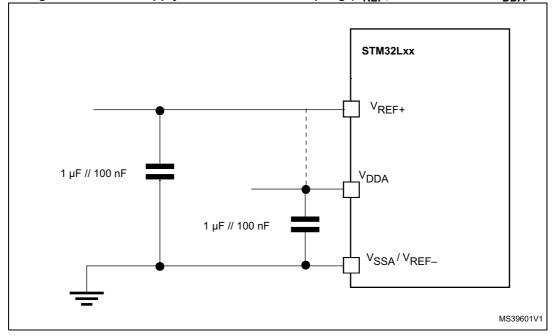


Figure 27. Power supply and reference decoupling (V_{REF+} not connected to V_{DDA})

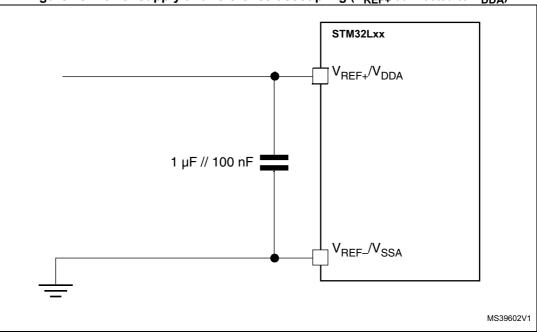


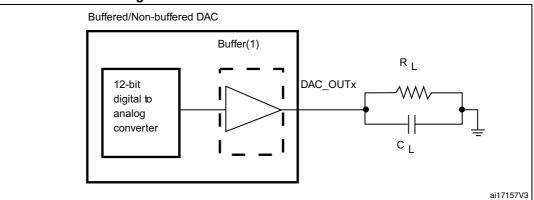
Figure 28. Power supply and reference decoupling (V_{REF+} connected to V_{DDA})

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
dOffset/dT ⁽²⁾	Offset error temperature coefficient (code 0x800)	$V_{DDA} = 3.3V$ $V_{REF+} = 3.0 V$ $T_A = 0$ to 50 °C DAC output buffer off	-20	-10	0		
donsetar		$V_{DDA} = 3.3V$ $V_{REF+} = 3.0 V$ $T_A = 0 \text{ to } 50 \text{ °C}$ DAC output buffer on	0	20	50	μV/°C	
Gain ⁽²⁾	(8)	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$ DAC output buffer on	-	+0.1 / -0.2%	+0.2 / -0.5%	%	
Gain	Gain error ⁽⁸⁾	No R_{LOAD} , $C_L \le 50 \text{ pF}$ DAC output buffer off	-	+0 / -0.2%	+0 / -0.4%	70	
dGain/dT ⁽²⁾	Gain error temperature	$V_{DDA} = 3.3V$ $V_{REF+} = 3.0 V$ $T_A = 0$ to 50 °C DAC output buffer off	-10	-2	0	μV/°C	
	coefficient	$V_{DDA} = 3.3V$ $V_{REF+} = 3.0 V$ $T_A = 0$ to 50 °C DAC output buffer on	-40	-8	0	μνι σ	
TUE ⁽²⁾	Total unadjusted error	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$ DAC output buffer on	-	12	30	LSB	
		No R_{LOAD} , $C_L \le 50 \text{ pF}$ DAC output buffer off	-	8	12	LOD	
t _{SETTLING}	Settling time (full scale: for a 12-bit code transition between the lowest and the highest input codes till DAC_OUT reaches final value ±1LSB	$C_L \le 50 \text{ pF}, \text{ R}_L \ge 5 \text{ k}\Omega$	-	7	12	μs	
Update rate	Max frequency for a correct DAC_OUT change (95% of final value) with 1 LSB variation in the input code	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$	-	-	1	Msps	
t _{WAKEUP}	Wakeup time from off state (setting the ENx bit in the DAC Control register) ⁽⁹⁾	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$	-	9	15	μs	
PSRR+	V _{DDA} supply rejection ratio (static DC measurement)	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$	-	-60	-35	dB	

Table 64. D	DAC	characteristics	(continued)
-------------	-----	-----------------	-------------

1. Guaranteed by characterization results.

2. Guaranteed by design, not tested in production.


3. Connected between DAC_OUT and $V_{\mbox{SSA}}.$

4. Difference between two consecutive codes - 1 LSB.

5. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 4095.

- 6. Difference between the value measured at Code (0x800) and the ideal value = $V_{REF+}/2$.
- 7. Difference between the value measured at Code (0x001) and the ideal value.
- 8. Difference between ideal slope of the transfer function and measured slope computed from code 0x000 and 0xFFF when buffer is off, and from code giving 0.2 V and ($V_{DDA} 0.2$) V when buffer is on.
- 9. In buffered mode, the output can overshoot above the final value for low input code (starting from min value).

Figure 29. 12-bit buffered/non-buffered DAC

6.3.17 Temperature sensor characteristics

Table 65. Temperature sensor calibration values

Calibration value name	Description	Memory address
TS_CAL1	TS ADC raw data acquired at temperature of 30 °C, V _{DDA} = 3 V	0x1FF8 007A - 0x1FF8 007B
TS_CAL2	TS ADC raw data acquired at temperature of 130 °C, V _{DDA} = 3 V	0x1FF8 007E - 0x1FF8 007F

Table 66. Temperature sensor characteristics

Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature	-	±1	±2	°C
Avg_Slope ⁽¹⁾	Average slope	1.48	1.61	1.75	mV/°C
V ₁₃₀	Voltage at 130°C ±5°C ⁽²⁾	640	670	700	mV
I _{DDA(TEMP)} ⁽³⁾	Current consumption	-	3.4	6	μA
t _{START} ⁽³⁾	Startup time	-	-	10	
T _{S_temp} ⁽⁴⁾⁽³⁾	ADC sampling time when reading the temperature	10	-	-	μs

1. Guaranteed by characterization results.

2. Measured at V_{DD} = 3 V ±10 mV. V130 ADC conversion result is stored in the TS_CAL2 byte.

- 3. Guaranteed by design.
- 4. Shortest sampling time can be determined in the application by multiple iterations.

7.1 WLCSP49 package information

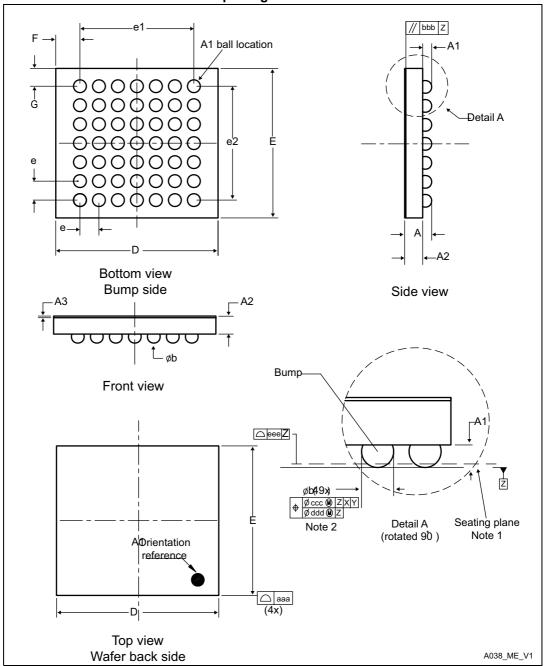


Figure 34. WLCSP49 - 49-pin, 3.294 x 3.258 mm, 0.4 mm pitch wafer level chip scale package outline

1. Drawing is not to scale.

Dimension Recommended values			
Pitch	0.4		
Dred	260 µm max. (circular)		
Dpad	220 µm recommended		
Dsm 300 µm min. (for 260 µm diameter pad)			
PCB pad design	Non-solder mask defined via underbump allowed.		

 Table 79. WLCSP49 recommended PCB design rules (0.4 mm pitch)

7.4.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org.

