
Microchip Technology - ATA664251-WGQW Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor AVR

Core Size 8-Bit

Speed 16MHz

Connectivity I²C, LINbus, SPI, UART/USART, USI

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 16

Program Memory Size 16KB (16K x 8)

Program Memory Type FLASH

EEPROM Size 512 x 8

RAM Size 512 x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 11x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TC)

Mounting Type Surface Mount

Package / Case 48-VFQFN Exposed Pad

Supplier Device Package 48-QFN (7x7)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/ata664251-wgqw

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/ata664251-wgqw-4436642
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Figure 4-9. LIN Wake-up from Active Low-power Mode

The negative edge on the NIRQ pin indicates a change of conditions, in this case a wake-up request at the LIN bus. The
microcontroller can check the IRQ source by assessing the “IRQS1” and “IRQS0” bits in the status register. Note that if a
watchdog operation is desired, it must be enabled via the configuration register.
The behavior can be transferred to a wake-up over CL15 pin from Active Low-power Mode.

Figure 4-10. CL15 Wake-up from Active Low-power Mode

Apart from the LIN transceiver and the CL15 input, the high-voltage I/O ports CS1 to CS8 can also be used to generate
interrupts while in Active Low-power Mode. This can be done by enabling the current sources so that they can generate an
interrupt with the corresponding CSEx- and CSIEx bits in the configuration register. As long as the current source is not enabled
(CSCx=’0’ and PWMy low), the IC stays in Active Low-power Mode (if all other conditions are met, such as disabled watchdog).
The PWMy pin has to be set to high by the microcontroller, for example, controlled via a PWM timer unit, in order to check the
condition of the connected switch. Because the switch interface unit is enabled, current consumption increases drastically. This
“switch scanning phase” can be short compared to the interceding idle time so the mean current consumption of the IC remains
close to the Active Low-power Mode current consumption. For more information , see Section 4.8.1 “Current Sources” on page
24 and Section 4.8.2 “Switch Inputs” on page 26 for further details.

LIN Bus

VCC

NRES

NIRQ

SPI Comm.

Watchdog State

Enable WD/ Read Status

Start Watchdog Lead TimeWatchdog off

tbus = 90μs typ

CL15

VCC

NRES

NIRQ

SPI Comm.

Watchdog State

Enable WD/ Read Status

Start Watchdog Lead TimeWatchdog off

tCL15deb = 160μs typ
16Atmel ATA664251 [DATASHEET]
9269B–AUTO–11/12

5.11.6.2 Compare Output Mode and Waveform Generation

The Waveform Generator uses the COM0A1:0 bits differently in normal, CTC, and PWM modes. For all modes, setting the
COM0A1:0 = 0 tells the Waveform Generator that no action on the OC0A Register is to be performed on the next compare
match. For compare output actions in the non-PWM modes refer to Table 5-29 on page 129. For fast PWM mode, refer to Table
5-30 on page 129, and for phase correct PWM refer to Table 5-31 on page 130.

A change of the COM0A1:0 bits state will have effect at the first compare match after the bits are written. For non-PWM modes,
the action can be forced to have immediate effect by using the FOC0A strobe bits.

5.11.7 Modes of Operation

The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare pins, is defined by the combination of
the Waveform Generation mode (WGM01:0) and Compare Output mode (COM0A1:0) bits. The Compare Output mode bits do
not affect the counting sequence, while the Waveform Generation mode bits do. The COM0A1:0 bits control whether the PWM
output generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes the COM0A1:0 bits control
whether the output should be set, cleared, or toggled at a compare match (See Section 5.11.6 �Compare Match Output Unit� on
page 121).

For detailed timing information refer to Section 5.11.8 �Timer/Counter Timing Diagrams� on page 125 .

5.11.7.1 Normal Mode

The simplest mode of operation is the Normal mode (WGM01:0 = 0). In this mode the counting direction is always up
(incrementing), and no counter clear is performed. The counter simply overruns when it passes its maximum 8-bit value (TOP =
0xFF) and then restarts from the bottom (0x00). In normal operation the Timer/Counter Overflow Flag (TOV0) will be set in the
same timer clock cycle as the TCNT0 becomes zero. The TOV0 flag in this case behaves like a ninth bit, except that it is only
set, not cleared. However, combined with the timer overflow interrupt that automatically clears the TOV0 flag, the timer
resolution can be increased by software. There are no special cases to consider in the Normal mode, a new counter value can
be written anytime.

The Output Compare unit can be used to generate interrupts at some given time. Using the Output Compare to generate
waveforms in Normal mode is not recommended, since this will occupy too much of the CPU time.

5.11.7.2 Clear Timer on Compare Match (CTC) Mode

In Clear Timer on Compare or CTC mode (WGM01:0 = 2), the OCR0A Register is used to manipulate the counter resolution. In
CTC mode the counter is cleared to zero when the counter value (TCNT0) matches the OCR0A. The OCR0A defines the top
value for the counter, hence also its resolution. This mode allows greater control of the compare match output frequency. It also
simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 5-34. The counter value (TCNT0) increases until a compare match
occurs between TCNT0 and OCR0A, and then counter (TCNT0) is cleared.

Figure 5-34. CTC Mode, Timing Diagram

1 2

TCNTn

(COMnx1:0 = 1)OCnx
(Toggle)

Period
3

OCnx Interrupt
Flag Set

4

122Atmel ATA664251 [DATASHEET]
9269B�AUTO�11/12

5.10.2.5 Reading the Pin Value

Independent of the setting of Data Direction bit DDxn, the port pin can be read through the PINxn Register bit. As shown in
Figure 5-25 on page 101, the PINxn Register bit and the preceding latch constitute a synchronizer. This is needed to avoid
metastability if the physical pin changes value near the edge of the internal clock, but it also introduces a delay. Figure 5-27
shows a timing diagram of the synchronization when reading an externally applied pin value. The maximum and minimum
propagation delays are denoted tpd,max and tpd,min respectively.

Figure 5-27. Synchronization when Reading an Externally Applied Pin Value

Consider the clock period starting shortly after the first falling edge of the system clock. The latch is closed when the clock is
low, and goes transparent when the clock is high, as indicated by the shaded region of the “SYNC LATCH” signal. The signal
value is latched when the system clock goes low. It is clocked into the PINxn Register at the succeeding positive clock edge. As
indicated by the two arrows tpd,max and tpd,min, a single signal transition on the pin will be delayed between ½ and 1½ system
clock period depending upon the time of assertion.
When reading back a software assigned pin value, a nop instruction must be inserted as indicated in Figure 5-28. The out
instruction sets the “SYNC LATCH” signal at the positive edge of the clock. In this case, the delay tpd through the synchronizer
is 1 system clock period.

Figure 5-28. Synchronization when Reading a Software Assigned Pin Value

The following code example shows how to set port B pins 0 and 1 high, 2 and 3 low, and define the port pins from 4 to 7 as input
with pull-ups assigned to port pins 6 and 7. The resulting pin values are read back again, but as previously discussed, a nop
instruction is included to be able to read back the value recently assigned to some of the pins.

SYSTEM CLK

INSTRUCTIOS

SYNC LATCH

PINxn

r17

XXX XXX

0x00 0xFF

in r17, PINx

tpd, max

tpd, min

SYSTEM CLK

INSTRUCTIOS

SYNC LATCH

PINxn

r16

r17

out PORTx, r16 nop

0x00 0xFF

0xFF

in r17, PINx

tpd
103Atmel ATA664251 [DATASHEET]
9269B–AUTO–11/12

5.11.9 Asynchronous Operation of Timer/Counter0

When Timer/Counter0 operates asynchronously, some considerations must be taken.
● Warning: When switching between asynchronous and synchronous clocking of Timer/Counter0, the timer registers

TCNT0, OCR0A, and TCCR0A might be corrupted. A safe procedure for switching clock source is:
a) Disable the Timer/Counter0 interrupts by clearing OCIE0A and TOIE0.
b) Select clock source by setting AS0 and EXCLK as appropriate.
c) Write new values to TCNT0, OCR0A, and TCCR0A.
d) To switch to asynchronous operation: Wait for TCN0UB, OCR0UB, and TCR0UB.
e) Clear the Timer/Counter0 interrupt flags.
f) Enable interrupts, if needed.

● If an 32.768kHz watch crystal is used, the CPU main clock frequency must be more than four times the Oscillator or
external clock frequency.

● When writing to one of the registers TCNT0, OCR0A, or TCCR0A, the value is transferred to a temporary register, and
latched after two positive edges on TOSC1. The user should not write a new value before the contents of the temporary
register have been transferred to its destination. Each of the three mentioned registers have their individual temporary
register, which means that e.g. writing to TCNT0 does not disturb an OCR0A write in progress. To detect that a transfer
to the destination register has taken place, the Asynchronous Status Register – ASSR has been implemented.

● When entering Power-save mode after having written to TCNT0, OCR0A, or TCCR0A, the user must wait until the written
register has been updated if Timer/Counter0 is used to wake up the device. Otherwise, the MCU will enter sleep mode
before the changes are effective. This is particularly important if the Output Compare0 interrupt is used to wake up the
device, since the Output Compare function is disabled during writing to OCR0A or TCNT0. If the write cycle is not
finished, and the MCU enters sleep mode before the OCR0UB bit returns to zero, the device will never receive a
compare match interrupt, and the MCU will not wake up.

● If Timer/Counter0 is used to wake the device up from Power-save mode, precautions must be taken if the user wants to
re-enter one of these modes: The interrupt logic needs one TOSC1 cycle to be reset. If the time between wake-up and
re-entering sleep mode is less than one TOSC1 cycle, the interrupt will not occur, and the device will fail to wake up. If
the user is in doubt whether the time before re-entering Power-save mode is sufficient, the following algorithm can be
used to ensure that one TOSC1 cycle has elapsed:
a) Write a value to TCCR0A, TCNT0, or OCR0A.
b) Wait until the corresponding Update Busy flag in ASSR returns to zero.
c) Enter Power-save or ADC Noise Reduction mode.

● When the asynchronous operation is selected, the oscillator for Timer/Counter0 is always running, except in Power-down
mode. After a Power-up Reset or wake-up from Power-down mode, the user should be aware of the fact that this
oscillator might take as long as one second to stabilize. The user is advised to wait for at least one second before using
Timer/Counter0 after power-up or wake-up from Power-down mode. The contents of all Timer/Counter0 Registers must
be considered lost after a wake-up from Power-down mode due to unstable clock signal upon start-up, no matter whether
the oscillator is in use or a clock signal is applied to the XTAL1 pin.

● Description of wake up from Power-save mode when the timer is clocked asynchronously: When the interrupt condition is
met, the wake up process is started on the following cycle of the timer clock, that is, the timer is always advanced by at
least one before the processor can read the counter value. After wake-up, the MCU is halted for four cycles, it executes
the interrupt routine, and resumes execution from the instruction following SLEEP.

● Reading of the TCNT0 Register shortly after wake-up from Power-save may give an incorrect result. Since TCNT0 is
clocked on the asynchronous clock, reading TCNT0 must be done through a register synchronized to the internal I/O
clock domain (CPU main clock). Synchronization takes place for every rising XTAL1 edge. When waking up from Power-
save mode, and the I/O clock (clkI/O) again becomes active, TCNT0 will read as the previous value (before entering
sleep) until the next rising XTAL1 edge. The phase of the XTAL1 clock after waking up from Power-save mode is
essentially unpredictable, as it depends on the wake-up time. The recommended procedure for reading TCNT0 is thus as
follows:
a) Write any value to either of the registers OCR0A or TCCR0A.
b) Wait for the corresponding Update Busy Flag to be cleared.
c) Read TCNT0.
127Atmel ATA664251 [DATASHEET]
9269B–AUTO–11/12

5.13 16-bit Timer/Counter1
The 16-bit Timer/Counter unit allows accurate program execution timing (event management), wave generation, and signal
timing measurement. The main features are:

5.13.1 Features
● True 16-bit Design (i.e., Allows 16-bit PWM)
● Two independent Output Compare Units
● Four Controlled Output Pins per Output Compare Unit
● Double Buffered Output Compare Registers
● One Input Capture Unit
● Input Capture Noise Canceler
● Clear Timer on Compare Match (Auto Reload)
● Glitch-free, Phase Correct Pulse Width Modulator (PWM)
● Variable PWM Period
● Frequency Generator
● External Event Counter
● Four independent interrupt Sources (TOV1, OCF1A, OCF1B, and ICF1)

5.13.2 Overview

Many register and bit references in this section are written in general form.
● A lower case “n” replaces the Timer/Counter number, in this case 1. However, when using the register or bit defines in a

program, the precise form must be used, i.e., TCNT1 for accessing Timer/Counter1 counter value and so on.
● A lower case “x” replaces the Output Compare unit channel, in this case A or B. However, when using the register or bit

defines in a program, the precise form must be used, i.e., OCR1A for accessing Timer/Counter1 output compare channel
A value and so on.

● A lower case “i” replaces the index of the Output Compare output pin, in this case U, V, W or X. However, when using the
register or bit defines in a program, the precise form must be used.

A simplified block diagram of the 16-bit Timer/Counter is shown in Figure 5-44 on page 137. CPU accessible I/O Registers,
including I/O bits and I/O pins, are shown in bold. The device-specific I/O Register and bit locations are listed in Section 5.13.11
“16-bit Timer/Counter Register Description” on page 156.
136Atmel ATA664251 [DATASHEET]
9269B–AUTO–11/12

The following code examples show how to do an atomic write of the TCNT1 Register contents. Writing any of the OCR1A/B or
ICR1 Registers can be done by using the same principle.

The assembly code example requires that the r17:r16 register pair contains the value to be written to TCNT1.

5.13.3.2 Reusing the Temporary High Byte Register

If writing to more than one 16-bit register where the high byte is the same for all registers written, then the high byte only needs
to be written once. However, note that the same rule of atomic operation described previously also applies in this case.

5.13.4 Timer/Counter Clock Sources

The Timer/Counter can be clocked by an internal or an external clock source. The clock source is selected by the Clock Select
logic which is controlled by the Clock Select (CS12:0) bits located in the Timer/Counter control Register B (TCCR1B). For
details on clock sources and prescaler, see Section 5.12 “Timer/Counter1 Prescaler” on page 134.

Assembly Code Example(1)

TIM16_WriteTCNT1:
; Save global interrupt flag
in r18,SREG
; Disable interrupts
cli
; Set TCNT1 to r17:r16
sts TCNT1H,r17
sts TCNT1L,r16
; Restore global interrupt flag
out SREG,r18
ret

C Code Example(1)

void TIM16_WriteTCNT1(unsigned int i)
{

unsigned char sreg;
unsigned int i;
/* Save global interrupt flag */
sreg = SREG;
/* Disable interrupts */
_CLI();
/* Set TCNT1 to i */
TCNT1 = i;
/* Restore global interrupt flag */
SREG = sreg;

}
Note: 1. The example code assumes that the part specific header file is included1
141Atmel ATA664251 [DATASHEET]
9269B–AUTO–11/12

5.15 USI – Universal Serial Interface

5.15.1 Features
● Two-wire Synchronous Data Transfer (Master or Slave)
● Three-wire Synchronous Data Transfer (Master or Slave)
● Data Received Interrupt
● Wakeup from Idle Mode
● In Two-wire Mode: Wake-up from All Sleep Modes, Including Power-down Mode
● Two-wire Start Condition Detector with Interrupt Capability

5.15.2 Overview

The Universal Serial Interface, or USI, provides the basic hardware resources needed for serial communication. Combined with
a minimum of control software, the USI allows significantly higher transfer rates and uses less code space than solutions based
on software only. Interrupts are included to minimize the processor load.
A simplified block diagram of the USI is shown on Figure 5-62. CPU accessible I/O Registers, including I/O bits and I/O pins, are
shown in bold. The device-specific I/O Register and bit locations are listed in Section 5.15.5 “Register Descriptions” on page
177.

Figure 5-62. Universal Serial Interface, Block Diagram

The 8-bit USI Data Register is directly accessible via the data bus and contains the incoming and outgoing data. The register
has no buffering so the data must be read as quickly as possible to ensure that no data is lost. The USI Data Register is a serial
shift register and the most significant bit that is the output of the serial shift register is connected to one of two output pins
depending of the wire mode configuration. A transparent latch is inserted between the USI Data Register Output and output pin,
which delays the change of data output to the opposite clock edge of the data input sampling. The serial input is always
sampled from the Data Input (DI) pin independent of the configuration.
The 4-bit counter can be both read and written via the data bus, and can generate an overflow interrupt. Both the USI Data
Register and the counter are clocked simultaneously by the same clock source. This allows the counter to count the number of
bits received or transmitted and generate an interrupt when the transfer is complete. Note that when an external clock source is
selected the counter counts both clock edges. In this case the counter counts the number of edges, and not the number of bits.
The clock can be selected from three different sources: The USCK pin, Timer/Counter0 Compare Match or from software. The
Two-wire clock control unit can generate an interrupt when a start condition is detected on the Two-wire bus. It can also
generate wait states by holding the clock pin low after a start condition is detected, or after the counter overflows.

Q

3
2
1
0

LE

2

USIDR

D

TIM0 COMP

USCK/ SCL

Two-wire Clock
Control Unit

CLOCK
HOLD

[1]

Bi
t0

Bi
t7

U
SI

SI
F

U
SI

O
IF

U
SI

PF

U
SI

D
C

USIDB

USISR

4-bit Counter

DI/ SDA

DO (Output only)

(Input/ Open Drain))

(Input/ Open Drain))
3
2
1
0

1

0

U
SI

SI
E

U
SI

O
IE

U
SI

W
M

1

U
SI

W
M

0

U
SI

C
S1

U
SI

C
S0

U
SI

C
LK

U
SI

TC

USICR
171Atmel ATA664251 [DATASHEET]
9269B–AUTO–11/12

5.16.5.6 Bit Timing

Baud rate Generator
The baud rate is defined to be the transfer rate in bits per second (bps):
● BAUD: Baud rate (in bps)
● fclki/o: System I/O clock frequency
● LDIV[11..0]: Contents of LINBRRH & LINBRRL registers - (0-4095), the pre-scaler receives clki/o as input clock
● LBT[5..0]: Least significant bits of - LINBTR register- (0-63) is the number of samplings in a LIN or UART bit (default

value 32)

Equation for calculating baud rate:
BAUD = fclki/o / LBT[5..0] x (LDIV[11..0] + 1)

Equation for setting LINDIV value:
LDIV[11..0] = (fclki/o / LBT[5..0] x BAUD) - 1

Note that in reception a majority vote on three samplings is made.
Re-synchronization in LIN Mode
When waiting for Rx Header, LBT[5..0] = 32 in LINBTR register. The re-synchronization begins when the BREAK is detected. If
the BREAK size is not in the range (10.5 bits min., 28 bits max. — 13 bits nominal), the BREAK is refused. The re-
synchronization is done by adjusting LBT[5..0] value to the SYNCH field of the received header (0x55). Then the PROTECTED
IDENTIFIER is sampled using the new value of LBT[5..0]. The re-synchronization implemented in the controller tolerates a clock
deviation of ± 20% and adjusts the baud rate in a ±2% range.
The new LBT[5..0] value will be used up to the end of the response. Then, the LBT[5..0] will be reset to 32 for the next header.
The LINBTR register can be used to (software) re-calibrate the clock oscillator.
The re-synchronization is not performed if the LIN node is enabled as a master.
Handling LBT[5..0]
● LDISR bit of LINBTR register is used to:
● Disable the re-synchronization (for instance in the case of LIN MASTER node),
● To enable the setting of LBT[5..0] (to manually adjust the baud rate especially in the case of UART mode). A minimum of

8 is required for LBT[5..0] due to the sampling operation.

Note that the LENA bit of LINCR register is important for this handling (see Figure 5-75 on page 190).

Figure 5-75. Handling LBT[5..0]

LENA ?
(LINCR bit4)

LDISR
to write

= 1

= 1

= 0

= 0

Write in LINBTR register

LBT [5 to 0] forced to 0x20
LDISR forced to 0

Enable re-synch. in LIN mode

LBT [5 to 0] = LBT [5 to 0] to write
(LBT [5 to 0] min = 8)
LDISR forced to 1

Disable re-synch. in LIN mode
190Atmel ATA664251 [DATASHEET]
9269B–AUTO–11/12

5.16.6.2 LIN Status and Interrupt Register - LINSIR

● Bits 7:5 - LIDST[2:0]: Identifier Status
● 0xx = no specific identifier,
● 100 = Identifier 60 (0x3C),
● 101 = Identifier 61 (0x3D),
● 110 = Identifier 62 (0x3E),
● 111 = Identifier 63 (0x3F).

● Bit 4 - LBUSY: Busy Signal
● 0 = Not busy,
● 1 = Busy (receiving or transmitting).

● Bit 3 - LERR: Error Interrupt
It is a logical OR of LINERR register bits. This bit generates an interrupt if its respective enable bit - LENERR - is set in
LINENIR.
● 0 = No error,
● 1 = An error has occurred.

The user clears this bit by writing 1 in order to reset this interrupt. Resetting LERR also resets all LINERR bits.
In UART mode, this bit is also cleared by reading LINDAT.

● Bit 2 - LIDOK: Identifier Interrupt
This bit generates an interrupt if its respective enable bit - LENIDOK - is set in LINENIR.
● 0 = No identifier,
● 1 = Slave task: Identifier present, master task: Tx Header complete.

The user clears this bit by writing 1, in order to reset this interrupt.
● Bit 1 - LTXOK: Transmit Performed Interrupt

This bit generates an interrupt if its respective enable bit - LENTXOK - is set in LINENIR.
● 0 = No Tx,
● 1 = Tx Response complete.

The user clears this bit by writing 1, in order to reset this interrupt.
In UART mode, this bit is also cleared by writing LINDAT.

● Bit 0 - LRXOK: Receive Performed Interrupt
This bit generates an interrupt if its respective enable bit - LENRXOK - is set in LINENIR.
● 0 = No Rx
● 1 = Rx Response complete.

The user clears this bit by writing 1, in order to reset this interrupt.
In UART mode, this bit is also cleared by reading LINDAT.

Bit 7 6 5 4 3 2 1 0

LIDST2 LIDST1 LIDST0 LBUSY LERR LIDOK LTXOK LRXOK LINSIR

Read/Write R R R R R/Wone R/Wone R/Wone R/Wone

Initial Value 0 0 0 0 0 0 0 0
198Atmel ATA664251 [DATASHEET]
9269B–AUTO–11/12

5.18.7.1 Analog Input Circuitry

The analog input circuitry for single ended channels is illustrated in Figure 5-89. An analog source applied to ADCn is subjected
to the pin capacitance and input leakage of that pin, regardless of whether that channel is selected as input for the ADC. When
the channel is selected, the source must drive the S/H capacitor through the series resistance (combined resistance in the input
path).
The ADC is optimized for analog signals with an output impedance of approximately 10 kΩ or less. If such a source is used, the
sampling time will be negligible. If a source with higher impedance is used, the sampling time will depend on how long time the
source needs to charge the S/H capacitor, with can vary widely. The user is recommended to only use low impedant sources
with slowly varying signals, since this minimizes the required charge transfer to the S/H capacitor.
Signal components higher than the Nyquist frequency (fADC/2) should not be present to avoid distortion from unpredictable
signal convolution. The user is advised to remove high frequency components with a low-pass filter before applying the signals
as inputs to the ADC.

Figure 5-89. Analog Input Circuitry

5.18.7.2 Analog Noise Canceling Techniques

Digital circuitry inside and outside the device generates EMI which might affect the accuracy of analog measurements. If
conversion accuracy is critical, the noise level can be reduced by applying the following techniques:

a. Keep analog signal paths as short as possible. Make sure analog tracks run over the analog ground plane, and keep
them well away from high-speed switching digital tracks.

b. Use the ADC noise canceler function to reduce induced noise from the CPU.
c. If any port pins are used as digital outputs, it is essential that these do not switch while a conversion is in progress.

IIL

VCC/2

CS/H = 14pF

IIH

ADCn
1 to 100kΩ
212Atmel ATA664251 [DATASHEET]
9269B–AUTO–11/12

5.18.12.3 ADCL and ADCH – The ADC Data Register

ADLAR = 0

ADLAR = 1

When an ADC conversion is complete, the result is found in these two registers.
When ADCL is read, the ADC Data Register is not updated until ADCH is read. Consequently, if the result is left adjusted and
no more than 8-bit precision is required, it is sufficient to read ADCH. Otherwise, ADCL must be read first, then ADCH.
The ADLAR bit in ADMUX, and the MUXn bits in ADMUX affect the way the result is read from the registers. If ADLAR is set,
the result is left adjusted. If ADLAR is cleared (default), the result is right adjusted.
● ADC9:0: ADC Conversion Result

These bits represent the result from the conversion, as detailed in Section 5.18.8 “ADC Conversion Result” on page 215.

Bit 15 14 13 12 11 10 9 8

– – – – – – ADC9 ADC8 ADCH

ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0 ADCL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8

ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADCH

ADC1 ADC0 – – – – – – ADCL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
220Atmel ATA664251 [DATASHEET]
9269B–AUTO–11/12

5.21.2.7 Simple Assembly Code Example for a Boot Loader

Note that the RWWSB bit will always be read as zero in Atmel® ATtiny87/167. Nevertheless, it is recommended to check this bit
as shown in the code example, to ensure compatibility with devices supporting Read-While-Write.

;- The routine writes one page of data from RAM to Flash
; the first data location in RAM is pointed to by the Y-pointer
; the first data location in Flash is pointed to by the Z-pointer
;- Error handling is not included
;- Registers used: r0, r1, temp1 (r16), temp2 (r17), looplo (r24),
; loophi (r25), spmcsrval (r20)
; - Storing and restoring of registers is not included in the routine
; register usage can be optimized at the expense of code size

.equ PAGESIZEB = PAGESIZE*2 ; AGESIZEB is page size in BYTES, not words

.org SMALLBOOTSTART

Write_page:
; Page Erase
ldi spmcsrval, (1<<PGERS) | (1<<SELFPGEN)
rcall Do_spm

; Clear temporary page buffer
ldi spmcsrval, (1<<CPTB) | (1<<SELFPGEN)
rcall Do_spm

; Transfer data from RAM to Flash temporary page buffer
ldi looplo, low(PAGESIZEB) ; init loop variable
ldi loophi, high(PAGESIZEB) ; not required for PAGESIZEB<=256

Wrloop:
ld r0, Y+
ld r1, Y+
ldi spmcsrval, (1<<SELFPGEN)
rcall Do_spm
adiw ZH:ZL, 2
sbiw loophi:looplo, 2 ; use subi for PAGESIZEB<=256
brne Wrloop

; Execute Page Write
subi ZL, low(PAGESIZEB) ; restore pointer
sbci ZH, high(PAGESIZEB) ; not required for PAGESIZEB<=256
ldi spmcsrval, (1<<PGWRT) | (1<<SELFPGEN)
rcall Do_spm

; Clear temporary page buffer
ldi spmcsrval, (1<<CPTB) | (1<<SELFPGEN)
rcall Do_spm

; Read back and check, optional
ldi looplo, low(PAGESIZEB) ; init loop variable
ldi loophi, high(PAGESIZEB) ; not required for PAGESIZEB<=256
subi YL, low(PAGESIZEB) ; restore pointer
sbci YH, high(PAGESIZEB)
233Atmel ATA664251 [DATASHEET]
9269B–AUTO–11/12

5.22.5 Page Size

5.22.6 Parallel Programming Parameters, Pin Mapping, and Commands

This section describes how to parallel program and verify Flash Program memory, EEPROM Data memory, Memory Lock bits,
and Fuse bits in the Atmel® ATtiny87/167. Pulses are assumed to be at least 250 ns unless otherwise noted.

5.22.6.1 Signal Names

In this section, some pins of the Atmel ATtiny87/167 are referenced by signal names describing their functionality during parallel
programming, see Figure 5-97 and Figure 5-98 on page 239. Pins not described in the following table are referenced by pin
names.
The XA1/XA0 pins determine the action executed when the XTAL1 pin is given a positive pulse. The bit coding is shown in
Figure 5-75 on page 239.
When pulsing WR or OE, the command loaded determines the action executed. The different commands are shown in Figure 5-
76 on page 240.

Figure 5-97. Parallel Programming

Note: Vcc – 0.3V < AVcc < Vcc + 0.3V, however, AVcc should always be within 4.5 to 5.5V

Table 5-72. Number of Words in a Page and No. of Pages in the Flash

Device Flash Size Page Size PCWORD No. of Pages PCPAGE PCMSB

ATtiny87 4K words 64 words PC[5:0] 64 PC[11:6] 11

ATtiny167 8K words 64 words PC[5:0] 128 PC[12:6] 12

Table 5-73. Number of Words in a Page and No. of Pages in the EEPROM

Device EEPROM Size Page Size PCWORD No. of Pages PCPAGE EEAMSB

ATtiny87
ATtiny167

512bytes 4bytes EEA[1:0] 128 EEA[8:2] 8

GND

PB0

PB1

PB2

PB3

XTAL1/ PB4

DATA

PB5

PB6

RESET/ PB7

VCC

AVCC

PB7 to PB0

+4.5 to +5.5V

+4.5 to +5.5V

WR

OE

RDY/ BSY

XA1/ BS2

XA0

PAGEL/ BS1

+12V
238Atmel ATA664251 [DATASHEET]
9269B–AUTO–11/12

5.22.7 Parallel Programming

5.22.7.1 Enter Programming Mode

The following algorithm puts the device in parallel programming mode:
1. Apply 4.5V - 5.5V between Vcc and GND.
2. Set RESET to “0” and toggle XTAL1 at least six times.
3. Set the Prog_enable pins listed in Table 5-74 on page 239 to “0000 b” and wait at least 100 ns.
4. Apply 11.5V - 12.5V to RESET. Any activity on Prog_enable pins within 100ns after +12V has been applied to

RESET, will cause the device to fail entering programming mode.
5. Wait at least 50µs before sending a new command.

5.22.7.2 Considerations for Efficient Programming

The loaded command and address are retained in the device during programming. For efficient programming, the following
should be considered.
● The command needs only be loaded once when writing or reading multiple memory locations.
● Skip writing the data value 0xFF, that is the contents of the entire EEPROM (unless the EESAVE Fuse is programmed)

and Flash after a Chip Erase.
● Address high byte needs only be loaded before programming or reading a new 256 word window in Flash or 256 byte

EEPROM. This consideration also applies to Signature bytes reading.

Table 5-76. Command Byte Bit Coding

Command Byte Command Executed

1000 0000 b Chip Erase

0100 0000 b Write Fuse bits

0010 0000 b Write Lock bits

0001 0000 b Write Flash

0001 0001 b Write EEPROM

0000 1000 b Read Signature bytes and Calibration byte

0000 0100 b Read Fuse and Lock bits

0000 0010 b Read Flash

0000 0011 b Read EEPROM
240Atmel ATA664251 [DATASHEET]
9269B–AUTO–11/12

5.25.7 Internal Oscillator Speed

Figure 5-132. Calibrated 8.0MHz RC Oscillator Frequency versus Vcc

Figure 5-133. Calibrated 8.0MHz RC Oscillator Frequency versus OSCCAL Value
270Atmel ATA664251 [DATASHEET]
9269B–AUTO–11/12

