Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details	
Details	

Details	
Product Status	Active
Core Processor	R8C
Core Size	16-Bit
Speed	8MHz
Connectivity	LINbus, SIO, UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	27
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 5.5V
Data Converters	
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f212g6snfp-w4

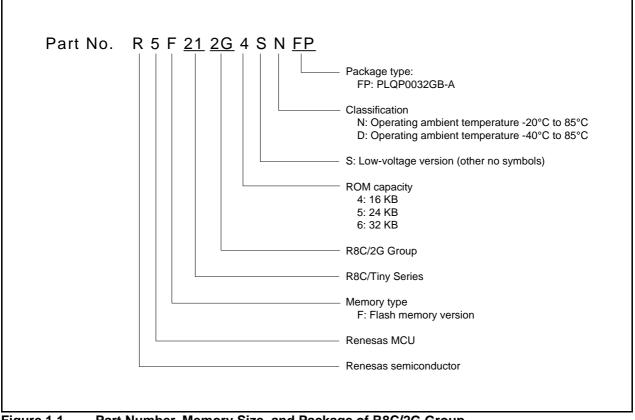
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Table 1.2


Current of Apr. 2008

1.2 Product List

Product List for R8C/2G Group

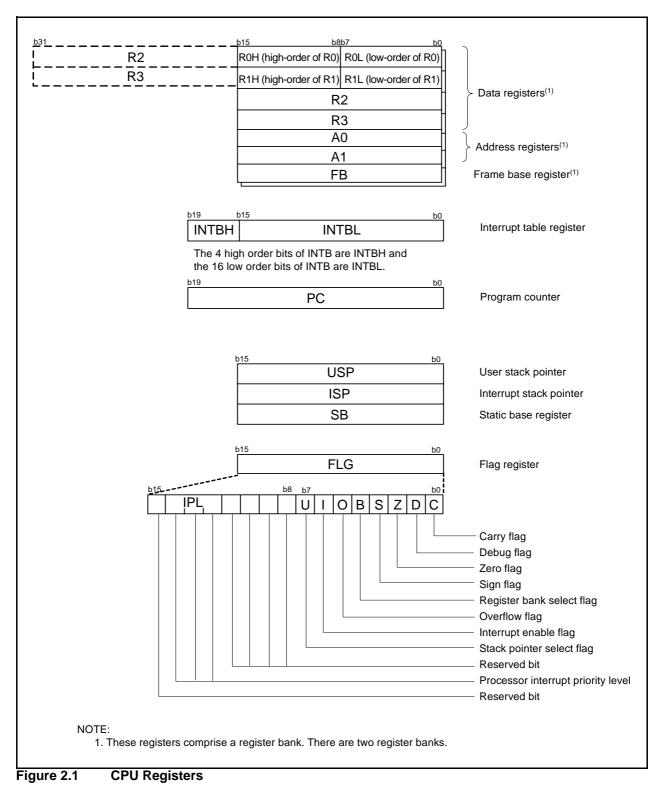
Table 1.2 lists Product List for R8C/2G Group, Figure 1.1 shows a Part Number, Memory Size, and Package of R8C/2G Group.

Part No.	ROM Capacity	RAM Capacity	Package Type	Remarks
R5F212G4SNFP	16 Kbytes	512 bytes	PLQP0032GB-A	N version
R5F212G5SNFP	24 Kbytes	1 Kbytes	PLQP0032GB-A	
R5F212G6SNFP	32 Kbytes	1 Kbytes	PLQP0032GB-A	
R5F212G4SDFP	16 Kbytes	512 bytes	PLQP0032GB-A	D version
R5F212G5SDFP	24 Kbytes	1 Kbytes	PLQP0032GB-A	
R5F212G6SDFP	32 Kbytes	1 Kbytes	PLQP0032GB-A	

Figure 1.1 Part Number, Memory Size, and Package of R8C/2G Group

Pin	Control Pin	Port		I/O Pin Functions for of P	Peripheral Modules	
Number		FUIL	Interrupt	Timer	Serial Interface	Comparator
1		P3_5		TRFO12		
2		P3_7		(TRAO)/(TRFO11) ⁽¹⁾		
3	RESET					
4	XCOUT	(P4_4)				
5	VSS					
6	XCIN	(P4_3)				
7	VCC					
8	MODE					
9		P4_5	ĪNT0			
10		P1_7	ĪNT1	TRAIO		
11		P3_6	(INT1) ⁽¹⁾			
12		P3_1		TRBO		
13		P3_0		TRAO		
14		P3_2	INT2			
15		P1_6			CLK0	VCOUT2
16		P1_5	(INT1) ⁽¹⁾	(TRAIO) ⁽¹⁾	RXD0	
17		P1_4			TXD0	
18		P1_3	KI3	(TRBO) ⁽¹⁾		VCOUT1
19		P1_2	KI2	TRFO02		CVREF
20		P6_5		(TREO) ⁽¹⁾	CLK2	
21		P1_1	KI1	TRFO01		VCMP2
22		P1_0	KIO	TRFO00		VCMP1
23		P3_3		TRFO10/TRFI		
24		P3_4		TRFO11		
25		P0_7	(KI0) ⁽¹⁾			
26		P0_6	INT4			
27		P0_5				
28		P0_4		(TREO) ⁽¹⁾		
29		P6_3			TXD2	
30		P6_0		TREO		
31		P6_6	(KI1) ⁽¹⁾			
32		P6_4			RXD2	
					•	

Table 1.3 Pin Name Information by Pin Number


NOTE:

1. Can be assigned to the pin in parentheses by a program.

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU Registers. The CPU contains 13 registers. R0, R1, R2, R3, A0, A1, and FB configure a register bank. There are two sets of register bank.

2.1 Data Registers (R0, R1, R2, and R3)

R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R1H and R1L are analogous to R0H and R0L. R2 can be combined with R0 and used as a 32-bit data register (R2R0). R3R1 is analogous to R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. It is also used for transfer, arithmetic, and logic operations. A1 is analogous to A0. A1 can be combined with A0 to be used as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the start address of an interrupt vector table.

2.5 Program Counter (PC)

PC is 20 bits wide and indicates the address of the next instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointers (SP), USP, and ISP, are each 16 bits wide. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is an 11-bit register indicating the CPU state.

2.8.1 Carry Flag (C)

The C flag retains carry, borrow, or shift-out bits that have been generated by the arithmetic and logic unit.

2.8.2 Debug Flag (D)

The D flag is for debugging only. Set it to 0.

2.8.3 Zero Flag (Z)

The Z flag is set to 1 when an arithmetic operation results in 0; otherwise to 0.

2.8.4 Sign Flag (S)

The S flag is set to 1 when an arithmetic operation results in a negative value; otherwise to 0.

2.8.5 Register Bank Select Flag (B)

Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is set to 1.

2.8.6 Overflow Flag (O)

The O flag is set to 1 when an operation results in an overflow; otherwise to 0.

Address	Register	Symbol	After reset
0130h			
0131h			
0132h			
0133h			
0134h			1
0135h			
0136h			
0137h			
0138h			
0139h			
013Ah			1
013Bh			
013Ch			1
013Dh			
013Eh			1
013Fh			<u> </u>
0140h			ł
0140h			ł
0141h 0142h			
0142h 0143h			
0143h			
014411 0145h			ł
0145h			
0146h			
0147h			
0149h			
0143h			
014An			
014Bh			
014Dh			
014Dh			
014En			
014FI1 0150h			
0151h 0152h			
0153h			
0154h 0155h			
0156h			
0157h			
0158h			
0159h			
015Ah			
015Bh			
015Ch			
015Dh			
015Eh			
015Fh		LIGNE	
0160h	UART2 Transmit/Receive Mode Register	U2MR	00h
0161h	UART2 Bit Rate Register	U2BRG	XXh
0162h	UART2 Transmit Buffer Register	U2TB	XXh
0163h			XXh
0164h	UART2 Transmit/Receive Control Register 0	U2C0	00001000b
0165h	UART2 Transmit/Receive Control Register 1	U2C1	00000010b
0166h	UART2 Receive Buffer Register	U2RB	XXh
0167h			XXh
0168h			
0169h			
016Ah			
016Bh			
OTODIT			1
016Ch			
016Ch 016Dh			
016Ch			

SFR Information (6)⁽¹⁾ Table 4.6

X: Undefined NOTE: 1. The blank regions are reserved. Do not access locations in these regions.

Address	Register	Symbol	After reset
0170h		2	
0171h			
0172h			
0173h			
0174h			
0175h			
0176h			
0177h			
0178h			
0179h			
017Ah 017Bh			
017Bn			
017Dh			
017Eh			
017Fh			
0180h			
0181h			
0182h			
0183h			
0184h			
0185h			
0186h			
0187h			
0188h			
0189h			
018Ah			
018Bh			
018Ch			
018Dh			
018Eh			
018Fh 0190h			
0190h 0191h			
01911 0192h			
0192h			
0193h			
0195h			
0196h			
0197h			
0198h			
0199h			
019Ah			
019Bh			
019Ch			
019Dh			
019Eh			
019Fh			
01A0h			
01A1h			
01A2h			
01A3h			
01A4h			
01A5h			
01A6h			
01A7h 01A8h			
01A8n 01A9h			
01A9h 01AAh			
01AAh 01ABh			
01ADh			
01ADh			
01AEh			
01AFh			
V. Undefined			L

SFR Information (7)⁽¹⁾ Table 4.7

X: Undefined NOTE: 1. The blank regions are reserved. Do not access locations in these regions.

Address	Desister	Cumbal	After reset
Address	Register	Symbol	After reset
01B0h 01B1h			
01B2h	Elect Marray Control Devictor 4	EMD 4	0400000h
01B3h 01B4h	Flash Memory Control Register 4	FMR4	0100000b
01B4h	Flash Memory Control Register 1	FMR1	1000000Xb
01B5h			10000000
01B01 01B7h	Flash Memory Control Register 0	FMR0	00000001b
01B711 01B8h		FIVIRU	00000015
01B01 01B9h			
01B9h			
01BBh			
01BCh			
01BDh			
01BEh			
01BFh			
01C0h			
01C1h			
01C2h		1	
01C3h		1	
01C4h		1	
01C5h			
01C6h			
01C7h			
01C8h			
01C9h			
01CAh			
01CBh			
01CCh			
01CDh			
01CEh			
01CFh			
01D0h			
01D1h			
01D2h			
01D3h			
01D4h			
01D5h			
01D6h			
01D7h			
01D8h			
01D9h			
01DAh			
01DBh			
01DCh			
01DDh			
01DEh			
01DFh			
01E0h			
01E1h			
01E2h 01E3h			
01E3h 01E4h			
01E4h 01E5h			
01E5h			
01E7h		<u> </u>	
01E8h		<u> </u>	
01E9h		<u> </u>	
01EAh			
01EBh			
01ECh			
01EDh			
01EEh			
01EFh			
		1	L

X: Undefined NOTE: 1. The blank regions are reserved. Do not access locations in these regions.

Address	Register	Symbol	After reset
01F0h	reyisiei	Symbol	Allei lesel
01F0h			
01F2h			
01F3h			
01F4h			
01F5h			
01F6h			
01F7h			
01F8h			
01F9h			
01FAh			
01FBh			
01FCh			
01FDh			
01FEh			
01FFh			
0200h			
0201h			
0202h 0203h			
0203h 0204h			
020411 0205h			
0205h			
0200h			
0208h			
0209h			
020Ah			
020Bh			
020Ch			
020Dh			
020Eh			
020Fh			
0210h			
0211h			
0212h			
0213h			
0214h			
0215h			
0216h			
0217h			
0218h 0219h			
021911 021Ah			
021An 021Bh			
021Dh			
0210h			
021Eh			
021Eh			
0220h			
0221h			
0222h			
0223h			
0224h			
0225h			
0226h			
0227h			
0228h			
0229h			
022Ah			
022Bh			
022Ch			
022Dh			
022Eh			
022Fh			
Y: Undofined			

SFR Information (9)⁽¹⁾ Table 4.9

X: Underined NOTE: 1. The blank regions are reserved. Do not access locations in these regions.

Symbol	Doromotor	Parameter Conditions -		Unit		
Symbol	Faranielei		Min.	Тур.	Max.	Unit
-	Program/erase endurance ⁽²⁾		100 ⁽³⁾	-	-	times
-	Byte program time		-	50	400	μs
-	Block erase time		-	0.4	9	S
-	Program, erase voltage		2.7	-	5.5	V
-	Read voltage		2.2	-	5.5	V
-	Program, erase temperature		0	-	60	°C
-	Data hold time ⁽⁷⁾	Ambient temperature = 55°C	20	-	-	year

Table 5.3 Flash Memory (Program ROM) Electrical Characteristics

NOTES:

1. Vcc = 2.7 to 5.5 V at Topr = 0 to 60° C, unless otherwise specified.

 Definition of programming/erasure endurance The programming and erasure endurance is defined on a per-block basis. If the programming and erasure endurance is n (n = 100 or 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.

However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).
 In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erase count of each block and limit the number of erase operations to a certain number.

5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.

7. The data hold time includes time that the power supply is off or the clock is not supplied.

Symbol	Parameter	Condition		Unit		
Symbol	Falanielei	Condition	Min.	Тур.	Max.	Onit
Vref	Internal reference voltage	Vcc = 2.2 V to 5.5 V, Topr = 25° C	1.15	1.25	1.35	V
		$V_{CC} = 2.2 V \text{ to } 5.5 V,$ $T_{opr} = -40 \text{ to } 85^{\circ}\text{C}$	_	1.25	-	V
Vcref	External input reference voltage	Vcc = 2.2 V to 4.0 V	0.5	-	Vcc - 1.1	V
		Vcc = 4.0 V to 5.5 V	0.5	-	Vcc - 1.5	
Vcin	External comparison voltage input range		-0.3	_	Vcc + 0.3	V
Vofs	Input offset voltage		-	20	120	mV
Tcrsp	Response time		-	4	-	μS

Table 5.8 Comparator Electrical Characteristics

NOTE:

1. The measurement condition is $T_{opr} = -20$ to $85^{\circ}C$ (N version) / -40 to $85^{\circ}C$ (D version), unless otherwise specified.

Table 5.9 High-speed On-Chip Oscillator Circuit Electrical Characteristics

Symbol	Parameter	Condition		Standard		Unit
Symbol	Falanielei			Тур.	Max.	Unit
fOCO-F	High-speed on-chip oscillator frequency temperature • supply voltage dependence	Vcc = 4.75 V to 5.25 V Topr = 0 to 60°C ⁽²⁾	7.76	8	8.24	MHz
		Vcc = 2.7 V to 5.5 V Topr = -20 to 85°C ⁽²⁾	7.68	8	8.32	MHz
		Vcc = 2.7 V to 5.5 V Topr = -40 to 85°C ⁽²⁾	7.44	8	8.32	MHz
		$V_{CC} = 2.2 \text{ V to } 5.5 \text{ V}$ $T_{opr} = -20 \text{ to } 85^{\circ}C^{(3)}$	7.04	8	8.96	MHz
		$V_{CC} = 2.2 \text{ V to } 5.5 \text{ V}$ Topr = -40 to $85^{\circ}C^{(3)}$	6.8	8	9.2	MHz

NOTES:

1. The measurement condition is Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. These standard values show when the HRA1 register is set to the value before shipment and the HRA2 register is set to 00h.

3. These standard values show when the correction value in the FRA6 register is written into the HRA1 register.

Table 5.10 Low-speed On-Chip Oscillator Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	Falanetei	Condition	Min.	Тур.	Max.	Unit
fOCO-S	Low-speed on-chip oscillator frequency		30	125	250	kHz
-	Oscillation stability time		-	10	100	μS
Self power consumption at oscillation		VCC = 5.0 V , Topr = 25°C	_	15	_	μA

NOTE:

1. Vcc = 2.2 to 5.5 V, Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

Table 5.11 Power Supply Circuit Timing Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	T arameter	Condition	Min.	Тур.	Max.	Unit
td(P-R)	Time for internal power supply stabilization during power-on ⁽²⁾		1	-	2000	μs
td(R-S)	STOP exit time ⁽³⁾		-	-	150	μS

NOTES:

1. The measurement condition is Vcc = 2.2 to 5.5 V and $T_{opr} = 25^{\circ}C$.

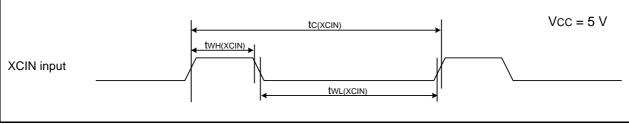
2. Waiting time until the internal power supply generation circuit stabilizes during power-on.

3. Time until system clock supply starts after the interrupt is acknowledged to exit stop mode.

Symbol	Parameter	Condition	Standard			Unit	
Symbol	Fai	ameter	Condition	Min.	Тур.	Max.	Unit
Vон	Output "H" voltage		Iон = -5 mA	Vcc - 2.0	-	Vcc	V
			Іон = -200 μА	Vcc - 0.5	-	Vcc	V
Vol	Output "L" voltage		IOL = 5 mA	-	-	2.0	V
			ΙΟL = 200 μΑ	-	-	0.45	V
Vt+-Vt-	Hysteresis	INT0, INT1, INT2, INT4, KI0, KI1, KI2, KI3, RXD0, RXD2, CLK0, CLK2		0.1	0.5	_	V
		RESET		0.1	1.0	-	V
Ін	Input "H" current		VI = 5 V, Vcc = 5 V	-	-	5.0	μΑ
lı∟	Input "L" current		VI = 0 V, Vcc = 5 V	-	_	-5.0	μA
RPULLUP	Pull-up resistance		VI = 0 V, Vcc = 5 V	30	50	167	kΩ
RfXCIN	Feedback resistance	XCIN		-	18	-	MΩ
Vram	RAM hold voltage		During stop mode	2.0	-	-	V

Table 5.12	Electrical Characteristics (1) [Vcc = 5 V	1
		з.

NOTE: 1. Vcc = 4.2 to 5.5 V at T_{opr} = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.


Table 5.13	Electrical Characteristics (2) [Vcc = 5 V]
	(Topr = -20 to 85° C (N version) / -40 to 85° C (D version), unless otherwise specified.)

Symbol	Parameter		Condition	;	Standar	d	Unit
Symbol	Parameter			Min.	Тур.	Max.	Unit
Icc	Power supply current $(Vcc = 3.3 \text{ to } 5.5 \text{ V})$	High-speed on-chip oscillator mode	High-speed on-chip oscillator on = 8 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	5	8	mA
	Single-chip mode, output pins are open, other pins are Vss		High-speed on-chip oscillator on = 8 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	2	-	mA
		Low-speed on-chip oscillator mode	High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR47 = 1	-	130	300	μA
		Low-speed clock mode	High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (low drive) FMR47 = 1	-	130	300	μA
			High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (low drive) Program operation on RAM Flash memory off, FMSTP = 1	_	30	_	μΑ
		Wait mode	High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	25	75	μA
			High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	23	60	μA
			High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (high drive) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1 BGR trimming circuit disabled (BGRCR0 = 1)	-	4	_	μA
			High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (low drive) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1 BGR trimming circuit disabled (BGRCR0 = 1)	-	2.2	_	μA
			High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (high drive) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1 BGR trimming circuit enabled (BGRCR0 = 0)	-	8	_	μA
			High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (low drive) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1 BGR trimming circuit enabled (BGRCR0 = 0)	-	6	_	μA
		Stop mode	XCIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0 BGR trimming circuit disabled (BGRCR0 = 1)	_	0.8	3	μA
			XCIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0 BGR trimming circuit disabled (BGRCR0 = 1)	_	1.2	_	μA
			XCIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0 BGR trimming circuit enabled (BGRCR0 = 0)	-	5	8	μA
			XCIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0 BGR trimming circuit enabled (BGRCR0 = 0)	-	5.5	_	μA

Timing Requirements (Unless Otherwise Specified: Vcc = 5 V, Vss = 0 V at Topr = 25°C) [Vcc = 5 V]

Table 5.14XCIN Input

Symbol	Parameter		Standard		
			Max.	Unit	
tc(XCIN)	XCIN input cycle time	14	-	μS	
tWH(XCIN)	XCIN input "H" width	7	-	μS	
tWL(XCIN)	XCIN input "L" width	7	-	μS	

Figure 5.3 XCIN Input Timing Diagram when Vcc = 5 V

Table 5.15 TRAIO Input

Symbol	Parameter		Standard		
			Max.	Unit	
tc(TRAIO)	TRAIO input cycle time	100	-	ns	
twh(traio)	TRAIO input "H" width	40	-	ns	
twl(traio)	TRAIO input "L" width	40	-	ns	

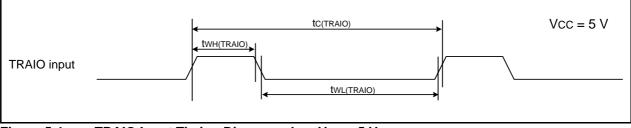
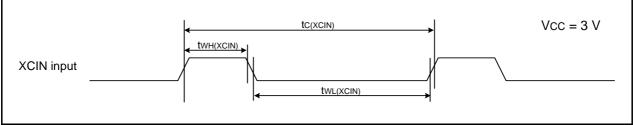


Figure 5.4 TRAIO Input Timing Diagram when Vcc = 5 V

Cumbal	Parameter	Condition	Standard			Unit	
Symbol	Par	ameter	Condition	Min.	Тур.	Max.	Unit
Vон	Output "H" voltage		Iон = -1 mA	Vcc - 0.5	-	Vcc	V
Vol	Output "L" voltage		IOL = 1 mA	-	-	0.5	V
Vt+-Vt-	Hysteresis	INT0, INT1, INT2, INT4, KI0, KI1, KI2, KI3, RXD0, RXD2, CLK0, CLK2		0.1	0.3	-	V
		RESET		0.1	0.4	-	V
Ін	Input "H" current		VI = 3 V, Vcc = 3 V	-	-	4.0	μΑ
lı∟	Input "L" current		VI = 0 V, Vcc = 3 V	-	-	-4.0	μA
Rpullup	Pull-up resistance		VI = 0 V, Vcc = 3 V	66	160	500	kΩ
RfXCIN	Feedback resistance	XCIN		-	18	-	MΩ
Vram	RAM hold voltage		During stop mode	1.8	-	_	V

Electrical Characteristics (3) [Vcc = 3 V] Table 5.18

NOTE: 1. Vcc =2.7 to 3.3 V at T_{opr} = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.


Table 5.19	Electrical Characteristics (4) [Vcc = 3 V]
	(Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

0	Demonster				Standar	d	
Symbol	Parameter		Condition	Min.	Тур.	Max.	Unit
Icc	Power supply current (Vcc = 2.7 to 3.3 V)	High-speed on-chip oscillator mode	High-speed on-chip oscillator on = 8 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	5	-	mA
	Single-chip mode, output pins are open, other pins are Vss		High-speed on-chip oscillator on = 8 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	2	-	mA
		Low-speed on-chip oscillator mode	High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR47 = 1	-	130	300	μA
		Low-speed clock mode	High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (low drive) FMR47 = 1	-	130	300	μA
			High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (low drive) Program operation on RAM Flash memory off, FMSTP = 1	-	30	_	μA
		Wait mode	High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	25	70	μA
			High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	23	55	μA
			High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (high drive) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1 BGR trimming circuit disabled (BGRCR0 = 1)	-	3.8	_	μA
			High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (low drive) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1 BGR trimming circuit disabled (BGRCR0 = 1)	-	2	_	μA
			High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (high drive) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1 BGR trimming circuit enabled (BGRCR0 = 0)	-	8	-	μA
			High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (low drive) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1 BGR trimming circuit enabled (BGRCR0 = 0)	-	6	-	μA
		Stop mode	XCIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0 BGR trimming circuit disabled (BGRCR0 = 1)	_	0.7	3	μA
			XCIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0 BGR trimming circuit disabled (BGRCR0 = 1)	_	1.1	-	μA
			XCIN clock off, Topr = 25° C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0 BGR trimming circuit enabled (BGRCR0 = 0)	_	5	7	μA
			XCIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0 BGR trimming circuit enabled (BGRCR0 = 0)	-	5.5	_	μA

Timing requirements (Unless Otherwise Specified: Vcc = 3 V, Vss = 0 V at Topr = 25°C) [Vcc = 3 V]

Table 5.20XCIN Input

Symbol	Parameter		Standard		
			Max.	Unit	
tc(XCIN)	XCIN input cycle time	14	-	μS	
tWH(XCIN)	XCIN input "H" width	7	-	μS	
tWL(XCIN)	XCIN input "L" width	7	-	μS	

Figure 5.7 XCIN Input Timing Diagram when Vcc = 3 V

Table 5.21 TRAIO Input

Symbol	Parameter		Standard	
	Falanielei	Min.	Max.	Unit
tc(TRAIO)	TRAIO input cycle time	300	-	ns
twh(traio)	TRAIO input "H" width	120	-	ns
twl(traio)	TRAIO input "L" width	120	-	ns

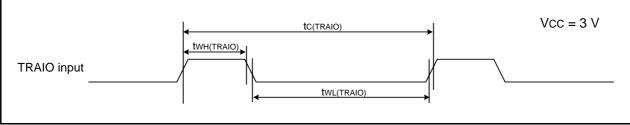
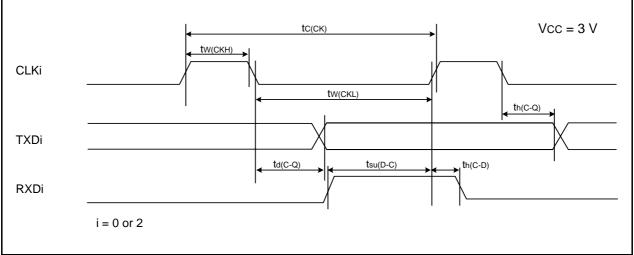



Figure 5.8 TRAIO Input Timing Diagram when Vcc = 3 V

Table 5.22 Serial Interface	Table 5.22	Serial Interface
-----------------------------	------------	------------------

Symbol	Parameter		Standard	
			Max.	Unit
tc(CK)	CLKi input cycle time	300	-	ns
tW(CKH)	CLKi input "H" width	150	-	ns
tW(CKL)	CLKi Input "L" width		-	ns
td(C-Q)	TXDi output delay time	-	80	ns
th(C-Q)	TXDi hold time	0	-	ns
tsu(D-C)	RXDi input setup time	70	-	ns
th(C-D)	RXDi input hold time	90	-	ns

i = 0 or 2

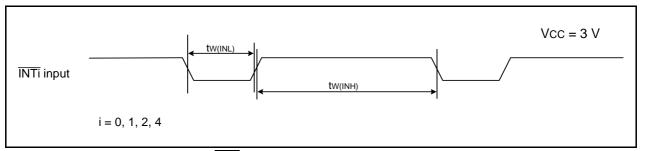
Table 5.23External Interrupt INTi (i = 0, 1, 2, 4) Input

Symbol	Parameter	Standard		Unit
	Falanielei	Min.	Max.	Unit
tw(INH)	INTi input "H" width	380 ⁽¹⁾	-	ns
tw(INL)	INTi input "L" width	380(2)	_	ns

NOTES:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.



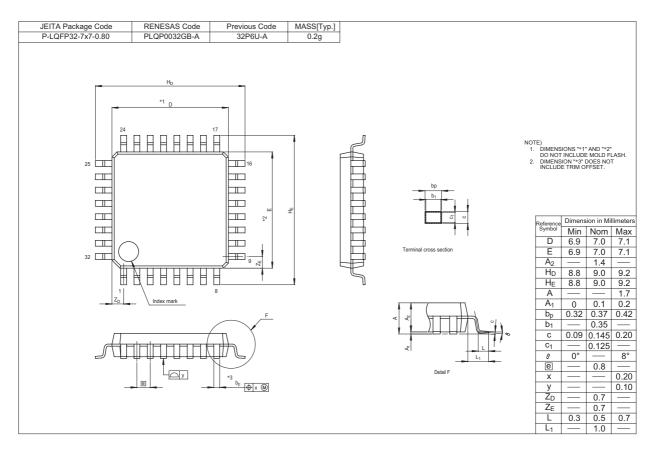

Figure 5.10 External Interrupt INTi Input Timing Diagram when Vcc = 3 V

Table 5.25	Electrical Characteristics (6) [Vcc = 2.2 V]				
	(Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)				

Symbol	Parameter		Condition	Min.	Standar Typ.	Max.	Unit
	Power supply current (Vcc = 2.2 to 2.7 V) Single-chip mode, output pins are open, other pins are Vss	High-speed on-chip oscillator mode	High-speed on-chip oscillator on = 4 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	3.5	-	mA
			High-speed on-chip oscillator on = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	1.5	-	mA
		Low-speed on-chip oscillator mode	High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR47 = 1	-	100	230	μA
		Low-speed clock mode	High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (low drive) FMR47 = 1	-	100	230	μA
			High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (low drive) Program operation on RAM Flash memory off, FMSTP = 1	-	25	_	μA
		Wait mode	High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	22	60	μΑ
			High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	20	55	μΑ
			High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (high drive) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1 BGR trimming circuit disabled (BGRCR0 = 1)	_	3	_	μA
			High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (low drive) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1 BGR trimming circuit disabled (BGRCR0 = 1)	_	1.8	_	μA
			High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (high drive) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1 BGR trimming circuit enabled (BGRCR0 = 0)	-	7	_	μΑ
			High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (low drive) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1 BGR trimming circuit enabled (BGRCR0 = 0)	_	6	_	μA
		Stop mode	XCIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0 BGR trimming circuit disabled (BGRCR0 = 1)	_	0.7	3	μA
			XCIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0 BGR trimming circuit disabled (BGRCR0 = 1)	-	1.1	_	μA
			XCIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0 BGR trimming circuit enabled (BGRCR0 = 0)	-	5	7	μA
			XCIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0 BGR trimming circuit enabled (BGRCR0 = 0)	_	5.5	_	μA

Package Dimensions

Diagrams showing the latest package dimensions and mounting information are available in the "Packages" section of the Renesas Technology website.

