E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Active
Core Processor	ARM® Cortex®-A9, ARM® Cortex®-M4
Number of Cores/Bus Width	2 Core, 32-Bit
Speed	200MHz, 800MHz
Co-Processors/DSP	Multimedia; NEON™ MPE
RAM Controllers	LPDDR2, LVDDR3, DDR3
Graphics Acceleration	No
Display & Interface Controllers	Keypad, LCD
Ethernet	10/100/1000Mbps (2)
SATA	-
USB	USB 2.0 + PHY (1), USB 2.0 OTG + PHY (2)
Voltage - I/O	1.8V, 2.5V, 2.8V, 3.15V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	A-HAB, ARM TZ, CAAM, CSU, SNVS, System JTAG, TVDECODE
Package / Case	400-LFBGA
Supplier Device Package	400-MAPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx6x1cvo08ac

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Introduction

1.2 Features

The i.MX 6SoloX processors are based on the ARM Cortex-A9 MPCoreTM platform, which has the following features:

- Supports single ARM Cortex-A9 MPCore processor (with TrustZone)
- The core configuration is symmetric, where each core includes:
 - 32 KByte L1 Instruction Cache
 - 32 KByte L1 Data Cache
 - Private Timer and Watchdog
 - Cortex-A9 NEON MPE (Media Processing Engine) coprocessor

The ARM Cortex-A9 MPCore complex includes:

- General Interrupt Controller (GIC) with 128 interrupt support
- Global Timer
- Snoop Control Unit (SCU)
- 256 KB unified I/D L2 cache:
- Two Master AXI bus interfaces output of L2 cache
- Frequency of the core (including NEON coprocessor and L1 cache), as per Table 9, "Operating Ranges," on page 27.
- NEON MPE coprocessor
 - SIMD Media Processing Architecture
 - NEON register file with 32x64-bit general-purpose registers
 - NEON Integer execute pipeline (ALU, Shift, MAC)
 - NEON dual, single-precision floating point execute pipeline (FADD, FMUL)
 - NEON load/store and permute pipeline
 - 32 double-precision VFPv3 floating point registers

The ARM Cortex-M4 platform:

- Cortex-M4 CPU core
- MPU (Memory Protection Unit)
- FPU (Floating Point Unit)
- 16 KByte Instruction Cache
- 16 KByte Data Cache
- 64 KByte TCM (Tightly-Coupled Memory)

The SoC-level memory system consists of the following additional components:

- Boot ROM, including HAB (96 KB)
- Internal multimedia / shared, fast access RAM (OCRAM, 128 KB)
- Internal RAM for state retention or general use (OCRAM_S, 16KB)
- Secure/non-secure RAM (32 KB)

Block Mnemonic	Block Name	Subsystem	Brief Description
ESAI	Enhanced Serial Audio Interface	Connectivity Peripherals	The Enhanced Serial Audio Interface (ESAI) provides a full-duplex serial port for serial communication with a variety of serial devices, including industry-standard codecs, SPDIF transceivers, and other processors. The ESAI consists of independent transmitter and receiver sections, each section with its own clock generator. All serial transfers are synchronized to a clock. Additional synchronization signals are used to delineate the word frames. The normal mode of operation is used to transfer data at a periodic rate, one word per period. The network mode is also intended for periodic transfers; however, it supports up to 32 words (time slots) per period. This mode can be used to build time division multiplexed (TDM) networks. In contrast, the on-demand mode is intended for non-periodic transfers of data and to transfer data serially at high speed when the data becomes available. The ESAI has 12 pins for data and clocking connection to external devices.
FLEXCAN1 FLEXCAN2	Flexible Controller Area Network	Connectivity Peripherals	The CAN protocol was primarily, but not only, designed to be used as a vehicle serial data bus, meeting the specific requirements of this field: real-time processing, reliable operation in the Electromagnetic interference (EMI) environment of a vehicle, cost-effectiveness and required bandwidth. The FlexCAN module is a full implementation of the CAN protocol specification, Version 2.0 B, which supports both standard and extended message frames.
Fuse Box	Electrical Fuse Array	Security	Electrical Fuse Array. Enables setup of boot modes, security levels, security keys, and many other system parameters.The fuses are accessible through OCOTP_CTRL interface.
GC400T	Graphics Engine	Multimedia Peripherals	The GC400T is a graphics engine with separate 2D and 3D pipelines to provide both 2D and 3D acceleration. It supports DirectFB and GAL APIs. It supports OpenGL ES1.1/2.0 and OpenVG 1.1 APIs.
GIC	Global Interrupt Controller	ARM/Control	The Global Interrupt Controller (GIC) collects interrupt requests from all i.MX 6SoloX sources and routes them to the ARM MPCore(s). Each interrupt can be configured as a normal or a secure interrupt. Software Force Registers and software Priority Masking are also supported. This IP is part of the ARM Core complex.
GIS	General Interrupt Service module	Camera, Display, & Graphics	GIS can be used to automate the flow of data from the camera to the display.

Table 38 shows DDR I/O output buffer impedance of i.MX 6SoloX processors.

	Symbol			Тур	
Parameter		Test Conditions DSE (Drive Strength)	NVCC_DRAM=1.5 V (DDR3) DDR_SEL=11	NVCC_DRAM=1.2 V (LPDDR2) DDR_SEL=10	Unit
Output Driver Impedance	Rdrv	000 001 010 011 100 101 110 111	Hi-Z 240 120 80 60 48 40 34	Hi-Z 240 120 80 60 48 40 34	Ω

Table 38. DDR I/O Output Buffer Impedance

Note:

1. Output driver impedance is controlled across PVTs using ZQ calibration procedure.

2. Calibration is done against 240 Ω external reference resistor.

3. Output driver impedance deviation (calibration accuracy) is ±5% (max/min impedance) across PVTs.

4.8.4 USB HSIC I/O Output Buffer Impedance

Table 39 shows the USB HSIC I/O (USB_H_DATA and USB_H_STROBE) output buffer impedance.

Table 39. USB HSIC I/O Output Buffer Impedance
--

		Drive		Тур	ical		
Parameter	Symbol	Strength (DSE)	NVCC_USB_H=1.2V DDR_SEL=10	NVCC_USB_H=1.5V DDR_SEL=11	NVCC_USB_H=1.8V DDR_SEL=11	NVCC_USB_H=2.5V DDR_SEL=11	Unit
Output Driver Impedance	Rdrv	000 001 010 011 100 101 110 111	Hi-Z 240 120 80 60 48 40 34	Hi-Z 240 120 80 60 48 40 34	Hi-Z 247 113 73 55 43 36 30	Hi-Z 287 121 76 57 45 37 31	Ω

4.8.5 LVDS I/O Output Buffer Impedance

The LVDS interface complies with TIA/EIA 644-A standard. See, TIA/EIA STANDARD 644-A, "Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits" for details.

4.9 System Modules Timing

This section contains the timing and electrical parameters for the modules in each i.MX 6SoloX processor.

4.9.1 Reset Timing Parameters

Figure 8 shows the reset timing and Table 40 lists the timing parameters.

Figure 8. Reset Timing Diagram

Table 40. Reset Timing Parameters

ID	Parameter	Min	Max	Unit
CC1	Duration of POR_B to be qualified as valid.	1	_	RTC_XTALI cycle

4.9.2 WDOG Reset Timing Parameters

Figure 9 shows the WDOG reset timing and Table 41 lists the timing parameters.

Figure 9. WDOGn_B Timing Diagram

Table 41. WDOGn_B Timing Parameters

ID	Parameter	Min	Мах	Unit
CC3	Duration of WDOGn_B Assertion	1		RTC_XTALI cycle

NOTE

RTC_XTALI is approximately 32 kHz. RTC_XTALI cycle is one period or approximately 30 $\mu s.$

NOTE

WDOG1_B output signals (for each one of the Watchdog modules) do not have dedicated pins, but are muxed out through the IOMUX. See the IOMUX manual for detailed information.

4.9.3 External Interface Module (EIM)

The following subsections provide information on the EIM. Maximum operating frequency for EIM data transfer is 104 MHz. Two system clocks are used with the EIM:

• ACLK_EIM_SLOW_CLK_ROOT is used to clock the EIM module. The maximum frequency for CLK_EIM_SLOW_CLK_ROOT is 132 MHz.

Electrical Characteristics

Figure 29. Source Synchronous Mode Data Read Timing Diagram

No.	Characteristics ^{1,2}	Symbol	Expression ²	Min	Max	Condition ³	Unit
81	ESAI_TX_CLK rising edge to ESAI_TX_FS out (wr) low ⁵			—	22.0 12.0	x ck i ck	ns
82	ESAI_TX_CLK rising edge to ESAI_TX_FS out (wI) high				19.0 9.0	x ck i ck	ns
83	ESAI_TX_CLK rising edge to ESAI_TX_FS out (wI) low				20.0 10.0	x ck i ck	ns
84	ESAI_TX_CLK rising edge to data out enable from high impedance				22.0 17.0	x ck i ck	ns
86	ESAI_TX_CLK rising edge to data out valid		—		18.0 13.0	x ck i ck	ns
87	ESAI_TX_CLK rising edge to data out high impedance ⁶⁷		—		21.0 16.0	x ck i ck	ns
89	ESAI_TX_FS input (bl, wr) setup time before ESAI_TX_CLK falling edge ⁵			2.0 18.0	_	x ck i ck	ns
90	ESAI_TX_FS input (wl) setup time before ESAI_TX_CLK falling edge			2.0 18.0	_	x ck i ck	ns
91	ESAI_TX_FS input hold time after ESAI_TX_CLK falling edge			4.0 5.0	_	x ck i ck	ns
95	ESAI_RX_HF_CLK/ESAI_TX_HF_CLK clock cycle	_	2 x T _C	15	_	—	ns
96	ESAI_TX_HF_CLK input rising edge to ESAI_TX_CLK output		—	_	18.0	-	ns
97	ESAI_RX_HF_CLK input rising edge to ESAI_RX_CLK output	_	—		18.0	—	ns
1		L					I

Table 53. Enhanced Serial Audio Interface (ESAI) Timing (continued)

i ck = internal clock

x ck = external clock

i ck a = internal clock, asynchronous mode

(asynchronous implies that ESAI_TX_CLK and ESAI_RX_CLK are two different clocks)

i ck s = internal clock, synchronous mode

(synchronous implies that ESAI_TX_CLK and ESAI_RX_CLK are the same clock)

- ² bl = bit length
 - wl = word length

wr = word length relative

- ³ ESAI_TX_CLK(SCKT pin) = transmit clock
 - ESAI_RX_CLK(SCKR pin) = receive clock
 - ESAI_TX_FS(FST pin) = transmit frame sync
 - ESAI_RX_FS(FSR pin) = receive frame sync
 - ESAI_TX_HF_CLK(HCKT pin) = transmit high frequency clock
 - ESAI_RX_HF_CLK(HCKR pin) = receive high frequency clock
- ⁴ For the internal clock, the external clock cycle is defined by lcyc and the ESAI control register.
- ⁵ The word-relative frame sync signal waveform relative to the clock operates in the same manner as the bit-length frame sync signal waveform, but it spreads from one serial clock before the first bit clock (like the bit length frame sync signal), until the second-to-last bit clock of the first word in the frame.
- ⁶ Periodically sampled and not 100% tested.

4.12.10 LVDS Display Bridge (LDB) Module Parameters

The LVDS interface complies with TIA/EIA 644-A standard. For more details, see TIA/EIA STANDARD 644-A, "Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits".

Parameter	Symbol	Test Condition	Min	Max	Units
Differential Voltage Output Voltage	V _{OD}	100 Ω Differential load	250	450	mV
Output Voltage High	Voh	100 Ω differential load (0 V Diff—Output High Voltage static)	1.25	1.6	V
Output Voltage Low	Vol	100 Ω differential load (0 V Diff—Output Low Voltage static)	0.9	1.25	V
Offset Static Voltage	V _{OS}	Two 49.9 Ω resistors in series between N-P terminal, with output in either Zero or One state, the voltage measured between the 2 resistors.	1.15	1.375	V
VOS Differential	V _{OSDIFF}	Difference in V_{OS} between a One and a Zero state	-50	50	mV
Output short circuited to GND	ISA ISB	With the output common shorted to GND	-24	24	mA
VT Full Load Test	VTLoad	$100~\Omega$ Differential load with a 3.74 k Ω load between GND and IO Supply Voltage	247	454	mV

Table 67. LVDS Display Bridge (LDB) Electrical Specification

4.12.11 PCIe PHY Parameters

The PCIe interface complies with PCIe specification Gen2 x1 lane and supports the PCI Express 1.1/2.0 standard.

4.12.11.1 PCIE_REXT Reference Resistor Connection

The impedance calibration process requires connection of reference resistor 200 Ω . 1% precision resistor on PCIE_REXT pads to ground. It is used for termination impedance calibration.

4.12.12 Pulse Width Modulator (PWM) Timing Parameters

This section describes the electrical information of the PWM. The PWM can be programmed to select one of three clock signals as its source frequency. The selected clock signal is passed through a prescaler before being input to the counter. The output is available at the pulse-width modulator output (PWMx_OUT) external pin.

Figure 54 depicts the timing of the PWM, and Table 68 lists the PWM timing parameters.

Figure 54. PWM Timing

Symbol	Parameter	Va	Unit	
Symbol	Farameter	Min	Мах	Unit
T _{is}	Setup time for incoming data	1	—	ns
T _{ih}	Hold time requirement for incoming data	1	—	ns

Table 70. QuadSPI Input/Read Timing (SDR mode with loopback DQS sampling)

NOTE

- For internal sampling, the timing values assumes using sample point 0, that is QuadSPIx_SMPR[SDRSMP] = 0.
- For loopback DQS sampling, the data strobe is output to the DQS pad together with the serial clock. The data strobe is looped back from DQS pad and used to sample input data.

Figure 57. QuadSPI Output/Write Timing (SDR mode)

Symbol	Paramotor	Va	lue	Unit	
Cymbol	i didificter	Min	Мах	Unit	
T _{ov}	Output Data Valid	—	3.2	ns	
T _{oh}	Output Data Hold	0	—	ns	
T _{ck}	SCK clock period	12.5	—	ns	
T _{css}	Chip select output setup time	3	—	SCK cycle(s)	
T _{csh}	Chip select output hold time	3	_	SCK cycle(s)	

NOTE

Tcss and Tcsh are configured by the QuadSPIx_FLSHCR register, the default values of 3 are shown on the timing. Please refer to Reference Manual for further details.

4.12.13.2 DDR Mode

Figure 58. QuadSPI Input/Read Timing (DDR mode with internal sampling)

Table 72. QuadSPI Input/Read Timing (DDR mode with internal sampling)

Symbol	Paramotor	Va	Unit	
Symbol	Falameter	Min	Мах	Onit
T _{is}	Setup time for incoming data	8.67	_	ns
T _{ih}	Hold time requirement for incoming data	0	—	ns

Figure 59. QuadSPI Input/Read Timing (DDR mode with loopback DQS sampling)

Ta	ble 73. QuadSPI Input/Read Timing (DDR mo	de with loopback DQS san	npling)
		N/ I	

Symbol	Parameter	Va	Unit	
Symbol	i arameter	Min	Max	Onit
T _{is}	Setup time for incoming data	1	_	ns
T _{ih}	Hold time requirement for incoming data	1		ns

NOTE

- For internal sampling, the timing values assumes sample point 0, that is QuadSPIx_SMPR[DDRSMP] = 0.
- For loopback DQS sampling, the data strobe is output to the DQS pad together with the serial clock. The data strobe is looped back from the DQS pad and used to sample input data.

Table 91. 12-bit ADC Characteristics ($V_{REFH} = VDDA_ADC_3P3$, $V_{REFL} = V_{SSAD}$) (continued)

Characteristic	Conditions ¹	Symbol	Min	Typ ²	Max	Unit	Comment
[L:] Effective Number of Bits	12 bit mode	ENOB	10.1	10.7	_	Bits	Fin = 100Hz
[L:] Signal to Noise plus Distortion	See ENOB	SINAD	SINAD =	= 6.02 x ENC	OB + 1.76	dB	_

¹ All accuracy numbers assume the ADC is calibrated with V_{REFH}=VDDA_ADC_3P3

² Typical values assume VDDA ADC_3P3 = 3.0 V, Temp = 25°C, F_{adck}=20 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

NOTE The ADC electrical spec is met with the calibration enabled configuration.

Figure 81. Minimum Sample Time versus Ras (Cas = 5pF)

Figure 83. 19x19 mm BGA Package—Top, Bottom, and Side Views

	10.10	(19 Power B all Group Ty		Out of Reset Condition				
Ball Name	19x19 Ball		Туре	Default Mode	Default Function	Input/ Output	Value	
LCD1_DATA09	H20	NVCC_LCD1	GPIO	ALT5	GPIO3_IO10	Input	Keeper	
LCD1_DATA10	H19	NVCC_LCD1	GPIO	ALT5	GPIO3_IO11	Input	Keeper	
LCD1_DATA11	H18	NVCC_LCD1	GPIO	ALT5	GPI03_I012	Input	Keeper	
LCD1_DATA12	G23	NVCC_LCD1	GPIO	ALT5	GPIO3_IO13	Input	Keeper	
LCD1_DATA13	G22	NVCC_LCD1	GPIO	ALT5	GPIO3_IO14	Input	Keeper	
LCD1_DATA14	G21	NVCC_LCD1	GPIO	ALT5	GPIO3_IO15	Input	Keeper	
LCD1_DATA15	G19	NVCC_LCD1	GPIO	ALT5	GPIO3_IO16	Input	Keeper	
LCD1_DATA16	G18	NVCC_LCD1	GPIO	ALT5	GPI03_I017	Input	Keeper	
LCD1_DATA17	F23	NVCC_LCD1	GPIO	ALT5	GPIO3_IO18	Input	Keeper	
LCD1_DATA18	F22	NVCC_LCD1	GPIO	ALT5	GPIO3_IO19	Input	Keeper	
LCD1_DATA19	F21	NVCC_LCD1	GPIO	ALT5	GPIO3_IO20	Input	Keeper	
LCD1_DATA20	G20	NVCC_LCD1	GPIO	ALT5	GPIO3_IO21	Input	Keeper	
LCD1_DATA21	F19	NVCC_LCD1	GPIO	ALT5	GPI03_I022	Input	Keeper	
LCD1_DATA22	F18	NVCC_LCD1	GPIO	ALT5	GPIO3_IO23	Input	Keeper	
LCD1_DATA23	E20	NVCC_LCD1	GPIO	ALT5	GPI03_I024	Input	Keeper	
LCD1_ENABLE	E21	NVCC_LCD1	GPIO	ALT5	GPIO3_IO25	Input	Keeper	
LCD1_HSYNC	D23	NVCC_LCD1	GPIO	ALT5	GPIO3_IO26	Input	Keeper	
LCD1_RESET	E22	NVCC_LCD1	GPIO	ALT5	GPI03_I027	Input	Keeper	
LCD1_VSYNC	E23	NVCC_LCD1	GPIO	ALT5	GPIO3_IO28	Input	Keeper	
LVDS_CLK_N	T20	NVCC_LVDS	LVDS	—	LVDS_CLK_N	—	_	
LVDS_CLK_P	T21	NVCC_LVDS	LVDS	ALT0	LVDS_CLK_P	Input		
LVDS_DATA0_N	V22	NVCC_LVDS	LVDS	_	LVDS_DATA0_N	_		
LVDS_DATA0_P	V23	NVCC_LVDS	LVDS	ALT0	LVDS_DATA0_P	Input	_	
LVDS_DATA1_N	V20	NVCC_LVDS	LVDS	_	LVDS_DATA1_N	_	_	
LVDS_DATA1_P	V21	NVCC_LVDS	LVDS	ALT0	LVDS_DATA1_P	Input	_	
LVDS_DATA2_N	U22	NVCC_LVDS	LVDS	—	LVDS_DATA2_N	—	_	
LVDS_DATA2_P	U23	NVCC_LVDS	LVDS	ALT0	LVDS_DATA2_P	Input	_	
LVDS_DATA3_N	T22	NVCC_LVDS	LVDS	—	LVDS_DATA3_N	—	_	
LVDS_DATA3_P	T23	NVCC_LVDS	LVDS	ALT0	LVDS_DATA3_P	Input	_	
NAND_ALE	AB7	NVCC_NAND	GPIO	ALT5	GPIO4_IO00	Input	Keeper	
NAND_CE0_B	AB8	NVCC_NAND	GPIO	ALT5	GPIO4_IO01	Input	Keeper	
NAND_CE1_B	AC9	NVCC_NAND	GPIO	ALT5	GPIO4_I002	Input	Keeper	
NAND_CLE	AB9	NVCC_NAND	GPIO	ALT5	GPIO4_I003	Input	Keeper	

 Table 109. 19x19 mm Functional Contact Assignments (continued)

Package Information and Contact Assignments

Figure 85. 17x17 mm BGA Package—Top, Bottom, and Side Views

Table 113. 17x17 mm NP	(No PCle)	Functional Contact	Assignments	(continued)
------------------------	-----------	--------------------	-------------	-------------

	17x17	Power	Ball	Out of Reset Condition				
Ball Name	NP Ball	Group	Туре	Default Mode	Default Function	Input/ Output	Value	
DRAM_ADDR11	N4	NVCC_DRAM	DDR	—	DRAM_ADDR11	Output	100 kΩ pull-up	
DRAM_ADDR12	P4	NVCC_DRAM	DDR	—	DRAM_ADDR12	Output	100 kΩ pull-up	
DRAM_ADDR13	M4	NVCC_DRAM	DDR	—	DRAM_ADDR13	Output	100 kΩ pull-up	
DRAM_ADDR14	R4	NVCC_DRAM	DDR	—	DRAM_ADDR14	Output	100 kΩ pull-up	
DRAM_CAS_B	J4	NVCC_DRAM	DDR	—	DRAM_CAS_B	Output	100 kΩ pull-up	
DRAM_CS0_B	H4	NVCC_DRAM	DDR	—	DRAM_CS0_B	Output	100 kΩ pull-up	
DRAM_CS1_B	D3	NVCC_DRAM	DDR		DRAM_CS1_B	Output	100 kΩ pull-up	
DRAM_DATA00	R1	NVCC_DRAM	DDR	—	DRAM_DATA00	Input	100 kΩ pull-up	
DRAM_DATA01	T2	NVCC_DRAM	DDR	—	DRAM_DATA01	Input	100 kΩ pull-up	
DRAM_DATA02	T1	NVCC_DRAM	DDR	—	DRAM_DATA02	Input	100 kΩ pull-up	
DRAM_DATA03	R2	NVCC_DRAM	DDR	—	DRAM_DATA03	Input	100 kΩ pull-up	
DRAM_DATA04	M1	NVCC_DRAM	DDR	—	DRAM_DATA04	Input	100 kΩ pull-up	
DRAM_DATA05	M2	NVCC_DRAM	DDR	—	DRAM_DATA05	Input	100 kΩ pull-up	
DRAM_DATA06	L2	NVCC_DRAM	DDR	—	DRAM_DATA06	Input	100 kΩ pull-up	
DRAM_DATA07	N1	NVCC_DRAM	DDR	—	DRAM_DATA07	Input	100 kΩ pull-up	
DRAM_DATA08	H1	NVCC_DRAM	DDR	—	DRAM_DATA08	Input	100 kΩ pull-up	
DRAM_DATA09	F2	NVCC_DRAM	DDR	_	DRAM_DATA09	Input	100 kΩ pull-up	
DRAM_DATA10	K2	NVCC_DRAM	DDR	-	DRAM_DATA10	Input	100 kΩ pull-up	
DRAM_DATA11	J2	NVCC_DRAM	DDR	_	DRAM_DATA11	Input	100 kΩ pull-up	

Table 113. 17x17 mm NP (No PCIe) Functional Contact Assignments (continued)

	17x17	Bower	Poll	ition			
Ball Name	NP Ball	Group	Туре	Default Mode	Default Function	Input/ Output	Value
JTAG_TDO	R8	NVCC_JTAG	GPIO	—	JTAG_TDO	Output	Keeper
JTAG_TMS	T10	NVCC_JTAG	GPIO		JTAG_TMS	Input	47 kΩ pull-up
JTAG_TRST_B	Т9	NVCC_JTAG	GPIO		JTAG_TRST_B	Input	47 kΩ pull-up
KEY_COL0	G20	NVCC_KEY	GPIO	ALT5	GPIO2_IO10	Input	Keeper
KEY_COL1	F20	NVCC_KEY	GPIO	ALT5	GPIO2_IO11	Input	Keeper
KEY_COL2	G18	NVCC_KEY	GPIO	ALT5	GPIO2_IO12	Input	Keeper
KEY_COL3	E20	NVCC_KEY	GPIO	ALT5	GPIO2_IO13	Input	Keeper
KEY_COL4	E19	NVCC_KEY	GPIO	ALT5	GPIO2_IO14	Input	Keeper
KEY_ROW0	F16	NVCC_KEY	GPIO	ALT5	GPIO2_IO15	Input	Keeper
KEY_ROW1	E18	NVCC_KEY	GPIO	ALT5	GPIO2_IO16	Input	Keeper
KEY_ROW2	F18	NVCC_KEY	GPIO	ALT5	GPIO2_IO17	Input	Keeper
KEY_ROW3	F19	NVCC_KEY	GPIO	ALT5	GPIO2_IO18	Input	Keeper
KEY_ROW4	G19	NVCC_KEY	GPIO	ALT5	GPIO2_IO19	Input	Keeper
LCD1_CLK	L17	NVCC_LCD1	GPIO	ALT5	GPIO3_IO00	Input	Keeper
LCD1_DATA00	M20	NVCC_LCD1	GPIO	ALT5	GPIO3_IO01	Input	Keeper
LCD1_DATA01	M18	NVCC_LCD1	GPIO	ALT5	GPIO3_IO02	Input	Keeper
LCD1_DATA02	M19	NVCC_LCD1	GPIO	ALT5	GPIO3_IO03	Input	Keeper
LCD1_DATA03	N19	NVCC_LCD1	GPIO	ALT5	GPIO3_IO04	Input	Keeper
LCD1_DATA04	N20	NVCC_LCD1	GPIO	ALT5	GPIO3_IO05	Input	Keeper
LCD1_DATA05	M16	NVCC_LCD1	GPIO	ALT5	GPIO3_IO06	Input	Keeper
LCD1_DATA06	M15	NVCC_LCD1	GPIO	ALT5	GPIO3_IO07	Input	Keeper
LCD1_DATA07	L20	NVCC_LCD1	GPIO	ALT5	GPIO3_IO08	Input	Keeper
LCD1_DATA08	K18	NVCC_LCD1	GPIO	ALT5	GPIO3_IO09	Input	Keeper
LCD1_DATA09	L16	NVCC_LCD1	GPIO	ALT5	GPIO3_IO10	Input	Keeper
LCD1_DATA10	L19	NVCC_LCD1	GPIO	ALT5	GPIO3_IO11	Input	Keeper
LCD1_DATA11	L15	NVCC_LCD1	GPIO	ALT5	GPIO3_IO12	Input	Keeper
LCD1_DATA12	K16	NVCC_LCD1	GPIO	ALT5	GPIO3_IO13	Input	Keeper
LCD1_DATA13	K15	NVCC_LCD1	GPIO	ALT5	GPIO3_IO14	Input	Keeper
LCD1_DATA14	K17	NVCC_LCD1	GPIO	ALT5	GPIO3_IO15	Input	Keeper
LCD1_DATA15	H16	NVCC_LCD1	GPIO	ALT5	GPIO3_IO16	Input	Keeper

	4 4 2 4 4	Dowor	Pall	Out of Reset Condition			
Ball Name	Ball	Group	Туре	Default Mode	Default Function	Input/ Output	Value
DRAM_DATA28	A2	NVCC_DRAM	DDR	_	DRAM_DATA28	Input	100 k Ω pull-up
DRAM_DATA29	C5	NVCC_DRAM	DDR	_	DRAM_DATA29	Input	100 k Ω pull-up
DRAM_DATA30	B4	NVCC_DRAM	DDR	_	DRAM_DATA30	Input	100 k Ω pull-up
DRAM_DATA31	A4	NVCC_DRAM	DDR	_	DRAM_DATA31	Input	100 k Ω pull-up
DRAM_DQM0	N1	NVCC_DRAM	DDR	_	DRAM_DQM0	Output	100 k Ω pull-up
DRAM_DQM1	G2	NVCC_DRAM	DDR	_	DRAM_DQM1	Output	100 k Ω pull-up
DRAM_DQM2	W1	NVCC_DRAM	DDR	_	DRAM_DQM2	Output	100 k Ω pull-up
DRAM_DQM3	C1	NVCC_DRAM	DDR	_	DRAM_DQM3	Output	100 k Ω pull-up
DRAM_ODT0	T1	NVCC_DRAM	DDR	_	DRAM_ODT0	Output	100 kΩ pull-down
DRAM_RAS_B	J1	NVCC_DRAM	DDR	_	DRAM_RAS_B	Output	100 k Ω pull-up
DRAM_RESET	D4	NVCC_DRAM	DDR	_	DRAM_RESET	Output	100 kΩ pull-down
DRAM_SDBA0	G4	NVCC_DRAM	DDR	_	DRAM_SDBA0	Output	100 k Ω pull-up
DRAM_SDBA1	M2	NVCC_DRAM	DDR	_	DRAM_SDBA1	Output	100 k Ω pull-up
DRAM_SDBA2	J2	NVCC_DRAM	DDR	_	DRAM_SDBA2	Output	100 k Ω pull-up
DRAM_SDCKE0	L5	NVCC_DRAM	DDR	_	DRAM_SDCKE0	Output	100 kΩ pull-down
DRAM_SDCKE1	J5	NVCC_DRAM	DDR	_	DRAM_SDCKE1	Output	100 kΩ pull-down
DRAM_SDCLK0_N	L1	NVCC_DRAM	DDRCLK	_	DRAM_SDCLK0_ N	_	_
DRAM_SDCLK0_P	K1	NVCC_DRAM	DDRCLK	—	DRAM_SDCLK0_ P	Output	Low
DRAM_SDQS0_N	P2	NVCC_DRAM	DDRCLK		DRAM_SDQS0_N		—
DRAM_SDQS0_P	P1	NVCC_DRAM	DDRCLK	—	DRAM_SDQS0_P	Input	—
DRAM_SDQS1_N	H1	NVCC_DRAM	DDRCLK	_	DRAM_SDQS1_ N	—	—
DRAM_SDQS1_P	G1	NVCC_DRAM	DDRCLK	_	DRAM_SDQS1_P	Input	_
DRAM_SDQS2_N	V2	NVCC_DRAM	DDRCLK		DRAM_SDQS2_ N	_	
DRAM_SDQS2_P	V1	NVCC_DRAM	DDRCLK	—	DRAM_SDQS2_P	Input	_
DRAM_SDQS3_N	B1	NVCC_DRAM	DDRCLK	_	DRAM_SDQS3_ N		_

Table 119. 14 x 14 Functional Contact Assignments (continued)

	44-44	Damas	Dell	Out of Reset Condition		'n	
Ball Name	Ball	Power Group	Туре	Default Mode	Default Function	Input/ Output	Value
LCD1_DATA19	J20	NVCC_LCD1	GPIO	ALT5	GPIO3_IO20	Input	Keeper
LCD1_DATA20	H17	NVCC_LCD1	GPIO	ALT5	GPIO3_IO21	Input	Keeper
LCD1_DATA21	G18	NVCC_LCD1	GPIO	ALT5	GPIO3_IO22	Input	Keeper
LCD1_DATA22	G19	NVCC_LCD1	GPIO	ALT5	GPIO3_IO23	Input	Keeper
LCD1_DATA23	G16	NVCC_LCD1	GPIO	ALT5	GPIO3_IO24	Input	Keeper
LCD1_ENABLE	K20	NVCC_LCD1	GPIO	ALT5	GPIO3_IO25	Input	Keeper
LCD1_HSYNC	J15	NVCC_LCD1	GPIO	ALT5	GPIO3_IO26	Input	Keeper
LCD1_RESET	J18	NVCC_LCD1	GPIO	ALT5	GPIO3_I027	Input	Keeper
LCD1_VSYNC	J16	NVCC_LCD1	GPIO	ALT5	GPIO3_IO28	Input	Keeper
NAND_ALE	W6	NVCC_NAND	GPIO	ALT5	GPIO4_I000	Input	Keeper
NAND_CE0_B	U7	NVCC_NAND	GPIO	ALT5	GPIO4_I001	Input	Keeper
NAND_CE1_B	Т8	NVCC_NAND	GPIO	ALT5	GPIO4_I002	Input	Keeper
NAND_CLE	R7	NVCC_NAND	GPIO	ALT5	GPIO4_I003	Input	Keeper
NAND_DATA00	V6	NVCC_NAND	GPIO	ALT5	GPIO4_I004	Input	Keeper
NAND_DATA01	W8	NVCC_NAND	GPIO	ALT5	GPIO4_I005	Input	Keeper
NAND_DATA02	Y7	NVCC_NAND	GPIO	ALT5	GPIO4_I006	Input	Keeper
NAND_DATA03	U5	NVCC_NAND	GPIO	ALT5	GPIO4_I007	Input	Keeper
NAND_DATA04	W7	NVCC_NAND	GPIO	ALT5	GPIO4_IO08	Input	Keeper
NAND_DATA05	Т5	NVCC_NAND	GPIO	ALT5	GPIO4_I009	Input	Keeper
NAND_DATA06	Y8	NVCC_NAND	GPIO	ALT5	GPIO4_IO10	Input	Keeper
NAND_DATA07	Т6	NVCC_NAND	GPIO	ALT5	GPIO4_IO11	Input	Keeper
NAND_RE_B	U8	NVCC_NAND	GPIO	ALT5	GPIO4_IO12	Input	Keeper
NAND_READY_B	Y6	NVCC_NAND	GPIO	ALT5	GPIO4_IO13	Input	Keeper
NAND_WE_B	Τ7	NVCC_NAND	GPIO	ALT5	GPIO4_IO14	Input	Keeper
NAND_WP_B	V7	NVCC_NAND	GPIO	ALT5	GPIO4_IO15	Input	Keeper
ONOFF	U16	VDD_SNVS_IN	GPIO		ONOFF	Input	100 kΩ pull-up
POR_B	R16	VDD_SNVS_IN	GPIO	_	POR_B	Input	100 kΩ pull-up
QSPI1A_DATA0	E15	NVCC_QSPI	GPIO	ALT5	GPIO4_IO16	Input	Keeper
QSPI1A_DATA1	C15	NVCC_QSPI	GPIO	ALT5	GPIO4_I017	Input	Keeper
QSPI1A_DATA2	D14	NVCC_QSPI	GPIO	ALT5	GPIO4_IO18	Input	Keeper
QSPI1A_DATA3	A18	NVCC_QSPI	GPIO	ALT5	GPIO4_I019	Input	Keeper

Table 119. 14 x 14 Functional Contact Assignments (continued)

	4 4 - 4 4	Bower	14x14 Bower		14x14 Power Pall		Out of Reset Condition			
Ball Name	Ball	Group	Туре	Default Mode	Default Function	Input/ Output	Value			
SD4_DATA0	Y10	NVCC_SD4	GPIO	ALT5	GPIO6_IO14	Input	Keeper			
SD4_DATA1	Y11	NVCC_SD4	GPIO	ALT5	GPIO6_IO15	Input	Keeper			
SD4_DATA2	Y13	NVCC_SD4	GPIO	ALT5	GPIO6_IO16	Input	Keeper			
SD4_DATA3	W13	NVCC_SD4	GPIO	ALT5	GPIO6_IO17	Input	Keeper			
SD4_DATA4	Y12	NVCC_SD4	GPIO	ALT5	GPIO6_IO18	Input	Keeper			
SD4_DATA5	W10	NVCC_SD4	GPIO	ALT5	GPIO6_IO19	Input	Keeper			
SD4_DATA6	U10	NVCC_SD4	GPIO	ALT5	GPIO6_IO20	Input	Keeper			
SD4_DATA7	W11	NVCC_SD4	GPIO	ALT5	GPIO6_IO21	Input	Keeper			
SD4_RESET_B	V10	NVCC_SD4	GPIO	ALT5	GPIO6_IO22	Input	Keeper			
SNVS_PMIC_ON_REQ	P15	VDD_SNVS_IN	GPIO	_	SNVS_PMIC_ON _REQ	Output	100 kΩ pull-up			
SNVS_TAMPER	P14	VDD_SNVS_IN	GPIO	_	SNVS_TAMPER	Input	100 kΩ pull-down			
TEST_MODE	V15	VDD_SNVS_IN		_	TEST_MODE	Input	100 kΩ pull-down			
USB_H_DATA	Y5	NVCC_USB_H	GPIO	ALT5	GPI07_I010	Input	100 kΩ pull-down			
USB_H_STROBE	W5	NVCC_USB_H	GPIO	ALT5	GPIO7_IO11	Input	100 kΩ pull-down			
USB_OTG1_CHD_B	T17	VDD_USB_CAP		_	USB_OTG1_CHD _B	_	_			
USB_OTG1_DN	V19	VDD_USB_CAP	_	_	USB_OTG1_DN	_	—			
USB_OTG1_DP	V20	VDD_USB_CAP	_	_	USB_OTG1_DP	_	—			
USB_OTG2_DN	Y19	VDD_USB_CAP	—	_	USB_OTG2_DN	_	—			
USB_OTG2_DP	W19	VDD_USB_CAP	—	—	USB_OTG2_DP	—	—			
XTALI	T19	NVCC_PLL	—	_	XTALI	_	—			
XTALO	T20	NVCC_PLL		_	XTALO	_	_			

Table 119. 14 x 14 Functional Contact Assignments (continued)

6.5.3 14 x 14 mm, 0.65 mm pitch, 20 x 20 Ball Map

Table 120 shows the 14 x14 mm, 0.65 mm pitch, 20 x 20 ball map for the i.MX 6SoloX.

Revision History

Rev. Number	Date	Substantive Change(s)
2	06/2016	 Changed throughout: VDD_AFE_3P3 to VDDA_AFE_3P3 VDDAD to VDDA_ADC_3P3 Table 1, changed all instances of "2N19K" to "2N19K or 3N19K". Figure 1, added new row under Silicon Rev, "Rev 1.3 Production" Table 2, i.MX 6SoloX Modules List: BCH, deleted "encryption/deryption" in Brief Description column eCSP1-eCSP15 deleted "with data rate" in Brief Description column uSDHC1-uSDHC4: added "Conforms to the SD" uSDHC1-uSDHC4: added "Each port is placed" Table 3, Special Signal Considerations Signal Name, CPA.B: deleted second sentence Section 3.2, "Recommended Connections for Unused Analog Interfaces", removed text and original table, Recommended Connections for Unused Analog Interfaces," removed text and original table, Recommended Connections for Unused Analog Interfaces, and referred reader to the Hardware Development Guide. Section 4.1.2, "Thermal Resistance, added NOTE Table 6, Absolute Maximum Ratings added new CAUTION updated Table 6, Absolute Maximum Ratings Section 4.1.2, "Thermal Resistance, added NOTE Table 8, 17x17 mm NP (VO), corrected Junction to Package Top value 0.2 to 2 Table 9, Operating ranges, USB supply voltages: changed 5.25 to 5.5 Table 12, Maximum Supply Currents added footnotes Section 4.2.1, "Power-Up Sequence, - Removed references to the internal POR function. Internal POR is not supported on the i.MX 6SolX." Deleted bullets 4 and 5 Section 4.3.2, "LDO_USB, changed 5.25 to 5.5 Section 4.3.3, "LDO_USB, changed 5.25 to 5.5 Section 4.3.4, "Therwal RC_XTALI DC Parameters, added new NOTE. Table 23, XTALI and RTC_XTALI DC Parameters, added new MOTE. Section 4.0.1, "Multi-mode DDR Controller (MMDC) this new section added, replacing the original section 4.9.4 DDR SRAM Specific Parameters (DDR3/DDR3L and LPDDR2). Table 50, S
		 Table 05, RGMM Signal Switching Specifications, deleted roothole 1. Table 75, Master Mode SAI Timing: changed S1 Min value to 20 changed S3 Min value to 2 x S1 (continued on next page)

Table 121. i.MX 6SoloX Data Sheet Document Revision History (continued)

Rev. Number	Date	Substantive Change(s)
1	7/2015	 (continued from previous page) Updated Table 44, "EIM Asynchronous Timing Parameters Relative to Chip Select," on page 60. Elaborated to show results of calculations. No specification change. In Table 64, "DDR3/DDR3L Read Cycle," on page 93, updated minimum value for DDR26 Added note regarding ECSPlx_MOSI to Figure 36, "ECSPI Master Mode Timing Diagram," on page 74 Added note regarding ECSPlx_MISO to Figure 37, "ECSPI Slave Mode Timing Diagram," on page 75 Updated Figure 42, "SDR50/SDR104 Timing," on page 82 In Table 67, "LVDS Display Bridge (LDB) Electrical Specification," on page 93: – Corrected units for V_{OH} values from 'mV' to 'V' In Section 4.12.20, "USB PHY Parameters," in list of amendments to Rev. 2 of the The USB PHY meets the electrical compliance requirements defined in revision 2.0 of the <i>USB On-The-Go and Embedded Host Supplement to the USB 2.0 Specification</i>, added "Portable device only" under "Battery Charging Specification" Added Table 107, "Signals with Different States During Reset and After Reset," on page 130 In Table 109, "19x19 mm Functional Contact Assignments," on page 136, corrected GPIO signal names In Table 112, "17x17 mn NP (no PCle) Supplies Contact Assignments," on page 155, added ball L9 to the VDD_SOC_CAP row In Table 119, "14 x 14 Functional Contact Assignments," on page 189, corrected power group for SD2 ball names to 'NVCC_SD1_SD2'
0	2/2015	Initial public release