E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	86
Program Memory Size	384KB (384K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	80K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 39x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f303vdt6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 Description

The STM32F303xD/E family is based on the high-performance ARM[®] Cortex[®]-M4 32-bit RISC core with FPU operating at a frequency of 72 MHz, and embedding a floating point unit (FPU), a memory protection unit (MPU) and an embedded trace macrocell (ETM). The family incorporates high-speed embedded memories (512-Kbyte Flash memory, 80-Kbyte SRAM), a flexible memory controller (FSMC) for static memories (SRAM, PSRAM, NOR and NAND), and an extensive range of enhanced I/Os and peripherals connected to an AHB and two APB buses.

The devices offer four fast 12-bit ADCs (5 Msps), seven comparators, four operational amplifiers, two DAC channels, a low-power RTC, up to five general-purpose 16-bit timers, one general-purpose 32-bit timer, and up,to three timers dedicated to motor control. They also feature standard and advanced communication interfaces: up to three I²Cs, up to four SPIs (two SPIs are with multiplexed full-duplex I²Ss), three USARTs, up to two UARTs, CAN and USB. To achieve audio class accuracy, the I²S peripherals can be clocked via an external PLL.

The STM32F303xD/E family operates in the -40 to +85°C and -40 to +105°C temperature ranges from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving mode allows the design of low-power applications.

The STM32F303xD/E family offers devices in different packages ranging from 64 to 144 pins.

Depending on the device chosen, different sets of peripherals are included.

	able 2. STM32F303xD/								
Р	eripheral	STM32	F303Rx	STM32	2F303Vx	STM32F303Zx			
Flash (Kbytes)		384	512	384	512	384	512		
SRAM (Kbytes)				64					
CCM (Core Cou (Kbytes)	16								
FMC (flexible m	emory controller)	Ν	10		YE	S			
	Advanced control	2 (16	-bit) ⁽¹⁾		3 (16-	-bit)			
Timers	General purpose				6-bit) 82-bit)				
	PWM channels (all) ⁽²⁾	3	31		40	4	40		
	Basic			2 (1	6-bit)				
	PWM channels (except complementary)	2	22	:	28	2	28		
	SPI (I ² S) ⁽³⁾			4	·(2)				
	I ² C				3				
Communication interfaces	USART		3						
	UART	2							
	CAN	1							
	USB	1							
	Normal I/Os (TC, TTa)	26		26 37 in WLCSI LQFP10 UFBG		2	45		
GPIOs	5-volt tolerant I/Os (FT, FTf)	2	25	40 in WLC	QFP100 CSP100 and GA100	70			
DMA channels					12				
Capacitive sensi	ng channels		18		24	ļ			
12-bit ADCs			4 annels	LQFP10 UFB 33 cha	4 annels in 00-pin and GA100 annels in SP100		4 annels		
12-bit DAC chan	nels			1					
Analog compara	tor								
Operational amp	lifiers								
CPU frequency				72	MHz				
Operating voltag	e			2.0 t	o 3.6 V				

Table 2. STM32F303xD/E family device features and peripheral counts

3.7 **Power management**

3.7.1 **Power supply schemes**

- V_{SS} , V_{DD} = 2.0 to 3.6 V: external power supply for I/Os and the internal regulator. It is provided externally through V_{DD} pins.
- V_{SSA} , $V_{DDA} = 2.0$ to 3.6 V: external analog power supply for ADC, DAC, comparators, operational amplifier, reset blocks, RCs and PLL. The minimum voltage to be applied to V_{DDA} differs from one analog peripheral to another. *Table 3* provides the summary of the V_{DDA} ranges for analog peripherals. The V_{DDA} voltage level must always be greater than or equal to the V_{DD} voltage level and must be provided first.

	0 11 7	
Analog peripheral	Minimum V _{DDA} supply	Maximum V _{DDA} supply
ADC/COMP	2.0 V	3.6 V
DAC/OPAMP	2.4 V	3.6 V

Table 3. External analog supply values for analog peripherals

 V_{BAT} = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

3.7.2 Power supply supervisor

The device has an integrated power-on reset (POR) and power-down reset (PDR) circuits. They are always active, and ensure proper operation above a threshold of 2 V. The device remains in reset mode when the monitored supply voltage is below a specified threshold, VPOR/PDR, without the need for an external reset circuit.

- The POR monitors only the V_{DD} supply voltage. During the startup phase it is required that V_{DDA} should arrive first and be greater than or equal to V_{DD}.
- The PDR monitors both the V_{DD} and V_{DDA} supply voltages, however the V_{DDA} power supply supervisor can be disabled (by programming a dedicated Option bit) to reduce the power consumption if the application design ensures that V_{DDA} is higher than or equal to V_{DD}.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD} power supply and compares it to the VPVD threshold. An interrupt can be generated when V_{DD} drops below the V_{PVD} threshold and/or when V_{DD} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.7.3 Voltage regulator

The regulator has three operation modes: main (MR), low power (LPR), and power-down.

- The MR mode is used in the nominal regulation mode (Run)
- The LPR mode is used in Stop mode.
- The power-down mode is used in Standby mode: the regulator output is in high impedance, and the kernel circuitry is powered down thus inducing zero consumption.

The voltage regulator is always enabled after reset. It is disabled in Standby mode.

	Pi	n num	ber							
LQFP64	LQFP100	UFBGA100	WLCSP100	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	56	K8	G4	78	PD9	I/O	ТТа	(1)	EVENTOUT, USART3_RX, FMC_D14	ADC4_IN13
-	57	J12	НЗ	79	PD10	I/O	ТТа	(1)	EVENTOUT, USART3_CK, FMC_D15	ADC34_IN7, COMP6_INM
-	58	J11	H2	80	PD11	I/O	ТТа	(1)	EVENTOUT, USART3_CTS, FMC_A16	ADC34_IN8, OPAMP4_VINP
-	59	J10	H1	81	PD12	I/O	TTa	(1)	EVENTOUT, TIM4_CH1, TSC_G8_IO1, USART3_RTS, FMC_A17	ADC34_IN9
-	60	H12	G3	82	PD13	I/O	ТТа	(1)	EVENTOUT, TIM4_CH2, TSC_G8_IO2, FMC_A18	ADC34_IN10, COMP5_INM
-	-	-	-	83	VSS	S	-	(1)	-	-
-	-	-	-	84	VDD	S	-	(1)	-	-
-	61	H11	G2	85	PD14	I/O	ТТа	(1)	EVENTOUT, TIM4_CH3, TSC_G8_IO3, FMC_D0	ADC34_IN11, OPAMP2_VINP
-	62	H10	G1	86	PD15	I/O	ТТа	(1)	EVENTOUT, TIM4_CH4, TSC_G8_IO4, SPI2_NSS, FMC_D1	COMP3_INM
-	-	-	-	87	PG2	I/O	FT	(1)	EVENTOUT, TIM20_CH3N, FMC_A12	-
-	-	-	-	88	PG3	I/O	FT	(1)	EVENTOUT, TIM20_BKIN, FMC_A13	-
-	-	-	-	89	PG4	I/O	FT	(1)	EVENTOUT, TIM20_BKIN2, FMC_A14	-
-	-	-	-	90	PG5	I/O	FT	(1)	EVENTOUT, TIM20_ETR, FMC_A15	-
-	-	-	-	91	PG6	I/O	FT	(1)	EVENTOUT, FMC_INT2	-
-	-	-	-	92	PG7	I/O	FT	(1)	EVENTOUT, FMC_INT3	-
-	-	-	-	93	PG8	I/O	FT	(1)	EVENTOUT	-
-	-	-	-	94	VSS	S	-	(1)	-	-
-	-	-	-	95	VDD	S	-	(1)	-	-

Table 13. STM32F303xD/E pin definitions (continued)

Ś
-
Ξ
ធ
Ň
Т
ω
0
မ္မ
Â.
U
S
Ĥ
z
3
Ñ
÷
ပ်ပ
ö
ω
×
Ш

Pinout and pin description

	Table 14. STM32F303xD/E alternate function mapping (continued)																
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
F	Port	SYS_AF	TIM2/15/ 16/17/E VENT	I2C3/TIM1 /2/3/4/8/20 /15/GPCO MP1	12C3/TIM 8/20/15/G PCOMP7 /TSC	I2C1/2/TI M1/8/16/ 17	SPI1/SPI2 /I2S2/SPI3 /I2S3/SPI4 /UART4/5/ TIM8/Infra red	SPI2/I2S2/ SPI3/I2S3/ TIM1/8/20/ Infrared	USART1/2 /3/CAN/GP COMP3/5/ 6	12C3/GPC OMP1/2/3/ 4/5/6	CAN/TIM1 /8/15	TIM2/3/ 4/8/17	TIM1/8	FSMC /TIM1	-	-	EVENT
	PE0	-	EVENT OUT	TIM4_ ETR	-	TIM16_ CH1	-	TIM20_ ETR	USART1_ TX	-	-	-	-	FMC_ NBL0	-	-	-
	PE1	-	EVENT OUT	-	-	TIM17_ CH1	-	TIM20_ CH4	USART1_ RX	-	-	-	-	FMC_ NBL1	-	-	-
	PE2	TRACECK	EVENT OUT	TIM3_ CH1	TSC_G7 _IO1	-	SPI4_SCK	TIM20_ CH1	-	-	-	-	-	FMC_ A23	-	-	-
	PE3	TRACED0	EVENT OUT	TIM3_ CH2	TSC_G7 _IO2	-	SPI4_NSS	TIM20_ CH2	-	-	-	-	-	FMC_ A19	-	-	-
	PE4	TRACED1	EVENT OUT	TIM3_ CH3	TSC_G7 _IO3	-	SPI4_NSS	TIM20_ CH1N	-	-	-	-	-	FMC_ A20	-	-	-
μ	PE5	TRACED2	EVENT OUT	TIM3_ CH4	TSC_G7 _IO4	-	SPI4_ MISO	TIM20_ CH2N	-	-	-	-	-	FMC_ A21	-	-	-
Port E	PE6	TRACED3	EVENT OUT	-	-	-	SPI4_ MOSI	TIM20_ CH3N	-	-	-	-	-	FMC_ A22	-	-	-
	PE7	-	EVENT OUT	TIM1_ ETR	-	-	-	-	-	-	-	-	-	FMC_D4	-	-	-
	PE8	-	EVENT OUT	TIM1_ CH1N	-	-	-	-	-	-	-	-	-	FMC_D5	-	-	-
	PE9	-	EVENT OUT	TIM1_ CH1	-	-	-	-	-	-	-	-	-	FMC_D6	-	-	-
	PE10	-	EVENT OUT	TIM1_ CH2N	-	-	-	-	-	-	-	-	-	FMC_D7	-	-	-
	PE11	-	EVENT OUT	TIM1_ CH2	-	-	SPI4_NSS	-	-	-	-	-	-	FMC_D8	-	-	-

DocID026415 Rev 5

5

59/173

All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark code.

Note: The total current consumption is the sum of I_{DD} and I_{DDA} .

Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- All peripherals are disabled except when explicitly mentioned
- The Flash memory access time is adjusted to the f_{HCLK} frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states from 48 to 72 MHz)
- Prefetch in ON (reminder: this bit must be set before clock setting and bus prescaling)
- When the peripherals are enabled $f_{PCLK2} = f_{HCLK}$ and $f_{PCLK1} = f_{HCLK/2}$
- When f_{HCLK} > 8 MHz, the PLL is ON and the PLL input is equal to HSI/2 (4 MHz) or HSE (8 MHz) in bypass mode.

The parameters given in *Table 25* to *Table 29* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 19*.

		ter Conditions			periphe			All peripherals disabled				
Symbol	Parameter		f _{HCLK}	T.m	Max @ T _A ⁽¹⁾			Turn	Max @ T _A ⁽¹⁾			Unit
				Тур	25 °C	85 °C	105 °C	Тур	25 °C	85 °C	105 °C	
			72 MHz	66.4	76.5	76.9	77.4	33.0	37.2	38.1	38.9	
			64 MHz	59.8	66.4	67.7	68.6	29.7	33.5	34.3	35.0	
		External	48 MHz	47.3	53.7	53.8	55.1	23.2	26.2	27.1	28.0	
		clock (HSE	32 MHz	33.3	36.8	37.4	38.5	16.8	19.8	20.6	21.4	
	Supply	bypass)	24 MHz	26.0	29.4	30.0	31.2	13.5	16.6	17.4	18.6	
I _{DD}	current in Run mode,		8 MHz	10.7	13.8	14.4	15.3	6.63	10.2	10.5	11.2	
טטי	executing		1 MHz	4.27	7.47	8.13	8.90	3.78	7.40	7.70	8.50	
	from Flash		64 MHz	55.6	59.6	62.8	63.2	29.4	33.1	34.5	35.0	
			48 MHz	43.6	47.0	49.2	50.1	23.1	26.2	27.1	28.0	mA
		Internal clock (HSI)	32 MHz	30.8	33.6	35.3	35.8	16.7	19.8	20.6	21.5	110 \
		. ,	24 MHz	24.0	28.0	28.2	29.7	13.5	16.5	17.5	18.4	
			8 MHz	10.5	13.6	14.7	15.2	6.63	9.74	10.6	11.2	
			72 MHz	66.2	76.2 ⁽²⁾	76.7	77.2 ⁽²⁾	32.8	36.9 ⁽²⁾	37.7	38.5 ⁽²⁾	
	Supply		64 MHz	59.6	66.2	67.6	68.4	29.3	33.1	33.9	34.4	
I _{DD}	current in Run mode,	External clock (HSE	48 MHz	47.0	53.4	53.6	54.9	22.4	25.6	26.2	27.2	
טטי	executing	bypass)	32 MHz	33.0	36.6	37.2	38.1	16.0	19.0	19.5	20.4	
	from RAM		24 MHz	25.6	29.0	29.5	30.6	12.8	15.7	16.3	17.6	
			8 MHz	10.3	13.4	13.8	14.7	6.40	9.48	9.93	10.90	

Table 25. Typical and maximum current consumption from V_{DD} supply at V_{DD} = 3.6V

Peripheral	Typical consumption ⁽¹⁾	Unit
	I _{DD}	
BusMatrix ⁽²⁾	8.3	
DMA1	7.0	
DMA2	5.4	
FSMC	35.0	
CRC	1.5	
GPIOH	1.3	
GPIOA	5.4	
GPIOB	5.3	
GPIOC	5.4	
GPIOD	5.0	
GPIOE	5.4	
GPIOF	5.2	
GPIOG	5.0	
TSC	5.2	µA/MHz
ADC1&2	15.4	
ADC3&4	16.2	
APB2-Bridge ⁽³⁾	3.1	
SYSCFG	4.0	
TIM1	26.0	
SPI1	6.2	
TIM8	26.4	
USART1	17.7	
SPI4	6.2	
TIM15	11.9	
TIM16	8.0	
TIM17	8.5	
TIM20	25.3	

Table 33. Peripheral current consumption

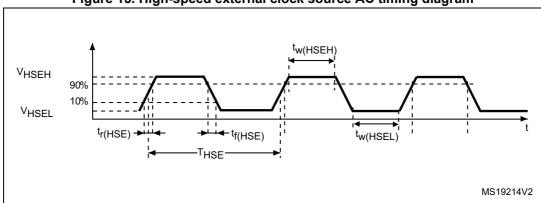
Table 33. Peripheral current consumption (continued)									
Peripheral	Typical consumption ⁽¹⁾	Unit							
i onpriorai	I _{DD}	onit							
APB1-Bridge ⁽³⁾	6.7								
TIM2	39.2								
TIM3	30.8								
TIM4	31.3								
TIM6	4.3								
TIM7	4.3								
WWDG	1.3								
SPI2	33.6								
SPI3	33.9								
USART2	39.3	μA/MHz							
USART3	39.3	μΑνινιπΖ							
UART4	29.8								
UART5	27.0								
I2C1	6.7								
I2C2	6.4								
USB	14.7								
CAN	25.6								
PWR	3.7								
DAC	22.1								
I2C3	6.8								

Table 33.	Peripheral	current cor	nsumption ((continued)
10010 001	i onpriorai	00110110 001	iouniption ((oonunaoa)

1. The power consumption of the analog part (I_{DDA}) of peripherals such as ADC, DAC, Comparators, OpAmp is not included. Refer to the tables of characteristics in the subsequent sections.

2. BusMatrix is automatically active when at least one master is ON (CPU, DMA1 or DMA2).

3. The APBx bridge is automatically active when at least one peripheral is ON on the same bus.


6.3.7 External clock source characteristics

High-speed external user clock generated from an external source

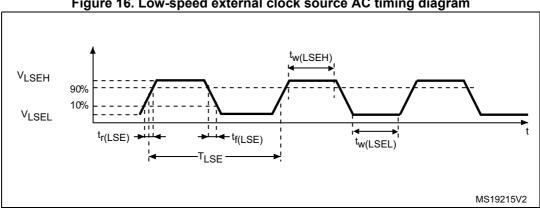
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in *Section 6.3.15*. However, the recommended clock input waveform is shown in *Figure 15*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE_ext}	User external clock source frequency ⁽¹⁾		1	8	32	MHz
V _{HSEH}	OSC_IN input pin high level voltage		$0.7V_{DD}$	-	V _{DD}	V
V _{HSEL}	OSC_IN input pin low level voltage	_	V_{SS}	-	$0.3V_{\text{DD}}$	
t _{w(HSEH)} t _{w(HSEL)}	OSC_IN high or low time ⁽¹⁾		15	-	-	20
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time ⁽¹⁾		-	-	20	ns

1. Guaranteed by design, not tested in production.

Figure 15. High-speed external clock source AC timing diagram

Low-speed external user clock generated from an external source


In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in *Section 6.3.15*. However, the recommended clock input waveform is shown in *Figure 16*.



Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSE_ext}	User External clock source frequency ⁽¹⁾		-	32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage		0.7V _{DD}	-	V _{DD}	V
V _{LSEL}	OSC32_IN input pin low level voltage	-	V _{SS}	-	0.3V _{DD}	v
t _{w(LSEH)} t _{w(LSEL)}	OSC32_IN high or low time ⁽¹⁾		450	-	-	ns
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time ⁽¹⁾		-	-	50	115

Table 37. Low-speed external user	clock characteristics
-----------------------------------	-----------------------

1. Guaranteed by design, not tested in production.

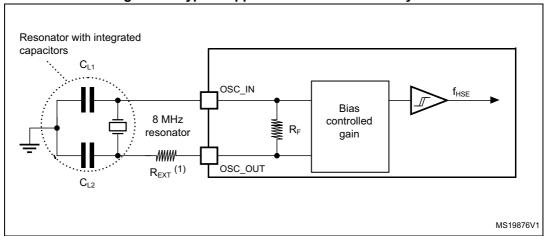


Figure 17. Typical application with an 8 MHz crystal

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 39*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽¹⁾	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit
		LSEDRV[1:0]=00 lower driving capability	-	0.5	0.9	
	LSE ourrent consumption	LSEDRV[1:0]=01 medium low driving capability	-	-	1	
I _{DD}	LSE current consumption	LSEDRV[1:0]=10 medium high driving capability	1.3		μA	
		LSEDRV[1:0]=11 higher driving capability	-	-	1.6	
		LSEDRV[1:0]=00 lower driving capability	5	-	-	
a	Oscillator	LSEDRV[1:0]=01 medium low driving capability	8	-	-	
9 _m	transconductance	LSEDRV[1:0]=10 medium high driving capability	15	-	-	µA/V
		LSEDRV[1:0]=11 higher driving capability	25	-	-	
t _{SU(LSE)} ⁽³⁾	Startup time	V _{DD} is stabilized	-	2	-	S

Table 39. LSE oscillator characteristics	(f _{LSE} = 32.768 kHz)
--	---------------------------------

1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".

2. Guaranteed by design, not tested in production.

 t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer.

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

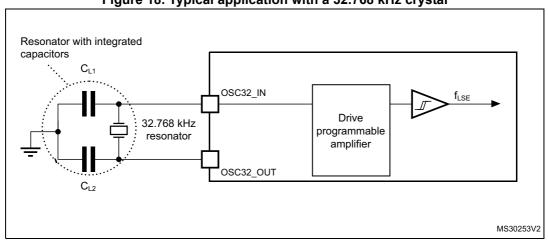


Figure 18. Typical application with a 32.768 kHz crystal

Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one.

6.3.8 Internal clock source characteristics

The parameters given in *Table 40* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 19*.

High-speed internal (HSI) RC oscillator

Table 40. HSI oscillator characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Frequency	-	-	8	-	MHz
TRIM	HSI user trimming step	-	-	-	1 ⁽²⁾	%
DuCy _(HSI)	Duty cycle	-	45 ⁽²⁾	-	55 ⁽²⁾	%
	ACC _{HSI} Accuracy of the HSI oscillator	T _A = -40 to 105°C	-2.8 ⁽³⁾	-	3.8 ⁽³⁾	
		T _A = -10 to 85°C	-1.9 ⁽³⁾	-	2.3 ⁽³⁾	
100		T _A = 0 to 85°C	-1.9 ⁽³⁾	-	2 ⁽³⁾	%
ACCHSI		T _A = 0 to 70°C	-1.3 ⁽³⁾	-	2 ⁽³⁾	70
		$T_A = 0$ to 55°C	-1 ⁽³⁾	-	2 ⁽³⁾	
		$T_A = 25^{\circ}C^{(4)}$	-1	-	1	
t _{SU(HSI)}	HSI oscillator startup time	-	1 ⁽²⁾	-	2 ⁽²⁾	μs
I _{DDA(HSI)}	HSI oscillator power consumption	-	-	80	100 ⁽²⁾	μA

1. V_{DDA} = 3.3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Guaranteed by design, not tested in production.

3. Data based on characterization results, not tested in production.

4. Factory calibrated, parts not soldered.

6.3.10 Memory characteristics

Flash memory

The characteristics are given at $T_A = -40$ to 105 °C unless otherwise specified.

·								
Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit		
t _{prog}	16-bit programming time	T _A = -40 to +105 °C	40	53.5	60	μs		
t _{ERASE}	Page (2 KB) erase time	$T_A = -40$ to +105 °C	20	-	40	ms		
t _{ME}	Mass erase time	$T_A = -40$ to +105 °C	20	-	40	ms		
	Supply current	Write mode	-	-	10	mA		
IDD	Supply current	Erase mode	-	-	12	mA		

Table 43. Flash memory characteristics

1. Guaranteed by design, not tested in production.

Gumbal	Devenueter	Conditions	Value	11
Symbol	Parameter	Conditions	Min ⁽¹⁾	Unit
N _{END}	Endurance	$T_A = -40$ to +85 °C (6 suffix versions) $T_A = -40$ to +105 °C (7 suffix versions)	10	kcycles
		1 kcycle ⁽²⁾ at T _A = 85 °C	30	
t _{RET}	Data retention	1 kcycle ⁽²⁾ at T _A = 105 °C	10	Years
		10 kcycle ⁽²⁾ at T _A = 55 °C	20	

1. Data based on characterization results, not tested in production.

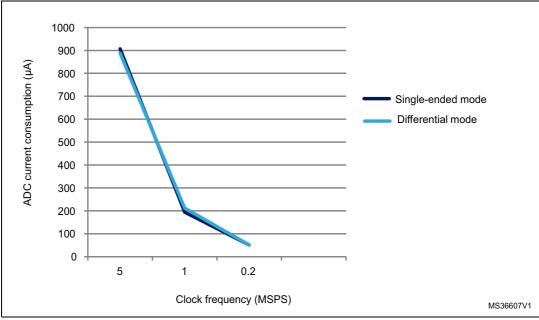
2. Cycling performed over the whole temperature range.

6.3.11 FSMC characteristics

Unless otherwise specified, the parameters given in *Table 45* to *Table 60* for the FSMC interface are derived from tests performed under the ambient temperature, f_{HCLK} frequency and V_{DD} supply voltage conditions summarized in *Table 19* with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5VDD

Refer to Section 6.3.15: I/O port characteristics: for more details on the input/output characteristics.



Symbol	Parameter	Conditions	Min	Тур	Мах	Unit		
ts ⁽¹⁾	Sampling time	f _{ADC} = 72 MHz	0.021	-	8.35	μs		
ις` ΄	Sampling time	-	1.5	-	601.5	1/f _{ADC}		
T _{ADCVREG} _STUP ⁽¹⁾	ADC Voltage Regulator Start-up time	-	-	-	10	μs		
	Total conversion time	f _{ADC} = 72 MHz Resolution = 12 bits	0.19	-	8.52	μs		
t _{CONV} ⁽¹⁾	(including sampling time)	Resolution = 12 bits		(t _S for samp for sive approxi	C C	1/f _{ADC}		
CMIR	Common Mode Input signal range	ADC differential mode	(V _{SSA} + V _{REF} +)/2 – 0.18	(V _{SSA} + V _{REF} +)/2	(V _{SSA} + V _{REF} +)/2 + 0.18	V		

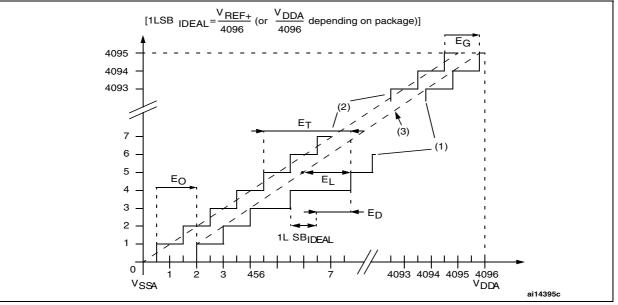
Table 79. ADC characteristics (continued)

1. Data guaranteed by design, not tested in Production.

 V_{REF+} can be internally connected to V_{DDA} and V_{REF-} can be internally connected to V_{SSA}, depending on the package. Refer to Section 4: Pinout and pin description for further details.

Figure 48. ADC typical current consumption on VDDA pin

Symbol	Parameter	Test condition	IS	Тур	Max ⁽³⁾	Unit
ET	Total upadiusted error		Fast channel	±2.5	±5	
	Total unadjusted error		Slow channel	±3.5	±5	
EO	Offset error		Fast channel	±1	±2.5	
EO				Slow channel	±1.5	±2.5
EG	Gain error	Sampling Freq ≤ 1MSPS	Fast channel	±2	±3	LSB
EG	Gainenoi	$2.4 \text{ V} \le \text{V}_{\text{DDA}} = \text{V}_{\text{REF+}} \le 3.6 \text{ V}$	Slow channel	±3	±4	LOD
ED	Differential linearity error	Single-ended mode	Fast channel	±0.7	±2	
ED	D Differential linearity error		Slow channel	±0.7	±2	
EI	El Integral lingerity error		Fast channel	±1	±3	
EL Integral linearity error		Slow channel	±1.2	±3		


Table 85. ADC accuracy at 1MSPS⁽¹⁾⁽²⁾

1. ADC DC accuracy values are measured after internal calibration.

 ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and ∑IINJ(PIN) in Section 6.3.15: I/O port characteristics does not affect the ADC accuracy.

3. Data based on characterization results, not tested in production.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
I _{REF}	DAC DC current consumption in quiescent mode (Standby mode)	With no load, worst code (0xF1C) on the input	-	-	220	μA
I _{DDA} ⁽³⁾	DAC DC current consumption in quiescent	With no load, middle code (0x800) on the input.	-	-	380	μA
'DDA'	mode (Standby mode) ⁽²⁾	With no load, worst code (0xF1C) on the input.	-	-	480	μA
DNL ⁽³⁾	Differential non linearity	Given for a 10-bit input code	-	-	±0.5	LSB
DINL	Difference between two consecutive code-1LSB)	Given for a 12-bit input code	-	-	±2	LSB
	Integral non linearity	Given for a 10-bit input code	-	-	±1	LSB
INL ⁽³⁾	(difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 4095)	Given for a 12-bit input code	-	-	±4	LSB
		-	-	-	±10	mV
Offset ⁽³⁾	Offset error (difference between measured value at Code (0x800) and the ideal	Given for a 10-bit input code at V _{DDA} = 3.6 V	-	-	±3	LSB
	value = V _{DDA} /2)	Given for a 12-bit input code at V _{DDA} = 3.6 V	-	-	±12	LSB
Gain error ⁽³⁾	Gain error	Given for a 12-bit input code	-	-	±0.5	%
^t SETTLING ⁽³⁾	Settling time (full scale: for a 12-bit input code transition between the lowest and the highest input codes when DAC_OUT reaches final value ±1LSB	C _{LOAD} ⊴50 pF, R _{LOAD} ≥ 5 kΩ	-	3	4	μs
t _{STAB}	Power-up time	-		1		conver sion cycle
Update rate ⁽³⁾	Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB)	C _{LOAD} ⊴50 pF, R _{LOAD} ≥ 5 kΩ	-	-	1	MS/s
t _{WAKEUP} ⁽³⁾	Wakeup time from off state (Setting the ENx bit in the DAC Control register)	C _{LOAD} ⊴50 pF, R _{LOAD} ≥ 5 kΩ	-	6.5	10	μs
PSRR+ ⁽¹⁾	Power supply rejection ratio (to V _{DDA}) (static DC measurement	C _{LOAD} = 50 pF, No R _{LOAD} ≥ 5 kΩ,	-	-67	-40	dB
ا _{skink} (1)	Output sink current	DAC buffer ON Output level higher than 0.2 V	100	-	-	μA

1. Guaranteed by design, not tested in production.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
TV _{OFFSET}	Total offset variation	Full temperature range	-	-	3	mV
I _{DDA}	COMP current consumption	-	-	400	600	μA

Table 87. Comparator characteristics⁽¹⁾ (continued)

1. Guaranteed by design, not tested in production.

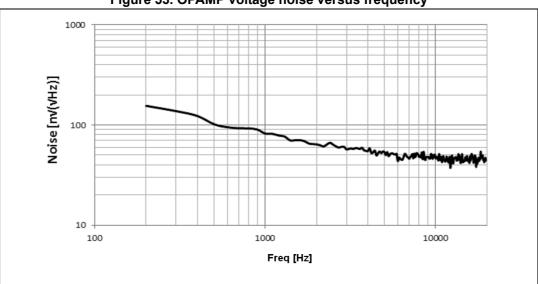


Figure 53. OPAMP voltage noise versus frequency

Temperature sensor characteristics 6.3.23

Table 89. TS characteristics

Symbol	Parameter	Min	Тур	Max	Unit	
T _L ⁽¹⁾	V _{SENSE} linearity with temperature	-	±1	±2	°C	
Avg_Slope ⁽¹⁾	Average slope	4.0	4.3	4.6	mV/°C	
V ₂₅	Voltage at 25 °C	1.34	1.43	1.52	V	
t _{START} ⁽¹⁾	Startup time	4	-	10	μs	
T _{S_temp} ⁽¹⁾⁽²⁾	ADC sampling time when reading the temperature	2.2	-	-	μs	

1. Guaranteed by design, not tested in production.

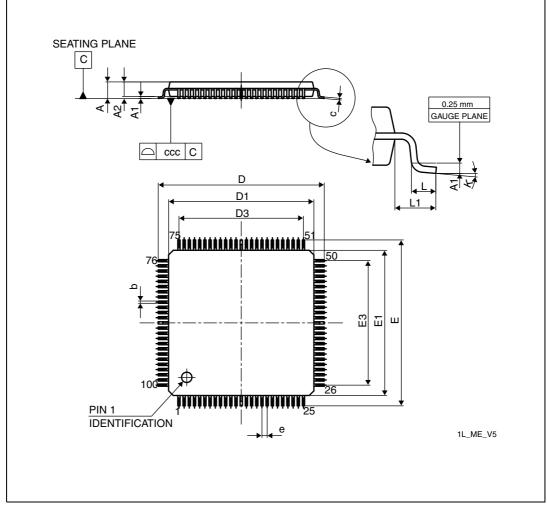

2. Shortest sampling time can be determined in the application by multiple iterations.

Table 90. Temperature sensor calibration values					
Calibration value name	Description	Memory address			
TS_CAL1	TS ADC raw data acquired at temperature of 30 °C, V _{DDA} = 3.3 V	0x1FFF F7B8 - 0x1FFF F7B9			
TS_CAL2	TS ADC raw data acquired at temperature of 110 °C V _{DDA} = 3.3 V	0x1FFF F7C2 - 0x1FFF F7C3			

7.4 LQFP100 package information

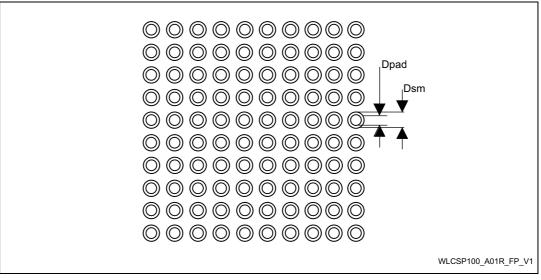
LQFP100 is a 100-pin, 14 x 14 mm low-profile quad flat package.

^{1.} Drawing is not to scale.

Table 95. LQPF100 package mechanica

Symbol		millimeters			inches ⁽¹⁾	
	Min	Тур	Мах	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	15.800	16.000	16.200	0.6220	0.6299	0.6378

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Тур	Min	Max
А	0.525	0.555	0.585	0.0207	0.0219	0.0230
A1	-	0.175	-	-	0.0069	-
A2	-	0.38	-	-	0.0150	-
A3 ⁽²⁾	-	0.025	-	-	0.0010	-
Ø b ⁽³⁾	0.22	0.25	0.28	-	0.0098	0.0110
D	4.74	4.775	4.81	-	0.1880	0.1894
E	5.006	5.041	5.076	-	0.1985	0.1998
е	-	0.4	-	-	0.0157	-
e1	-	3.6	-	-	0.1417	-
e2	-	3.6	-	-	0.1417	-
F	-	0.5875	-	-	0.0231	-
G	-	0.7205	-	-	0.0284	-
Ν	-	100	-	-	3.9370	-
aaa	-	0.1	-	-	0.0039	-
bbb	-	0.1	-	-	0.0039	-
CCC	-	0.1	-	-	0.0039	-
ddd	-	0.05	-	-	0.0020	-
eee	-	0.05	-	-	0.0020	-


Table 96. WLCSP100	package mechanical of	data
--------------------	-----------------------	------

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. Back side coating.

3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.

Figure 64. Recommended footprint for the WLCSP100 package

