

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	84
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	80K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 39x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-UFBGA
Supplier Device Package	100-UFBGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f303veh6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Interconnect source	Interconnect destination	Interconnect action
GPIO RTCCLK HSE/32 MC0	TIM16	Clock source used as input channel for HSI and LSI calibration
CSS CPU (hard fault) COMPx GPIO	TIM1, TIM8, TIM20 TIM15, 16, 17	Timer break
	TIMx	External trigger, timer break
GPIO	ADCx DAC1	Conversion external trigger
DAC1	COMPx	Comparator inverting input

Table 4. STM32F303xD/E peripheral interconnect matrix (continued)

Note: For more details about the interconnect actions, refer to the corresponding sections in the STM32F303xD/Ereference manual (RM0316).

3.9 Clocks and startup

System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example with failure of an indirectly used external oscillator).

Several prescalers allow to configure the AHB frequency, the high speed APB (APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and the high speed APB domains is 72 MHz, while the maximum allowed frequency of the low speed APB domain is 36 MHz.

- Left or right data alignment in 12-bit mode
- Synchronized update capability
- Noise-wave generation
- Triangular-wave generation
- Dual DAC channel independent or simultaneous conversions
- DMA capability (for each channel)
- External triggers for conversion
- Input voltage reference VREF+

3.16 Operational amplifier (OPAMP)

The STM32F303xD/E embed four operational amplifiers with external or internal follower routing and PGA capability (or even amplifier and filter capability with external components). When an operational amplifier is selected, an external ADC channel is used to enable output measurement.

The operational amplifier features:

- 8.2 MHz bandwidth
- 0.5 mA output capability
- Rail-to-rail input/output
- In PGA mode, the gain is programmed to be 2, 4, 8 or 16.

3.17 Ultra-fast comparators (COMP)

The STM32F303xD/E devices embed seven ultra-fast rail-to-rail comparators with programmable reference voltage (internal or external) and selectable output polarity.

The reference voltage can be one of the following:

- External I/O
- DAC output pin
- Internal reference voltage or submultiple (1/4, 1/2, 3/4). Refer to *Table 23: Embedded internal reference voltage* for the value and precision of the internal reference voltage.

All comparators can wake up from STOP mode, generate interrupts and breaks for the timers.

3.18 Timers and watchdogs

The STM32F303xD/E include three advanced control timers, up to six general-purpose timers, two basic timers, two watchdog timers and one SysTick timer. The table below compares the features of the advanced control, general purpose and basic timers.

3.18.6 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:

- A 24-bit down counter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0.
- Programmable clock source

3.19 Real-time clock (RTC) and backup registers

The RTC and the 16 backup registers are supplied through a switch that takes power from either the V_{DD} supply when present or the V_{BAT} pin. The backup registers are sixteen 32-bit registers used to store 64 bytes of user application data when V_{DD} power is not present.

They are not reset by a system or power reset, or when the device wakes up from Standby mode.

The RTC is an independent BCD timer/counter. It supports the following features:

- Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format.
- Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision.
- Automatic correction for 28, 29 (leap year), 30 and 31 days of the month.
- Two programmable alarms with wake up from Stop and Standby mode capability.
- On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock.
- Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy.
- Three anti-tamper detection pins with programmable filter. The MCU can be woken up from Stop and Standby modes on tamper event detection.
- Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be woken up from Stop and Standby modes on timestamp event detection.
- 17-bit Auto-reload counter for periodic interrupt with wakeup from STOP/STANDBY capability.

The RTC clock sources can be:

- A 32.768 kHz external crystal
- A resonator or oscillator
- The internal low-power RC oscillator (typical frequency of 40 kHz)
- The high-speed external clock divided by 32.

3.20 Inter-integrated circuit interface (I²C)

Up to three I²C bus interfaces can operate in multimaster and slave modes. They can support standard (up to 100 kHz), fast (up to 400 kHz) and fast mode + (up to 1 MHz) modes.

DocID026415 Rev 5

	Pi	n num	ber							
LQFP64	LQFP100	UFBGA100	WLCSP100	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	1	B2	D6	1	PE2	I/O	FT	(1)	TRACECK, EVENTOUT, TIM3_CH1, TSC_G7_IO1, SPI4_SCK, TIM20_CH1, FMC_A23	-
-	2	A1	D7	2	PE3	I/O	FT	(1)	TRACED0, EVENTOUT, TIM3_CH2, TSC_G7_IO2, SPI4_NSS, TIM20_CH2, FMC_A19	-
-	3	B1	C8	3	PE4	I/O	FT	(1)	TRACED1, EVENTOUT, TIM3_CH3, TSC_G7_IO3, SPI4_NSS, TIM20_CH1N, FMC_A20	-
-	4	C2	B9	4	PE5	I/O	FT	(1)	TRACED2, EVENTOUT, TIM3_CH4, TSC_G7_IO4, SPI4_MISO, TIM20_CH2N, FMC_A21	-
-	5	D2	E7	5	PE6	I/O	FT	(1)	TRACED3, EVENTOUT, SPI4_MOSI, TIM20_CH3N, FMC_A22	WKUP3, RTC_TAMP3
1	6	E2	D8	6	VBAT	S	-	-	-	-
2	7	C1	C9	7	PC13 ⁽²⁾	I/O	тс	-	EVENTOUT, TIM1_CH1N	WKUP2,RTC_TAMP1, RTC_TS, RTC_OUT
3	8	D1	C10	8	PC14 - OSC32_IN ⁽²⁾	I/O	тс	-	EVENTOUT	OSC32_IN
4	9	E1	D9	9	PC15 - OSC32_OUT ⁽²⁾	I/O	тс	-	EVENTOUT	OSC32_OUT
-	-	-	-	10	PH0	I/O	FT	(1)	EVENTOUT, TIM20_CH1, FMC_A0	-
-	-	-	-	11	PH1	I/O	FT	(1)	EVENTOUT, TIM20_CH2, FMC_A1	-
-	19	J1	E8	12	PF2	I/O	ТТа	(1)	EVENTOUT, TIM20_CH3, FMC_A2	ADC12_IN10
-	-	-	-	13	PF3	I/O	FT	(1)	EVENTOUT, TIM20_CH4, FMC_A3	-

Table 13. STM32F303xD/E pin definitions

60/173

DocID026415 Rev 5

	Table 14. STM32F303xD/E alternate function mapping (continued)																
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
1	Port	SYS_AF	TIM2/15/ 16/17/E VENT	I2C3/TIM1 /2/3/4/8/20 /15/GPCO MP1	12C3/TIM 8/20/15/G PCOMP7 /TSC	I2C1/2/TI M1/8/16/ 17	SPI1/SPI2 /I2S2/SPI3 /I2S3/SPI4 /UART4/5/ TIM8/Infra red	SPI2/I2S2/ SPI3/I2S3/ TIM1/8/20/ Infrared	USART1/2 /3/CAN/GP COMP3/5/ 6	I2C3/GPC OMP1/2/3/ 4/5/6	CAN/TIM1 /8/15	TIM2/3/ 4/8/17	TIM1/8	FSMC /TIM1	-	-	EVENT
	PE12	-	EVENT OUT	TIM1_ CH3N	-	-	SPI4_SCK	-	-	-	-	-	-	FMC_D9	-	-	-
Port E	PE13	-	EVENT OUT	TIM1_ CH3	-	-	SPI4_ MISO	-	-	-	-	-	-	FMC_ D10	-	-	-
	PE14	-	EVENT OUT	TIM1_ CH4	-	-	SPI4_ MOSI	TIM1_ BKIN2	-	-	-	-	-	FMC_ D11	-	-	-
	PE15	-	EVENT OUT	TIM1_ BKIN	-	-	-	-	USART3_ RX	-	-	-	-	FMC_ D12	-	-	-
	PF0	-	EVENT OUT	-	-	I2C2_SDA	SPI2_NSS /I2S2_WS	TIM1_ CH3N	-	-	-	-	-	-	-	-	-
	PF1	-	EVENT OUT	-	-	I2C2_SCL	SPI2_SCK /I2S2_CK	-	-	-	-	-	-	-	-	-	-
	PF2	-	EVENT OUT	TIM20_ CH3	-	-	-	-	-	-	-	-	-	FMC_A2	-	-	-
Port F	PF3	-	EVENT OUT	TIM20_ CH4	-	-	-	-	-	-	-	-	-	FMC_A3	-	-	-
	PF4	-	EVENT OUT	COMP1_ OUT	TIM20_ CH1N	-	-	-	-	-	-	-	-	FMC_A4	-	-	-
	PF5	-	EVENT OUT	TIM20_ CH2N	-	-	-	-	-	-	-	-	-	FMC_A5	-	-	-
	PF6	-	EVENT OUT	TIM4_ CH4	-	I2C2_SCL	-	-	USART3_ RTS	-	-	-	-	FMC_ NIORD	-	-	-
	PF7	-	EVENT OUT	TIM20_ BKIN	-	-	-	-	-	-	-	-	-	FMC_ NREG	-	-	-

Pinout and pin description

STM32F303xD STM32F303xE

5 Memory mapping

Figure 9. STM32F303xD/E memory map

64/173

DocID026415 Rev 5

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 38*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽¹⁾	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit
f _{OSC_IN}	Oscillator frequency	-	4	8	32	MHz
R _F	Feedback resistor	-	-	200	-	kΩ
		During startup ⁽³⁾	-	-	8.5	
		V _{DD} = 3.3 V, Rm= 30Ω, CL=10 pF@8 MHz	-	0.4	-	
		V _{DD} = 3.3 V, Rm= 45Ω CL=10 pF@8 MHz	-	0.5	-	
I _{DD}	HSE current consumption	V _{DD} = 3.3 V, Rm= 30Ω, CL=5 pF@32 MHz	-	0.8	-	mA
		V _{DD} = 3.3 V, Rm= 30Ω CL=10 pF@32 MHz	-	1	-	
		V _{DD} = 3.3 V, Rm= 30Ω CL=20 pF@32 MHz	-	1.5	-	
9 _m	Oscillator transconductance	Startup	10	-	-	mA/V
t _{SU(HSE)} ⁽⁴⁾	Startup time	V _{DD} is stabilized	-	2	-	ms

Table 38. HSE oscillator characteristics

1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

2. Guaranteed by design, not tested in production.

3. This consumption level occurs during the first 2/3 of the $t_{SU(HSE)}$ startup time.

 t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (Typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 17*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} .

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

Figure 19. HSI oscillator accuracy characterization results for soldered parts

Low-speed internal (LSI) RC oscillator

Table 41. LSI oscillator characteristics⁽¹⁾

Symbol	Parameter	Min	Тур	Max	Unit
f _{LSI}	Frequency	30	40	50	kHz
t _{su(LSI)} ⁽²⁾	LSI oscillator startup time	-	-	85	μs
I _{DD(LSI)} ⁽²⁾	LSI oscillator power consumption	-	0.75	1.2	μA

1. V_{DDA} = 3.3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Guaranteed by design, not tested in production.

6.3.9 PLL characteristics

The parameters given in *Table 42* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 19*.

Symbol	Doromotor		Unit		
	Farameter	Min	Тур	Max	Omit
f	PLL input clock ⁽¹⁾	1 ⁽²⁾	-	24 ⁽²⁾	MHz
'PLL_IN	PLL input clock duty cycle	40 ⁽²⁾	-	60 ⁽²⁾	%
f _{PLL_OUT}	PLL multiplier output clock	16 ⁽²⁾	-	72	MHz
t _{LOCK}	PLL lock time	-	-	200 ⁽²⁾	μs
Jitter	Cycle-to-cycle jitter	-	-	300 ⁽²⁾	ps

Table 42. PLL characteristics

 Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by f_{PLL_OUT}.

2. Guaranteed by design, not tested in production.

	, ,		•	
Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	4THCLK-1	4THCLK+1	
t _{v(NWE_NE)}	FMC_NEx low to FMC_NWE low	THCLK	THCLK+0.5	
t _{w(NWE)}	FMC_NWE low time 2THCLK-0.5 2THCLK+1			
t _{h(NE_NWE)}	FMC_NWE high to FMC_NE high hold time	THCLK-0.5		
t _{v(A_NE)}	FMC_NEx low to FMC_A valid - 5			
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	1	2.5	
t _{w(NADV)}	FMC_NADV low time	_NADV low time THCLK-2 THCLK+2		ns
t _{h(AD_NADV)}	FMC_AD(adress) valid hold time after FMC_NADV high) THCLK-2 -		-	
t _{h(A_NWE)}	Address hold time after FMC_NWE high	THCLK-1	-	
t _{h(BL_NWE)}	FMC_BL hold time after FMC_NWE high	THCLK-0.5	-	
t _{v(BL_NE)}	FMC_NEx low to FMC_BL valid	-	1	
t _{v(Data_NADV)}	FMC_NADV high to Data valid	-	THCLK +3.5	
t _{h(Data_NWE)}	Data hold time after FMC_NWE high	THCLK +0.5	-	

 Table 51. Asynchronous multiplexed PSRAM/NOR write timings⁽¹⁾

1. Based on characterization, not tested in production.

Table 52. Asy	ynchronous multi	plexed PSRAM/NOR	write-NWAIT	timings ⁽¹⁾
---------------	------------------	------------------	-------------	------------------------

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FMC_NE low time	9THCLK	9THCLK+0.5	
t _{w(NWE)}	FMC_NWE low time	6THCLK	6THCLK+2	nc
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	5THCLK+6	-	115
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	5THCLK-5	-	

1. Based on characterization, not tested in production.

Synchronous waveforms and timings

Figure 24 and *Figure 27* present the synchronous waveforms and *Table 53* to *Table 56* provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration:

- BurstAccessMode = FMC_BurstAccessMode_Enable;
- MemoryType = FMC_MemoryType_CRAM;
- WriteBurst = FMC_WriteBurst_Enable;
- CLKDivision = 1;
- DataLatency = 2 for NOR Flash; DataLatency = 0 for PSRAM

In all timing tables, the THCLK is the HCLK clock period (with maximum FMC_CLK = 36 MHz).

Symbol	Parameter	Min	Мах	Unit
t _{h(CLKH-DV)}	FMC_D[15:0] valid data after FMC_CLK high	5	-	
t _{su(NWAIT-CLKH)}	FMC_NWAIT valid before FMC_CLK high	2	-	ns
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	4	-	

Table 55. S	ynchronous	non-multiple	exed NOR/PS	RAM read	timings ⁽¹⁾	(continued)	
-------------	------------	--------------	-------------	----------	------------------------	-------------	--

1. Based on characterization, not tested in production.

Figure 32. PC Card/CompactFlash controller waveforms for I/O space read access

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 40* and *Table 68*, respectively.

Unless otherwise specified, the parameters given are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 19*.

OSPEEDRy [1:0] value ⁽¹⁾	Symbol	Parameter Conditions		Min	Max	Unit	
	f _{max(IO)out}	Maximum frequency ⁽²⁾	C_L = 50 pF, V_{DD} = 2 V to 3.6 V		2 ⁽³⁾	MHz	
x0	t _{f(IO)out}	Output high to low level fall time	C = 50 pE V = 2 V to 3 6 V	-	125 ⁽³⁾	20	
	t _{r(IO)out}	Output low to high level rise time	-ομ - σο μι, ν _{DD} - 2 ν το σ.ο ν	-	125 ⁽³⁾	115	
	f _{max(IO)out}	Maximum frequency ⁽²⁾	C _L = 50 pF, V _{DD} = 2 V to 3.6 V	-	10 ⁽³⁾	MHz	
01	t _{f(IO)out}	Output high to low level fall time		-	25 ⁽³⁾	20	
	t _{r(IO)out}	Output low to high level rise time	$V_{\rm L} = 50 \ \text{pr}, \ V_{\rm DD} = 2 \ \text{v} \ 10 \ 3.0 \ \text{v}$	-	25 ⁽³⁾	ns	
			C_{L} = 30 pF, V_{DD} = 2.7 V to 3.6 V	-	50 ⁽³⁾		
	f _{max(IO)out}	Maximum frequency ⁽²⁾	C _L = 50 pF, V _{DD} = 2.7 V to 3.6 V	-	30 ⁽³⁾	³⁾ MHz	
			C_{L} = 50 pF, V_{DD} = 2 V to 2.7 V	-	20 ⁽³⁾		
	t _{f(IO)} out		C_{L} = 30 pF, V_{DD} = 2.7 V to 3.6 V	-	5 ⁽³⁾	_	
11		fall time	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	8 ⁽³⁾		
			C_{L} = 50 pF, V_{DD} = 2 V to 2.7 V	-	12 ⁽³⁾]	
			C_{L} = 30 pF, V_{DD} = 2.7 V to 3.6 V	-	5 ⁽³⁾	- ns	
	t _{r(IO)out}	Output low to high level	C_L = 50 pF, V_{DD} = 2.7 V to 3.6 V -		8 ⁽³⁾		
			C_{L} = 50 pF, V_{DD} = 2 V to 2.7 V	-	12 ⁽³⁾		
	f _{max(IO)out}	Maximum frequency ⁽²⁾		-	2 ⁽⁴⁾	MHz	
FM+ configuration ⁽⁴⁾	t _{f(IO)out}	Output high to low level fall time	C _L = 50 pF, V _{DD} = 2 to 3.6 V	-	12 ⁽⁴⁾	20	
Joingardion	t _{r(IO)out}	Output low to high level rise time		-	34 ⁽⁴⁾	115	
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller	-	10 ⁽³⁾	-	ns	

Table	68.	I/O	AC	characteristics	(1)
-------	-----	-----	----	-----------------	-----

1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the RM0316 reference manual for a description of GPIO Port configuration register.

2. The maximum frequency is defined in *Figure 40*.

3. Guaranteed by design, not tested in production.

4. The I/O speed configuration is bypassed in FM+ I/O mode. Refer to the reference manual RM0316 for a description of FM+ I/O mode configuration.

Figure 45. I²S slave timing diagram (Philips protocol)⁽¹⁾

- 1. Measurement points are done at $0.5V_{DD}$ and with external C_L=30 pF.
- LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first 2. byte.

Figure 46. I²S master timing diagram (Philips protocol)⁽¹⁾

- Measurement points are done at $0.5V_{DD}$ and with external C_L=30 pF. 1.
- LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first 2. byte.

	Sampling	Sampling	R _{AIN} max (kΩ)				
Resolution	cycle @ 72 MHz	time [ns] @ 72 MHz	Fast channels ⁽²⁾	Slow channels	Other channels ⁽³⁾		
	1.5	20.83	0.150	NA	0.039		
	2.5	34.72	0.390	0.180	0.180		
	4.5	62.50	0.820	0.560	0.470		
8 bite	7.5	104.17	1.50	1.20	1.00		
o bits	19.5	270.83	3.90	3.30	2.70		
	61.5	854.17	12.00	12.00	8.20		
	181.5	2520.83	39.00	33.00	27.00		
	601.5	8354.17	100.00	100.00	82.00		
	1.5	20.83	0.270	0.100	0.150		
	2.5	34.72	0.560	0.390	0.330		
	4.5	62.50	1.200	0.820	0.820		
6 bito	7.5	104.17	2.20	1.80	1.50		
0 Dits	19.5	270.83	5.60	4.70	3.90		
	61.5	854.17	18.0	15.0	12.0		
	181.5	2520.83	56.0	47.0	39.0		
	601.5	8354.17	100.00	100.0	100.0		

Table 80	. Maximum	ADC RAIN	(1)	(continued)
----------	-----------	----------	-----	-------------

1. Data based on characterization results, not tested in production.

2. All fast channels, expect channels on PA2, PA6, PB1, PB12.

3. Fast channels available on PA2, PA6, PB1, PB12.

							,	
Symbol	Parameter	Conditions			Min (3)	Тур	Max (3)	Unit
SNR ⁽⁴⁾ Signal-to- noise ratio			Single ended	Fast channel 5.1 Ms	66	67	-	
	Signal-to-	ADC clock freq. \leq 72 MHz Sampling freq \leq 5 Msps	Single ended	Slow channel 4.8 Ms	66	67	-	
	noise ratio		Differential	Fast channel 5.1 Ms	69	70	-	
				Slow channel 4.8 Ms	69	70	-	dB
		25°C 100-pin/144-pin package	Single ended	Fast channel 5.1 Ms	-	-76	-76	uВ
тuр(4)	Total			Slow channel 4.8 Ms	-	-76	-76	
יישוו	distortion		Differential	Fast channel 5.1 Ms	-	-80	-80	
				Slow channel 4.8 Ms	-	-80	-80	

Table 81. ADC accuracy - limited test conditions, 100-/144-pin packages ⁽¹⁾⁽²⁾ (continued)

1. ADC DC accuracy values are measured after internal calibration.

 ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 6.3.15 does not affect the ADC accuracy.

3. Data based on characterization results, not tested in production.

4. Value measured with a -0.5 dB full scale 50 kHz sine wave input signal.

Symbol	Parameter	Co	Min ⁽⁴⁾	Max ⁽⁴⁾	Unit		
_			Single	Fast channel 5.1 Ms	-	±6.5	
ст.	Total		Ended	Slow channel 4.8 Ms	-	±6.5	
	error		Differential	Fast channel 5.1 Ms	-	±4	
			Dillerential	Slow channel 4.8 Ms	-	±4	
			Single	Fast channel 5.1 Ms	-	±3	
EO Offs	Offect error	ADC clock freq. < 72 MHz	Ended	Slow channel 4.8 Ms	-	±3	
	Oliset en or		Differential	Fast channel 5.1 Ms	-	<u>+2</u>	
		Sampling freq. \leq 5 Msps		Slow channel 4.8 Ms	-	<u>+2</u>	
		$\begin{array}{l} 2.0 \ V \leq V_{DDA}, \ V_{REF+} \leq 3.6 \ V\\ 100\mbox{-pin}\mbox{/}144\mbox{-pin}\ package \end{array}$ Gain error	Single Ended	Fast channel 5.1 Ms	-	±6	LOD
FO	Coin orror			Slow channel 4.8 Ms	-	±6	
EG	Gamenor		Differential	Fast channel 5.1 Ms	-	±3	
				Slow channel 4.8 Ms	-	±3	
Di			Single	Fast channel 5.1 Ms	-	±1.5	
	Differential		Ended	Slow channel 4.8 Ms	-	±1.5	
	error		Differential	Fast channel 5.1 Ms	-	±1.5	
			Dimerential	Slow channel 4.8 Ms	-	±1.5	

Table 82. ADC accuracy, 100-pin/144-pin packages⁽¹⁾⁽²⁾⁽³⁾

Electrical characteristics

- 2. Quiescent mode refers to the state of the DAC a keeping steady value on the output, so no dynamic consumption is involved.
- 3. Data based on characterization results, not tested in production.

1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

6.3.21 Comparator characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
V _{DDA}	Analog supply voltage	-	2	-	3.6		
V _{IN}	Comparator input voltage range	-	0	-	V _{DDA}	V	
V _{BG}	Scaler input voltage	-	-	V _{REFINIT}	-		
V _{SC}	Scaler offset voltage	-	-	±5	±10	mV	
ts_sc	Scaler startup time from power down	-	-	-	0.2	ms	
t	Comparator startup timo	$V_{DDA} \ge 2.7 V$	-	-	4	110	
^I START		V _{DDA} < 2.7 V	-	-	10	μs	
	Propagation delay for	V _{DDA} ≥ 2.7 V	-	25	28		
to	overdrive	V _{DDA} < 2.7 V	-	28	30	ne	
0	Propagation delay for full	V _{DDA} ≥ 2.7 V	-	32	35	ns	
	overdrive	V _{DDA} < 2.7 V	-	35	40		
Vorrorr	Comparator offset error	$V_{DDA} \ge 2.7 V$	-	±5	±10	m\/	
VOFFSET		V _{DDA} < 2.7 V	-	-	±25	mv	

 Table 87. Comparator characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
TV _{OFFSET}	Total offset variation	Full temperature range	-	-	3	mV
I _{DDA}	COMP current consumption	-	-	400	600	μA

Table 87. Comparator characteristics⁽¹⁾ (continued)

1. Guaranteed by design, not tested in production.

Symbol	Parameter	Condition	Min	Тур	Max	Unit	
			-	2	-	-	
	Non inverting goin value		-	4	-	-	
FGA gain	Non inverting gain value	-	-	8	-	-	
			-	16	-	-	
		Gain=2	-	5.4/5.4	-		
D	R2/R1 internal resistance values in	Gain=4	-	16.2/5.4	-	kO	
Rnetwork	PGA mode ⁽³⁾	Gain=8	-	37.8/5.4	-	K52	
		Gain=16	-	40.5/2.7	-		
PGA gain error	PGA gain error	-	-1%	-	1%	-	
I _{bias}	OPAMP input bias current	-	-	-	±0.2 ⁽⁴⁾	μA	
		PGA Gain = 2, Cload = 50pF, Rload = 4 K Ω	-	4	-		
	PGA bandwidth for different non inverting gain	PGA Gain = 4, Cload = 50pF, Rload = 4 K Ω	-	2	-	MHz	
PGA BW		PGA Gain = 8, Cload = 50pF, Rload = 4 K Ω	-	1	-		
		PGA Gain = 16, Cload = 50pF, Rload = 4 KΩ	-	0.5	-		
en		 @ 1KHz, Output loaded with 4 KΩ 	-	109	-		
	Voltage noise density	@ 10KHz, Output loaded with 4 KΩ	-	43	-	<u>nV</u> √Hz	

Table 88. Operational amplifier characteristics⁽¹⁾ (continued)

1. Guaranteed by design, not tested in production.

2. The saturation voltage can be also limited by the lload (drive current).

 R2 is the internal resistance between OPAMP output and OPAMP inverting input. R1 is the internal resistance between OPAMP inverting input and ground. The PGA gain =1+R2/R1

4. Mostly TTa I/O leakage, when used in analog mode.

Symbol	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Мах	Min	Тур	Мах	
E3	-	7.500	-	-	0.2953	-	
е	-	0.500	-	-	0.0197	-	
θ	0°	3.5°	7°	0°	3.5°	7°	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
CCC	-	-	0.080	-	-	0.0031	

Table 98. LQFP64 package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

Refer to Figure 69 to select the required temperature range (suffix 6 or 7) according to your temperature or power requirements.

