

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	115
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	80K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 40x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f303zet6

Email: info@E-XFL.COM

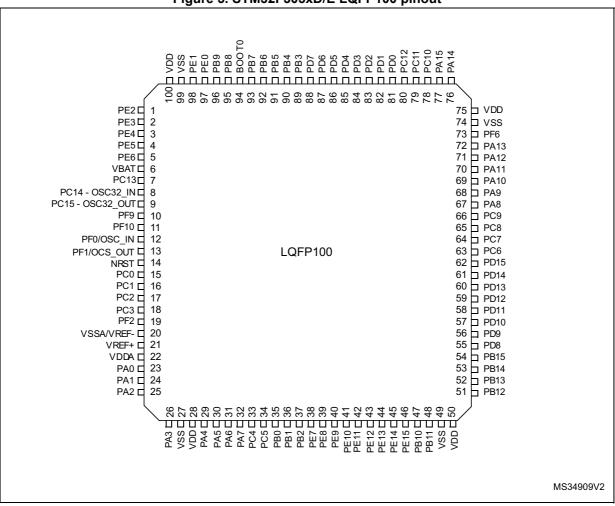
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

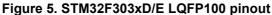
1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32F303xD/E microcontrollers.

This STM32F303xD/E datasheet should be read in conjunction with the reference manual of STM32F303xB/C/D/E, STM32F358xC and STM32F328x4/6/8 devices (RM0316) available on STMicroelectronics website at *www.st.com*.

For information on the ARM[®] Cortex[®]-M4 core with FPU, refer to the following documents:


- Cortex[®] -M4 with FPU Technical Reference Manual, available from the www.arm.com website
- STM32F3 and STM32F4 Series Cortex[®] -M4 programming manual (PM0214) available on STMicroelectronics website at <u>www.st.com</u>.



port analyzer (TPA) device. The TPA is connected to a host computer using a high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer running debugger software. TPA hardware is commercially available from common development tool vendors. It operates with third party debugger software tools.

	Pi	n num	ber							
LQFP64	LQFP100	UFBGA100	WLCSP100	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	-	-	14	PF4	I/O	TTa	(1)	EVENTOUT, COMP1_OUT, TIM20_CH1N, FMC_A4	ADC1_IN5 ⁽³⁾
-	-	-	-	15	PF5	I/O	FT	(1)	EVENTOUT, TIM20_CH2N, FMC_A5	-
-	-	-	-	16	VSS	S	-	(1)	-	-
-	-	-	-	17	VDD	S	-	(1)	-	-
-	73	C11	C1	18	PF6	I/O	FTf	(1)	EVENTOUT, TIM4_CH4, I2C2_SCL, USART3_RTS, FMC_NIORD	-
-	-	-	-	19	PF7	I/O	FT	(1)	EVENTOUT, TIM20_BKIN, FMC_NREG	-
-	-	-	-	20	PF8	I/O	FT	(1)	EVENTOUT, TIM20_BKIN2, FMC_NIOWR	-
-	10	F2	D10	21	PF9	I/O	FT	(1)	EVENTOUT, TIM20_BKIN, TIM15_CH1, SPI2_SCK, FMC_CD	-
-	11	G2	E10	22	PF10	I/O	FT	(1)	EVENTOUT, TIM20_BKIN2, TIM15_CH2, SPI2_SCK, FMC_INTR	-
5	12	F1	F10	23	PF0-OSC_IN	I	FTf	-	EVENTOUT, I2C2_SDA, SPI2_NSS/I2S2_WS, TIM1_CH3N	OSC_IN
6	13	G1	F9	24	PF1- OSC_OUT	0	FTf	-	EVENTOUT, I2C2_SCL, SPI2_SCK/I2S2_CK	OSC_OUT
7	14	H2	E9	25	NRST	I-0	RST	-	Device reset input/internal r	reset output (active low)
8	15	H1	G10	26	PC0	I/O	тта	-	EVENTOUT, TIM1_CH1	ADC12_IN6, COMP7_INM
9	16	J2	G9	27	PC1	I/O	ТТа	-	EVENTOUT, TIM1_CH2	ADC12_IN7, COMP7_INP
10	17	J3	G8	28	PC2	I/O	ТТа	-	EVENTOUT, TIM1_CH3, COMP7_OUT	ADC12_IN8

Table 13. STM32F303xD/E pin definitions (continued)

STM32F303xD STM32F303xE

Pinout and pin description

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF1
F	Port	SYS_AF	TIM2/15/ 16/17/E VENT	I2C3/TIM1 /2/3/4/8/20 /15/GPCO MP1	12C3/TIM 8/20/15/G PCOMP7 /TSC	I2C1/2/TI M1/8/16/ 17	SPI1/SPI2 /I2S2/SPI3 /I2S3/SPI4 /UART4/5/ TIM8/Infra red	SPI2/I2S2/ SPI3/I2S3/ TIM1/8/20/ Infrared	USART1/2 /3/CAN/GP COMP3/5/ 6	I2C3/GPC OMP1/2/3/ 4/5/6	CAN/TIM1 /8/15	TIM2/3/ 4/8/17	TIM1/8	FSMC /TIM1	-	-	EVEN
	PB4	JTRST	TIM16_ CH1	TIM3_ CH1	TSC_G5 _IO2	TIM8_ CH2N	SPI1_ MISO	SPI3_MIS O/I2S3ext _SD	USART2_ RX	-	-	TIM17_ BKIN	-	-	-	-	EVEN ⁻ OUT
	PB5	-	TIM16_ BKIN	TIM3_ CH2	TIM8_ CH3N	I2C1_ SMBAI	SPI1_ MOSI	SPI3_MO SI/I2S3_ SD	USART2_ CK	I2C3_SDA	-	TIM17_ CH1	-	-	-	-	EVEN ⁻ OUT
	PB6	-	TIM16_ CH1N	TIM4_ CH1	TSC_G5 _IO3	I2C1_SCL	TIM8_ CH1	TIM8_ ETR	USART1_ TX	-	-	TIM8_ BKIN2	-	-	-	-	EVEN OUT
	PB7	-	TIM17_ CH1N	TIM4_ CH2	TSC_G5 _IO4	I2C1_SDA	TIM8_ BKIN	-	USART1_ RX	-	-	TIM3_ CH4	-	FMC_ NADV	-	-	EVEN OUT
tΒ	PB8	-	TIM16_ CH1	TIM4_ CH3	TSC_ SYNC	I2C1_SCL	-	-	USART3_ RX	COMP1_ OUT	CAN_RX	TIM8_ CH2	-	TIM1_ BKIN	-	-	EVEN OUT
Port B	PB9	-	TIM17_ CH1	TIM4_ CH4	-	I2C1_SDA	-	IR-OUT	USART3_ TX	COMP2_ OUT	CAN_TX	TIM8_ CH3	-	-	-	-	EVENT OUT
	PB10	-	TIM2_ CH3	-	TSC_ SYNC	-	-	-	USART3_ TX	-	-	-	-	-	-	-	EVENT OUT
	PB11	-	TIM2_ CH4	-	TSC_G6 _IO1	-	-	-	USART3_ RX	-	-	-	-	-	-	-	EVENT OUT
	PB12	-	-	-	TSC_G6 _IO2	I2C2_ SMBAL	SPI2_NSS /I2S2_WS	TIM1_ BKIN	USART3_ CK	-	-	-	-	-	-	-	EVEN OUT
	PB13	-	-	-	TSC_G6 _IO3	-	SPI2_SCK /I2S2_CK	TIM1_ CH1N	USART3_ CTS	-	-	-	-	-	-	-	EVEN ⁻ OUT

DocID026415 Rev 5

55/173

5

	Table 15. Memory map, peripheral re	<u>.</u>	,
Bus	Boundary address	Size (bytes)	Peripheral
	0xA000 0000 - 0xA000 0FFF	4 K	FSMC control registers
AHB4	0x8000 0000 - 0x9FFF FFFF	512 M	FSMC Banks 3 and 4
	0x6000 0000 - 0x7FFF FFFF	512 M	FSMC Banks 1 and 2
-	0x5000 0800 - 0x5FFF FFFF	384 M	Reserved
AHB3	0x5000 0400 - 0x5000 07FF	1 K	ADC3 - ADC4
АПБЭ	0x5000 0000 - 0x5000 03FF	1 K	ADC1 - ADC2
-	0x4800 2000 - 0x4FFF FFFF	~132 M	Reserved
	0x4800 1C00 - 0x4800 1FFF	1 K	GPIOH
	0x4800 1800 - 0x4800 1BFF	1 K	GPIOG
	0x4800 1400 - 0x4800 17FF	1 K	GPIOF
AHB2	0x4800 1000 - 0x4800 13FF	1 K	GPIOE
ANDZ	0x4800 0C00 - 0x4800 0FFF	1 K	GPIOD
	0x4800 0800 - 0x4800 0BFF	1 K	GPIOC
	0x4800 0400 - 0x4800 07FF	1 K	GPIOB
	0x4800 0000 - 0x4800 03FF	1 K	GPIOA
-	0x4002 4400 - 0x47FF FFFF	~128 M	Reserved
	0x4002 4000 - 0x4002 43FF	1 K	TSC
	0x4002 3400 - 0x4002 3FFF	3 K	Reserved
	0x4002 3000 - 0x4002 33FF	1 K	CRC
	0x4002 2400 - 0x4002 2FFF	3 K	Reserved
AHB1	0x4002 2000 - 0x4002 23FF	1 K	Flash interface
ANDI	0x4002 1400 - 0x4002 1FFF	3 K	Reserved
	0x4002 1000 - 0x4002 13FF	1 K	RCC
	0x4002 0800 - 0x4002 0FFF	2 K	Reserved
	0x4002 0400 - 0x4002 07FF	1 K	DMA2
	0x4002 0000 - 0x4002 03FF	1 K	DMA1

Table 15. Memory map, peripheral register boundary addresses

Bus	Boundary address	Size (bytes)	Peripheral
	0x4000 7800 - 0x4000 7BFF	1 K	I2C3
	0x4000 7400 - 0x4000 77FF	1 K	DAC
	0x4000 7000 - 0x4000 73FF	1 K	PWR
	0x4000 6800 - 0x4000 6FFF	2 K	Reserved
	0x4000 6400 - 0x4000 67FF	1 K	bxCAN
	0x4000 6000 - 0x4000 63FF	1 K	USB/CAN SRAM
	0x4000 5C00 - 0x4000 5FFF	1 K	USB device FS
	0x4000 5800 - 0x4000 5BFF	1 K	I2C2
	0x4000 5400 - 0x4000 57FF	1 K	I2C1
	0x4000 5000 - 0x4000 53FF	1 K	UART5
	0x4000 4C00 - 0x4000 4FFF	1 K	UART4
	0x4000 4800 - 0x4000 4BFF	1 K	USART3
	0x4000 4400 - 0x4000 47FF	1 K	USART2
	0x4000 4000 - 0x4000 43FF	1 K	I2S3ext
AFDT	0x4000 4400 - 0x4000 47FF 0x4000 4000 - 0x4000 43FF 0x4000 3C00 - 0x4000 3FFF	1 K	SPI3/I2S3
	0x4000 3800 - 0x4000 3BFF	1 K	SPI2/I2S2
	0x4000 3400 - 0x4000 37FF	1 K	I2S2ext
	0x4000 3000 - 0x4000 33FF	1 K	IWDG
	0x4000 2C00 - 0x4000 2FFF	1 K	WWDG
	0x4000 2800 - 0x4000 2BFF	1 K	RTC
	0x4000 1800 - 0x4000 27FF	4 K	Reserved
	0x4000 1400 - 0x4000 17FF	1 K	TIM7
	0x4000 1000 - 0x4000 13FF	1 K	TIM6
	0x4000 0C00 - 0x4000 0FFF	1 K	Reserved
	0x4000 0800 - 0x4000 0BFF	1 K	TIM4
	0x4000 0400 - 0x4000 07FF	1 K	TIM3
	0x4000 0000 - 0x4000 03FF	1 K	TIM2

Table 15. Memory map, peripheral register boundary addresses (continued)

6.1.6 Power supply scheme

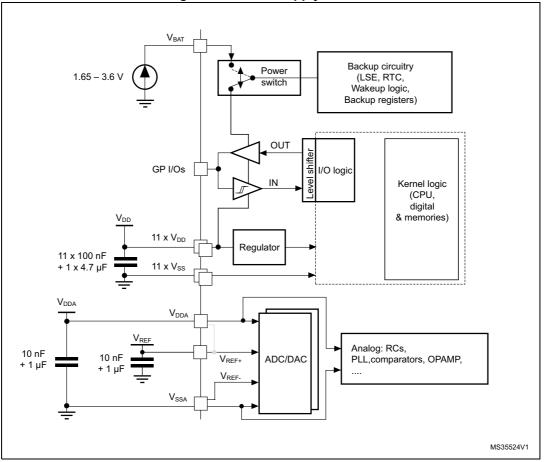


Figure 12. Power supply scheme

1. Dotted lines represent the internal connections on low pin count packages, joining the dedicated supply pins.

Caution: Each power supply pair (V_{DD}/V_{SS}, V_{DDA}/V_{SSA} etc.) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below the appropriate pins on the underside of the PCB to ensure the good functionality of the device.

6.3.2 Operating conditions at power-up / power-down

The parameters given in *Table 20* are derived from tests performed under the ambient temperature condition summarized in *Table 19*.

Symbol	Parameter	Conditions	Min	Max	Unit
t _{VDD}	V _{DD} rise time rate		0	8	
	V _{DD} fall time rate	-	20	8	μs/V
+	V _{DDA} rise time rate		0	8	μ5/ν
t _{VDDA}	V _{DDA} fall time rate	-	20	8	

Table 20. Operating conditions at power-up / power-down

6.3.3 Embedded reset and power control block characteristics

The parameters given in *Table 21* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 19*.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{POR/PDR} ⁽¹⁾	Power on/power down	Falling edge	1.8 ⁽²⁾	1.88	1.96	V
* POR/PDR	reset threshold	Rising edge	1.84	1.92	-	V
V _{PDRhyst} ⁽¹⁾	PDR hysteresis	-	-	40	-	mV

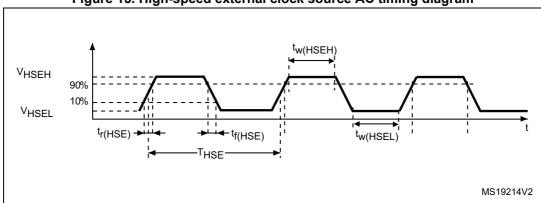
 Table 21. Embedded reset and power control block characteristics

1. The PDR detector monitors V_{DD} and also V_{DDA} (if kept enabled in the option bytes). The POR detector monitors only $V_{DD}.$

2. The product behavior is guaranteed by design down to the minimum $V_{\text{POR/PDR}}$ value.

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
V _{PVD0}	PVD threshold 0	Rising edge	2.1	2.18	2.26	
		Falling edge	2	2.08	2.16	
V	D\/D threshold 1	Rising edge	2.19	2.28	2.37	
V _{PVD1}	PVD threshold 1	Falling edge	2.09	2.18	2.27	
V	PVD threshold 2	Rising edge	2.28	2.38	2.48	
V _{PVD2}		Falling edge	2.18	2.28	2.38	V
V		Rising edge	2.38	2.48	2.58	v
V _{PVD3}	PVD threshold 3	Falling edge	2.28	2.38	2.48	
V	PVD threshold 4	Rising edge	2.47	2.58	2.69	
V _{PVD4}		Falling edge	2.37	2.48	2.59	
V	PVD threshold 5	Rising edge	2.57	2.68	2.79	
V _{PVD5}		Falling edge	2.47	2.58	2.69	

Table 22. Programmable voltage detector characteristics


6.3.7 External clock source characteristics

High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in *Section 6.3.15*. However, the recommended clock input waveform is shown in *Figure 15*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE_ext}	User external clock source frequency ⁽¹⁾		1	8	32	MHz
V _{HSEH}	OSC_IN input pin high level voltage		$0.7V_{DD}$	-	V _{DD}	V
V _{HSEL}	OSC_IN input pin low level voltage	_	V_{SS}	-	$0.3V_{\text{DD}}$	
t _{w(HSEH)} t _{w(HSEL)}	OSC_IN high or low time ⁽¹⁾		15	-	-	20
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time ⁽¹⁾		-	-	20	ns

1. Guaranteed by design, not tested in production.

Figure 15. High-speed external clock source AC timing diagram

Low-speed external user clock generated from an external source

In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in *Section 6.3.15*. However, the recommended clock input waveform is shown in *Figure 16*.

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 38*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽¹⁾	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit
f _{OSC_IN}	Oscillator frequency	-	4	8	32	MHz
R _F	Feedback resistor	-	-	200	-	kΩ
		During startup ⁽³⁾	-	-	8.5	
		V _{DD} = 3.3 V, Rm= 30Ω CL=10 pF@8 MHz	-	0.4	-	
	HSE current consumption	V _{DD} = 3.3 V, Rm= 45Ω CL=10 pF@8 MHz	-	0.5	-	
I _{DD}		V _{DD} = 3.3 V, Rm= 30Ω, CL=5 pF@32 MHz	-	0.8	-	mA
		V _{DD} = 3.3 V, Rm= 30Ω CL=10 pF@32 MHz	-	1	-	
		V _{DD} = 3.3 V, Rm= 30Ω CL=20 pF@32 MHz	-	1.5	-	
9 _m	Oscillator transconductance	Startup	10	-	-	mA/V
$t_{\rm SU(HSE)}^{(4)}$	Startup time	V_{DD} is stabilized	-	2	-	ms

Table 38. HSE oscillator characteristics

1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

2. Guaranteed by design, not tested in production.

3. This consumption level occurs during the first 2/3 of the $t_{SU(HSE)}$ startup time.

 t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (Typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 17*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} .

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

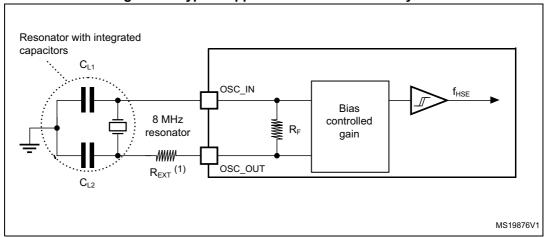


Figure 17. Typical application with an 8 MHz crystal

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 39*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽¹⁾	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit
	LSE current consumption	LSEDRV[1:0]=00 lower driving capability	-	0.5	0.9	
		LSEDRV[1:0]=01 medium low driving capability	-	-	1	
I _{DD}		LSEDRV[1:0]=10 medium high driving capability	-	-	1.3	μA
		LSEDRV[1:0]=11 higher driving capability	-	-	0.9 1	
		LSEDRV[1:0]=00 lower driving capability	5	-	-	
a	Oscillator	medium low driving capability - - 1 LSEDRV[1:0]=10 - - 1.3 Medium high driving capability - - 1.3 LSEDRV[1:0]=11 - - 1.6 higher driving capability - - 1.6 LSEDRV[1:0]=00 5 - - lower driving capability 5 - - LSEDRV[1:0]=01 8 - - Medium low driving capability 15 - - LSEDRV[1:0]=10 15 - - LSEDRV[1:0]=11 - - -				
9 _m	transconductance		15	-	-	µA/V
		LSEDRV[1:0]=11 higher driving capability	25	-	-	
t _{SU(LSE)} ⁽³⁾	Startup time	V _{DD} is stabilized	-	2	-	S

Table 39. LSE oscillator characteristics	(f _{LSE} = 32.768 kHz)
--	---------------------------------

1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".

2. Guaranteed by design, not tested in production.

 t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Table	64.	Electrical	sensitivities
Table	ν	LICCUICAI	30113111411103

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$T_A = +105$ °C conforming to JESD78A	II Level A

6.3.14 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of $-5 \mu A/+0 \mu A$ range), or other functional failure (for example reset occurrence or oscillator frequency deviation).

The test results are given in Table 65.

		Functional s	usceptibility	
Symbol	Description	Negative injection	Positive injection	Unit
	Injected current on BOOT0	-0	NA	
I _{INJ}	Injected current on PF3, PC1, PC2, PA1, PA2, PA3, PA4, PA5, PA6, PA7, PB0, PB1, PE8, PE9, PE10, PE11, PE12, PE13, PE14, PE15, PB13, PB14, PB15, PD8, PD9, PD10, PD11, PD12, PD13, PD14 pins with induced leakage current on adjacent pins less than - $50 \ \mu$ A or more than +400 μ A	-5	+5	mA
	Injected current on PF2, PF4, PC0, PC1, PC2, PC3, PA0, PA1, PA2, PA3, PA4, PA5, PA6, PA7, PC4, PC5, PB2, PB11 with induced leakage current on other pins from this group less than -50 μ A or more than +400 μ A	-5	+5	

Table 65. I/O current injection susceptibility

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or source up to +/- 20 mA (with a relaxed V_{OL}/V_{OH}).

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Section 6.2*:

- The sum of the currents sourced by all the I/Os on V_{DD}, plus the maximum Run consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating ΣI_{VDD} (see *Table 17*).
- The sum of the currents sunk by all the I/Os on V_{SS} plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating ΣI_{VSS} (see *Table 17*).

Output voltage levels

Unless otherwise specified, the parameters given in *Table* 67 are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table* 19. All I/Os (FT, TTa and TC unless otherwise specified) are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	CMOS port ⁽²⁾	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	l _{IO} = +48 mA 2.7 V < V _{DD} < 3.6 V	V _{DD} -0.4	-	
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	TTL port ⁽²⁾	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	I _{IO} = +8 mA 2.7 V < V _{DD} < 3.6 V	2.4	-	
V _{OL} ⁽¹⁾⁽⁴⁾	Output low level voltage for an I/O pin	I _{IO} = +20 mA	-	1.3	V
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin	2.7 V < V _{DD} < 3.6 V	V _{DD} -1.3	-	
V _{OL} ⁽¹⁾⁽⁴⁾	Output low level voltage for an I/O pin	I _{IO} = +6 mA	-	0.4	
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin	2 V < V _{DD} < 2.7 V	V _{DD} -0.4	-	
V _{OLFM+} ⁽⁴⁾⁽⁴⁾	Output low level voltage for an FTf I/O pin in FM+ mode	I _{IO} = +20 mA 2.7 V < V _{DD} < 3.6 V	-	0.4	

Table 67.	Output voltage charact	eristics
10010 011	Calpat Fontage on a laot	01101100

1. The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in *Table 17* and the sum of I_{IO} (I/O ports and control pins) must not exceed $\Sigma I_{IO(PIN)}$.

2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

3. The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in *Table 17* and the sum of I_{IO} (I/O ports and control pins) must not exceed $\Sigma I_{IO(PIN)}$.

4. Data based on design simulation.

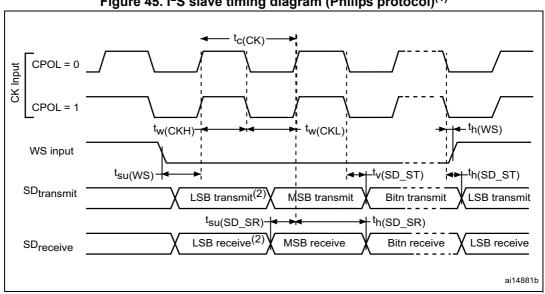
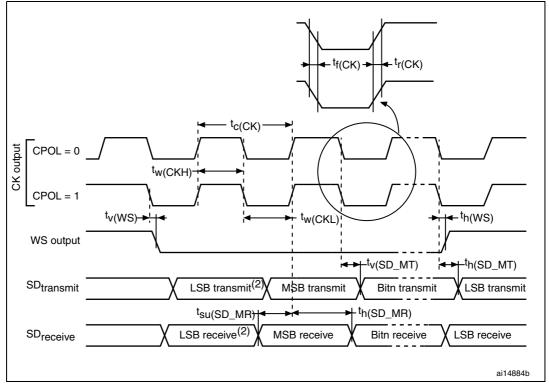



Figure 45. I²S slave timing diagram (Philips protocol)⁽¹⁾

- 1. Measurement points are done at $0.5V_{DD}$ and with external C_L=30 pF.
- LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first 2. byte.

Figure 46. I²S master timing diagram (Philips protocol)⁽¹⁾

- Measurement points are done at $0.5V_{DD}$ and with external C_L=30 pF. 1.
- LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first 2. byte.

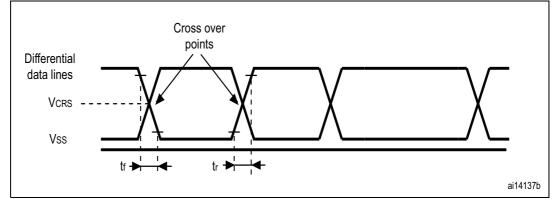
USB characteristics

Table 76. USB startup time	Table	76.	USB	startup	time
----------------------------	-------	-----	-----	---------	------

Symbol	Parameter	Мах	Unit
t _{STARTUP} ⁽¹⁾	USB transceiver startup time	1	μs

1. Guaranteed by design, not tested in production.

Symbol	Parameter	Conditions	Min. ⁽¹⁾	Max. ⁽¹⁾	Unit	
Input levels						
V_{DD}	USB operating voltage ⁽²⁾	-	3.0 ⁽³⁾	3.6	V	
V _{DI} ⁽⁴⁾	Differential input sensitivity	I(USB_DP, USB_DM)	0.2	-		
V _{CM} ⁽⁴⁾	Differential common mode range	Includes V _{DI} range	0.8	2.5	V	
$V_{SE}^{(4)}$	Single ended receiver threshold	-	1.3	2.0		
Output levels						
V _{OL}	Static output level low	${\sf R}_{\sf L}$ of 1.5 k\Omega to 3.6 ${\sf V}^{(5)}$	-	0.3	v	
V _{OH}	Static output level high	${\sf R}_{\sf L}$ of 15 k Ω to ${\sf V}_{\sf SS}{}^{(5)}$	2.8	3.6		


1. All the voltages are measured from the local ground potential.

2. To be compliant with the USB 2.0 full-speed electrical specification, the USB_DP (D+) pin should be pulled up with a 1.5 k Ω resistor to a 3.0-to-3.6 V voltage range.

3. The STM32F303xD/E USB functionality is ensured down to 2.7 V but not the full USB electrical characteristics which are degraded in the 2.7-to-3.0 V V_{DD} voltage range.

- 4. Guaranteed by design, not tested in production.
- 5. R_L is the load connected on the USB drivers.

Figure 47. USB timings: definition of data signal rise and fall time

Table 78. USB: full-speed electrical characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
Driver charac	teristics					
t _r	Rise time ⁽²⁾	C _L = 50 pF	4	-	20	ns
t _f	Fall time ⁽²⁾	C _L = 50 pF	4	-	20	ns

Symbol	Parameter	Co	onditions		Min ⁽⁴⁾	Max ⁽⁴⁾	Unit	
			Single	Fast channel 5.1 Ms	-	±2		
EL	Integral	Enc	Ended	Slow channel 4.8 Ms	-	±3	LSB	
	linearity error		Differential	Fast channel 5.1 Ms	-	<u>+2</u>	LOD	
		Dillerential	Slow channel 4.8 Ms	-	<u>+2</u>			
		-	Single	Fast channel 5.1 Ms	10.4	-		
ENOB	Effective		Ended	Slow channel 4.8 Ms	10.2	-	bits	
(5) number of bits		Differential	Fast channel 5.1 Ms	10.8	-	DIIS		
	Different	Differential	Slow channel 4.8 Ms	10.8	-			
SINAD (5) SINAD (5) Signal-to- noise and distortion ratio	•	•	Single	Fast channel 5.1 Ms	64	-		
			Ended	Slow channel 4.8 Ms	63	-		
		$2.0 \text{ V} \le \text{V}_{\text{DDA}}, \text{V}_{\text{REF+}} \le 3.6 \text{ V}$	Differential	Fast channel 5.1 Ms	67	-		
	Tallo	100-pin/144-pin package	Dillerential	Slow channel 4.8 Ms	67	-		
			Single	Fast channel 5.1 Ms	64	-		
SNR ⁽⁵⁾	Signal-to-		Ended	Slow channel 4.8 Ms	64	-	dB	
SINK	noise ratio	oise ratio	Differential	Fast channel 5.1 Ms	67	-	uБ	
			Differential	Dillerential	Slow channel 4.8 Ms	67	-	
			Single	Fast channel 5.1 Ms	-	74		
THD ⁽⁵⁾	Total harmonic		Ended	Slow channel 4.8 Ms	-	-74		
	distortion		Differential	Fast channel 5.1 Ms	-	-78		
			Differential	Slow channel 4.8 Ms	-	-76		

Table 82. ADC accuracy,	100-pin/144-pin	packages ⁽¹⁾⁽²⁾⁽³⁾	(continued)

1. ADC DC accuracy values are measured after internal calibration.

 ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 6.3.15 does not affect the ADC accuracy.

3. Better performance may be achieved in restricted V_{DDA}, frequency and temperature ranges.

4. Data based on characterization results, not tested in production.

5. Value measured with a -0.5 dB full scale 50 kHz sine wave input signal.

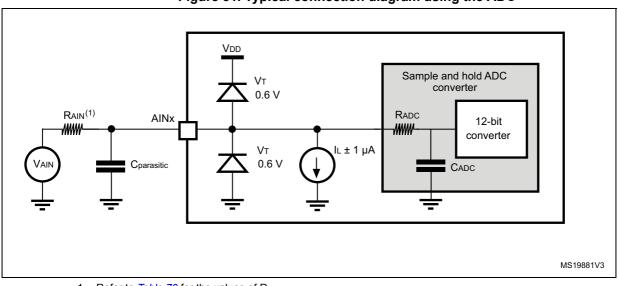


Figure 51. Typical connection diagram using the ADC

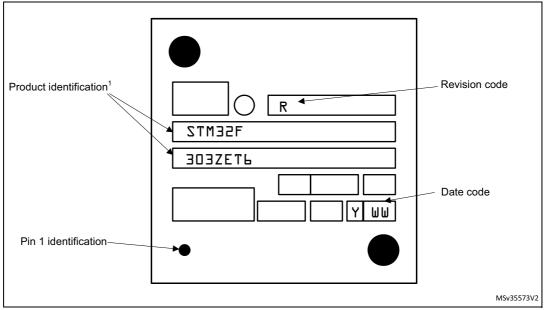
- 1. Refer to Table 79 for the values of RAIN.
- $C_{parasitic}$ represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high $C_{parasitic}$ value downgrades conversion accuracy. To remedy this, f_{ADC} should be reduced. 2.

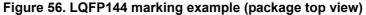
General PCB design guidelines

Power supply decoupling should be performed as shown in Figure 12. The 10 nF capacitor should be ceramic (good quality) and it should be placed as close as possible to the chip.

6.3.20 **DAC electrical specifications**

Table 86. DAC characterist	tics
----------------------------	------


Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{DDA}	Analog supply voltage	-	2.4	-	3.6	V
$R_{LOAD}^{(1)}$	Resistive load	DAC output buffer ON	5	-	-	kΩ
R _L Resistive load	Desistive load	Dac output buffer ON: connected to V _{SSA}	5	-	-	kΩ
		Dac output buffer ON: connected to V _{DDA}	25	-	-	kΩ
$R_0^{(1)}$	Output impedance	DAC output buffer OFF	-	-	15	kΩ
C _{LOAD} ⁽¹⁾	Capacitive load	DAC output buffer ON	-	-	50	pF
V _{DAC_OUT} ⁽¹⁾	Voltage on DAC_OUT output	Corresponds to 12-bit input code (0x0E0) to (0xF1C) at $V_{DDA} = 3.6 V$ and (0x155) and (0xEAB) at $V_{DDA} = 2.4 V DAC$ output buffer ON.	0.2	-	V _{DDA} – 0.2	V
		DAC output buffer OFF	-	0.5	V _{DDA} - 1LSB	mV



Device marking for LQFP144

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

7.6 LQFP64 package information

LQFP64 is a 64-pin, 10 x 10 mm low-profile quad flat package.

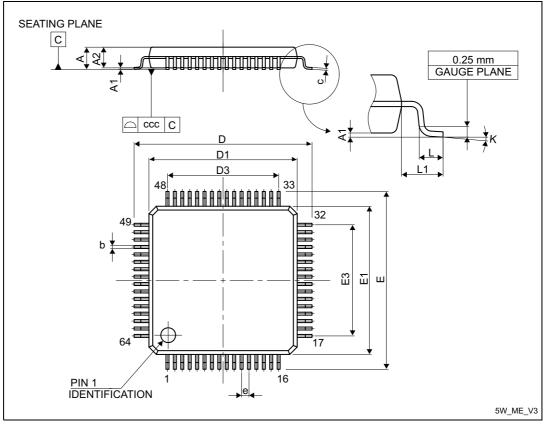


Figure 66. LQFP64 package outline

1. Drawing is not to scale.

Table 98.	LQFP64	package	mechanical data
-----------	--------	---------	-----------------

Symbol	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Мах
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
с	0.090	-	0.200	0.0035	-	0.0079
D	-	12.000	-	-	0.4724	-
D1	-	10.000	-	-	0.3937	-
D3	-	7.500	-	-	0.2953	-
E	-	12.000	-	-	0.4724	-
E1	-	10.000	-	-	0.3937	-

