

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

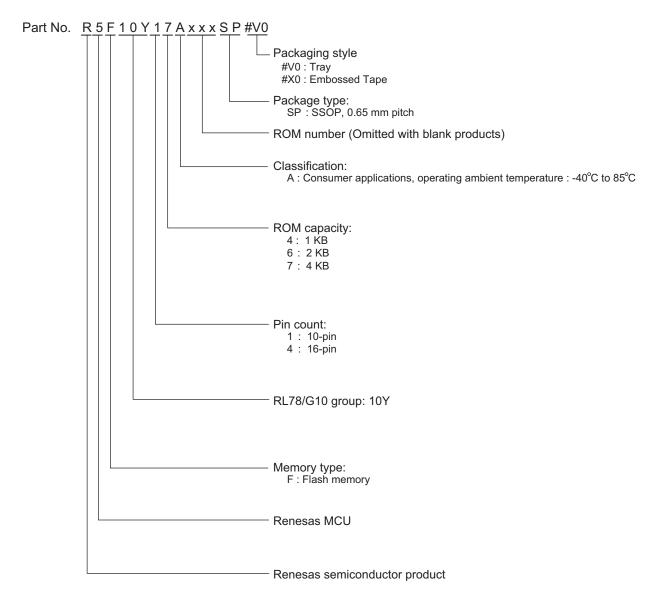
Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	20MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	10
Program Memory Size	1KB (1K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 7x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-SSOP (0.173", 4.40mm Width)
Supplier Device Package	16-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10y44dsp-30

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

O ROM, RAM capacities

Flash ROM	RAM	10 pins	16 pins
4 KB	512 B	-	R5F10Y47ASP Note 2
2 KB	256 B	R5F10Y16ASP	R5F10Y46ASP Note 2
1 KB	128 B	R5F10Y14ASP	R5F10Y44ASP Note 2


Notes 1. 16-pin products only

2. Under development

Remark The functions mounted depend on the product. See **1.6 Outline of Functions**.

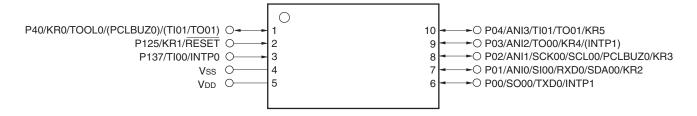
1.2 List of Part Number

Figure 1-1. Classification of Part Number

Pin count	Package	Part Number		
10 pins	10-pin plastic LSSOP	R5F10Y16ASP#V0, R5F10Y16ASP#X0		
	(4.4 × 3.6 mm, 0.65mmpitch)	R5F10Y14ASP#V0, R5F10Y14ASP#X0		
16 pins	16-pin plastic SSOP	R5F10Y47ASP Note		
	(4.4 × 5.0 mm, 0.65mmpitch)	R5F10Y46ASP Note		
		R5F10Y44ASP Note		

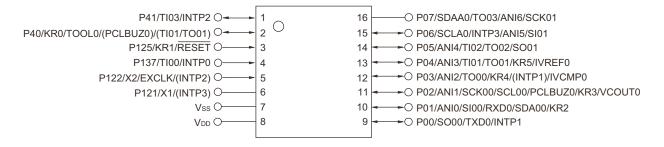
Note Under development

 $\label{lem:caution} \textbf{Caution} \quad \textbf{The part number represents the number at the time of publication.}$


Be sure to review the latest part number through the target product page in the Renesas Electronics Corp.website.

1.3 Pin Configuration (Top View)

1.3.1 10-pin products


• 10-pin plastic LSSOP (4.4 × 3.6)

- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

1.3.2 16-pin products

• 16-pin plastic SSOP (4.4 × 5.0)

- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

1.4 Pin Identification

ANI0 to ANI6 : Analog Input

INTP0 to INTP3 : External Interrupt Input

 KR0 to KR5
 : Key Return

 P00 to P07
 : Port 0

 P40, P41
 : Port 4

 P121, P122, P125
 : Port 12

 P137
 : Port 13

PCLBUZ0 : Programmable Clock Output/ Buzzer Output

EXCLK : External Clock Input
X1, X2 : Crystal Oscillator
IVCMP0 : Comparator Input
VCOUT0 : Comparator Output

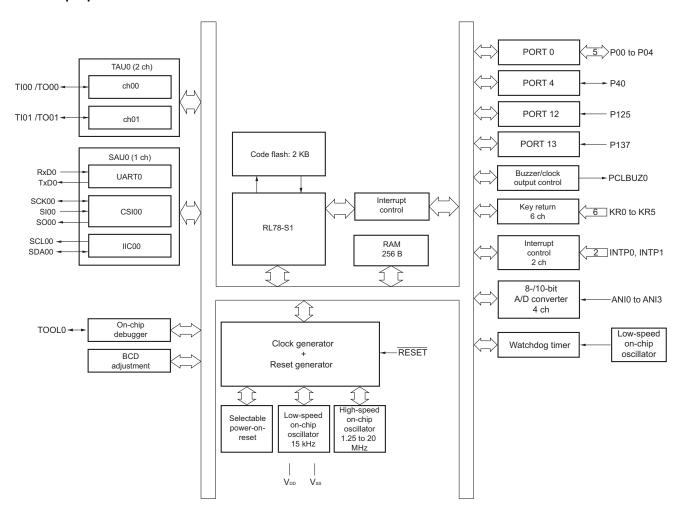
IVREF0 : Comparator Reference Input

RESET : Reset

RxD0 : Receive Data

SCK00, SCK01 : Serial Clock Input/Output
SCL00, SCLA0 : Serial Clock Output
SDA00, SDAA0 : Serial Data Input/Output
SI00, SI01 : Serial Data Input
SO00, SO01 : Serial Data Output

TI00 to TI03 : Timer Input
TO00 to TO03 : Timer Output


TOOL0 : Data Input/Output for Tool

TxD0 : Transmit Data
Vdd : Power Supply
Vss : Ground

1.5 Block Diagram

1.5.1 10-pin products

1.6 Outline of Functions

This outline describes the function at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

i	Item	10-pin			16-pin			
		R5F10Y16ASP	R5F10Y14ASP	R5F10Y47ASP	R5F10Y46ASP	R5F10Y44ASP		
Code flash m	emory	2 KB	1 KB	4 KB	2 KB	1 KB		
RAM		256 B	128 B	512 B	256 B	128 B		
	High-speed system clock	_		X1, X2 (crystal/ceramic) oscillation, external main system clock input (EXCLK): 1 to 20 MHz: VDD = 2.7 to 5.5 V 1 to 5 MHz: VDD = 2.0 to 5.5 V				
	High-speed on-chip	• 1.25 to 20 MHz (VDD	= 2.7 to 5.5 V)	1				
	oscillator clock	• 1.25 to 5 MHz (VDD =	= 2.0 to 5.5 V)					
Low-speed or clock	n-chip oscillator	15 kHz (TYP)	,					
General-purp	ose register	8-bit register × 8						
Minimum inst time	truction execution	0.05 μs (20 MHz operation)						
Instruction se	et	Data transfer (8 bits)						
		Adder and subtractor/logical operation (8 bits)						
		Multiplication (8 bits × 8 bits)						
		Rotate, barrel shift, and bit manipulation (set, reset, test, and Boolean operation), etc.						
I/O port	Total	8		14				
	CMOS I/O	6 (N-ch open-drain out	out (VDD tolerance): 2)	10 (N-ch open-drain output (VDD tolerance): 4)				
	CMOS input	2		4				
Timer	16-bit timer	2 channels		4 channels				
	Watchdog timer	1 channel		Ţ				
	12-bit interval timer	_		1 channel				
	Timer output	2 channels (PWM outp	ut: 1)	4 channels (PW	/M outputs: 3 ^{Note 1})			
Clock output/	buzzer output	1						
		2.44 kHz to 10 MHz: (P	eripheral hardware clock		operation)			
Comparator		_		1				
8-/10-bit reso	olution A/D converter	4 channels		8 channels				
Serial interfac	ce		1 channel/simplified I ² C: 2 channels/simplified I ² C:					
	I ² C bus	_		1 channel				
Vectored	Internal	8		14				
interrupt sources	External	3		5				
Key interrupt		6						
Reset		 Reset by RESET pin Internal reset by watchdog timer Internal reset by selectable power-on-reset Internal reset by illegal instruction execution Note 2 Internal reset by data retention lower limit voltage 						
Selectable po	ower-on-reset circuit	Detection voltage: 2.0 \	//2.4 V/2.7 V/4.0 V					
On-chip debu	ug function	Provided						
Power supply	voltage	V _{DD} = 2.0 to 5.5 V						
Operating arr	nbient temperature	Ta = - 40 to + 85 °C						

Notes 1. The number of outputs varies, depending on the setting of channels in use and the number of the master (see 6.8.3 Operation as multiple PWM output function in the RL78/G10 User's Manual).

2. The illegal instruction is generated when instruction code FFH is executed. Reset by the illegal instruction execution not issued by emulation with the on-chip debug emulator.

2. ELECTRICAL SPECIFICATIONS

- Cautions 1. This chapter explains the electrical specifications of two products, the R5F10Y16ASP and the R5F10Y14ASP.
 - 2. Electrical specifications for the 16-pin products are T. B. D. because these products are under development.
 - 3. The RL78/G10 has an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 4. The pins mounted depend on the product. Refer to 2.1 Port Functions and 2.2.1 Functions for each product in the RL78/G10 User's Manual.

- Total output current of pins = $(IOH \times 0.7)/(n \times 0.01)$
 - <Example> Where n = 80 % and loh = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \cong -8.7$ mA

- Total output current of pins = (IoL × 0.7)/(n × 0.01)
 - <Example> Where n = 80 % and loL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \cong 8.7 \text{ mA}$

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

- **4.** Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.
- 5. The value under the condition which satisfies the high-level output current (IOH1).
- 6. The value under the condition which satisfies the low-level output current (IoL1).
- Cautions 1. P00 and P01 do not output high level in N-ch open-drain mode.
 - 2. The maximum value of ViH of P00 and P01 is VDD even in N-ch open-drain mode.

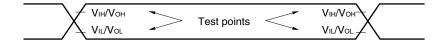
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port.

2.3.2 Supply current characteristics

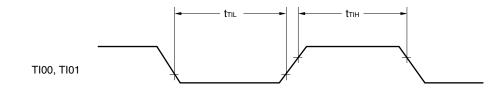
 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.0 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

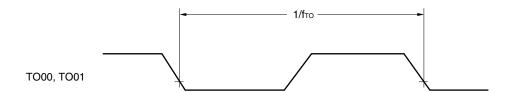
Parameter	Symbol		Conditions				TYP.	MAX.	Unit
Supply current Note 1	I _{DD1}	Operating mode	Basic operation	fін = 20 MHz	$V_{DD} = 3.0 \text{ V}, 5.0 \text{ V}$		0.91		mA
			Normal	fıн = 20 MHz	V _{DD} = 3.0 V, 5.0 V		1.57	2.04	
			operation	fıн = 5 MHz	V _{DD} = 3.0 V, 5.0 V		0.85	1.15	
	IDD2 Note 2	HALT mode		fн = 20 MHz	$V_{DD} = 3.0 \text{ V}, 5.0 \text{ V}$		350	820	μΑ
					V _{DD} = 3.0 V, 5.0 V		290	600	
	IDD3 ^{Note 3}	STOP mode	Э	V _{DD} = 3.0 V			0.56	2.00	μΑ
WDT supply current	lwdт	fı∟ = 15 kHz	fiL = 15 kHz				0.31		μΑ
ADC supply current	IADC	During conv	During conversion at the				1.30	1.90	mA
Note 5		highest spe	ed	V _{DD} = 3.0 V			0.50		

- Notes 1. Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the watchdog timer, A/D converter, I/O port, and on-chip pull-up/pull-down resistors.
 - 2. During HALT instruction execution by flash memory.
 - 3. When the high-speed on-chip oscillator is stopped.
 - 4. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates.
 - 5. Current flowing only to the A/D converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- Remarks 1. fil: Low-speed on-chip oscillator clock frequency
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

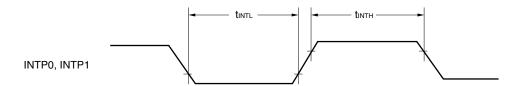

2.4 AC Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.0 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

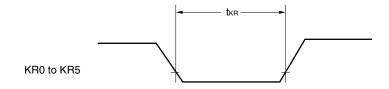

Items	Symbol	Condit	tions	MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Tcy	Main system clock	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.05		0.8	μs
instruction execution time)		(fmain) operation	$2.0~V \leq V_{DD} \leq 5.5~V$	0.2		0.8	μs
TI00, TI01 input high-level width, low-level width	tπн, tπ∟	Noise filter is not used		1/fмск + 10			ns
TO00, TO01 output frequency	fто	$4.0~V \leq V_{DD} \leq 5.5~V$				10	MHz
		$2.7~V \leq V_{DD} < 4.0~V$				5	MHz
		2.0 V ≤ V _{DD} < 2.7 V				2.5	MHz
PCLBUZ0 output frequency	fpcL	$4.0~V \leq V_{DD} \leq 5.5~V$				10	MHz
		2.7 V ≤ V _{DD} < 4.0 V				5	MHz
	2.0	$2.0~V \leq V_{DD} < 2.7~V$	$2.0~V \leq V_{DD} < 2.7~V$			2.5	MHz
RESET low-level width	t RSL			10			μs

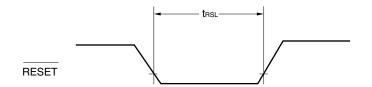

Remark fmck: Timer array unit operation clock frequency

AC Timing Test Points



TI/TO Timing




Interrupt Request Input Timing

Key Interrupt Input Timing

RESET Input Timing

(2) CSI mode (master mode, SCKp... internal clock output)

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.0 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	(Conditions		TYP.	MAX.	Unit
SCKp cycle time	tkcy1	tkcy1 ≥ 4/fclk	$2.7~V \leq V_{DD} \leq 5.5~V$	200			ns
			$2.0~V \leq V_{DD} \leq 5.5~V$	800			ns
SCKp high-/low-level width	tkH1, tkL1	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ $2.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$		tkcy1/2-18			ns
				tkcy1/2-50			ns
SIp setup time (to SCKp↑) Note 1	tsıĸ1	2.7 V ≤ V _{DD} ≤ 5	5.5 V	47			ns
		2.0 V ≤ V _{DD} ≤ 5	5.5 V	110			ns
SIp hold time (from SCKp↑) Note 2	tksi1			19			ns
Delay time from SCKp↓ to SOp output Note 3	tkso1	C = 30 pF Note 4				25	ns

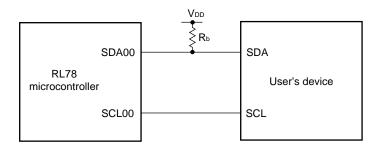
- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp \downarrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.

Remarks 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0)

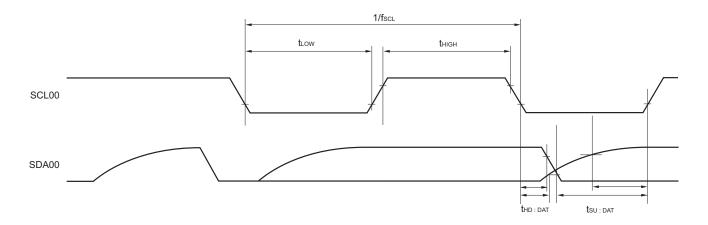
fmcx: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).m: Unit number, n: Channel number (mn = 00))

(3) CSI mode (slave mode, SCKp... external clock input)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.0 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$


Parameter	Symbol	Condit	ions	MIN.	TYP.	MAX.	Unit
SCKp cycle time	tkcy2	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	fмск = 20 MHz	8/fмск			ns
			fмcк ≤ 10 MHz	6/ƒмск			ns
		$2.0~V \leq V_{DD} < 2.7~V$		6/ƒмск			ns
SCKp high-/low-level width	tкн2,	$2.0~V \leq V_{DD} \leq 5.5~V$		tkcy2/2			ns
	t _{KL2}						
SIp setup time (to SCKp↑) ^{Note 1}	tsık2	$2.7~\text{V} \le \text{V}_{\text{DD}} \le 5.5~\text{V}$		1/fмcк+ 20			ns
		$2.0~\textrm{V} \leq \textrm{V}_\textrm{DD} < 2.7~\textrm{V}$		1/fмск+ 30			ns
SIp hold time (from SCKp [↑]) Note 2	tksi2	$2.0~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$		1/fмск+ 31			ns
Delay time from SCKp↓ to SOp output Note 3 tκso2		C = 30 pF Note 4	2.7 V ≤ V _{DD} ≤ 5.5 V			2/fмcк+50	ns
			$2.0 \text{ V} \le \text{V}_{DD} < 2.7$ V			2/fмcк+ 110	ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp \downarrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.


Remarks 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0)

2. fmcx: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

Simplified I²C mode connection diagram

Simplified I²C mode serial transfer timing

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

(Target ANI pin : ANI0 to ANI3)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	V _{DD} = 5 V		±1.7	±3.1 Note 2	LSB
			V _{DD} = 3 V		±2.3	±4.5 Note 2	LSB
Conversion time	tconv	10-bit resolution	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	3.4		18.4	μs
			2.4 V ≤ V _{DD} ≤ 5.5 V	4.6		18.4	μs
Zero-scale error ^{Note 1}	Ezs	10-bit resolution	V _{DD} = 5 V			±0.19 Note 2	%FSR
			V _{DD} = 3 V			±0.39 Note 2	%FSR
Full-scale error ^{Note 1}	Ers	10-bit resolution	V _{DD} = 5 V			±0.29 Note 2	%FSR
			V _{DD} = 3 V			±0.42 Note 2	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution	V _{DD} = 5 V			±1.8 Note 2	LSB
			V _{DD} = 3 V			±1.7 Note 2	LSB
Differential linearity error ^{Note 1}	DLE	10-bit resolution	V _{DD} = 5 V			±1.4 Note 2	LSB
			V _{DD} = 3 V			±1.5 Note 2	LSB
Analog input voltage	VAIN			0		V _{DD}	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This is the characteristic evaluation value plus or minus 3. These values are not used in the shipping inspection.

2.6.2 SPOR circuit characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection supply voltage	VSPOR0	Power supply rise time	4.08	4.28	4.45	٧
		Power supply fall time	4.00	4.20	4.37	٧
	VSPOR1	Power supply rise time	2.76	2.90	3.02	٧
		Power supply fall time	2.70	2.84	2.96	٧
	VSPOR2	Power supply rise time	2.44	2.57	2.68	٧
		Power supply fall time	2.40	2.52	2.62	٧
	V _{SPOR3}	Power supply rise time	2.05	2.16	2.25	٧
		Power supply fall time	2.00	2.11	2.20	٧
Minimum pulse width Note	Tspw		300			μs

Note Time required for the reset operation by the SPOR when VDD becomes under VSPDR.

2.6.3 Power supply voltage rising slope characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

2.7 Flash Memory Programming Characteristics

$(T_A = 0 \text{ to } + 40^{\circ}\text{C}, 4.5 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

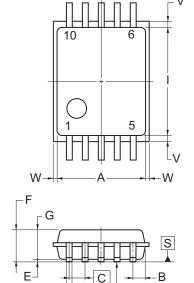
Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Code flash memory rewritable times Notes 1, 2, 3	Cerwr	Retained for 20 years.	T _A = + 85°C	1000			Times

- **Notes 1.** 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.
 - 2. When using flash memory programmer.
 - **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

2.8 Dedicated Flash Memory Programmer Communication (UART)

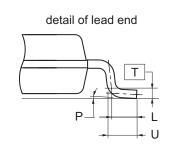
$(T_A = 0 \text{ to } + 40^{\circ}\text{C}, 4.5 \text{ V} \le V_{DD} \le 5.5\text{V}, \text{Vss} = 0 \text{ V})$

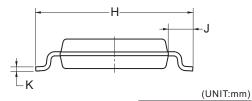
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate				115,200		bps


Remark The transfer rate during flash memory programming is fixed to 115,200 bps.

3. PACKAGE DRAWINGS

3.1 10-pin products


R5F10Y16ASP, R5F10Y14ASP


JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP10-4.4x3.6-0.65	PLSP0010JA-A	P10MA-65-CAC-2	0.05

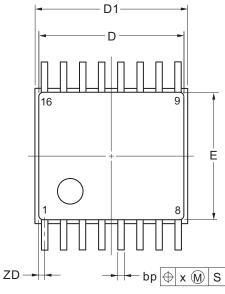
 \triangle N S

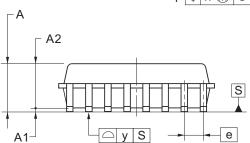
 \vdash D \oplus M M

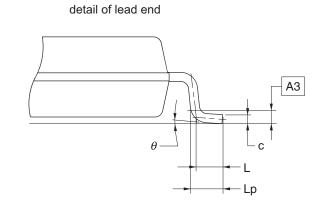
NOTE

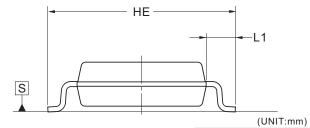
Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

	(
ITEM	DIMENSIONS
Α	3.60±0.10
В	0.50
С	0.65 (T.P.)
D	0.24 ± 0.08
E	0.10 ± 0.05
F	1.45 MAX.
G	1.20 ± 0.10
Н	6.40 ± 0.20
I	4.40 ± 0.10
J	1.00 ± 0.20
K	$0.17^{+0.08}_{-0.07}$
L	0.50
M	0.13
N	0.10
Р	3° +5°
Т	0.25 (T.P.)
U	0.60 ± 0.15
V	0.25 MAX.
W	0.15 MAX.


©2012 Renesas Electronics Corporation. All rights reserved.




3.2 16-pin products


R5F10Y47ASP, R5F10Y46ASP, R5F10Y44ASP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-SSOP16-4.4x5-0.65	PRSP0016JC-A	P16MA-65-FAA-2	0.08

ITEM	DIMENSIONS
D	5.00±0.15
D1	5.20±0.15
E	4.40±0.20
HE	6.40±0.20
Α	1.725 MAX.
A1	0.125±0.05
A2	1.50
A3	0.25
е	0.65
bp	$0.22 \pm 0.08 \\ -0.07$
С	$0.15 \pm 0.03 \\ -0.04$
L	0.50
Lp	0.60±0.10
L1	1.00±0.20
Х	0.13
У	0.10
θ	3° +5°
ZD	0.325

© 2012 Renesas Electronics Corporation. All rights reserved.

Revision History	RL78/G10 Data Sheet
------------------	---------------------

		Description		
Rev.	Date	Page	Summary	
1.00	Apr 15, 2013	-	First Edition issued	

All trademarks and registered trademarks are the property of their respective owners.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.