

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	20MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	10
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 7x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-SSOP (0.173", 4.40mm Width)
Supplier Device Package	16-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10y47dsp-30

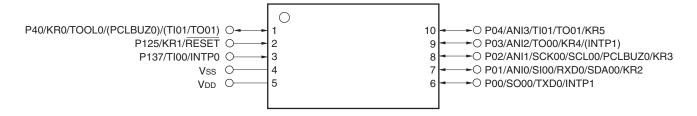
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

O ROM, RAM capacities

Flash ROM	RAM	10 pins	16 pins
4 KB	512 B	-	R5F10Y47ASP Note 2
2 KB	256 B	R5F10Y16ASP	R5F10Y46ASP Note 2
1 KB	128 B	R5F10Y14ASP	R5F10Y44ASP Note 2

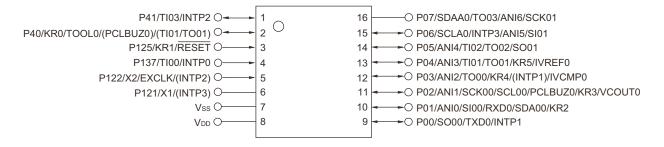
Notes 1. 16-pin products only


2. Under development

Remark The functions mounted depend on the product. See **1.6 Outline of Functions**.

1.3 Pin Configuration (Top View)

1.3.1 10-pin products


• 10-pin plastic LSSOP (4.4 × 3.6)

- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

1.3.2 16-pin products

• 16-pin plastic SSOP (4.4 × 5.0)

- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

1.4 Pin Identification

ANI0 to ANI6 : Analog Input

INTP0 to INTP3 : External Interrupt Input

 KR0 to KR5
 : Key Return

 P00 to P07
 : Port 0

 P40, P41
 : Port 4

 P121, P122, P125
 : Port 12

 P137
 : Port 13

PCLBUZ0 : Programmable Clock Output/ Buzzer Output

EXCLK : External Clock Input
X1, X2 : Crystal Oscillator
IVCMP0 : Comparator Input
VCOUT0 : Comparator Output

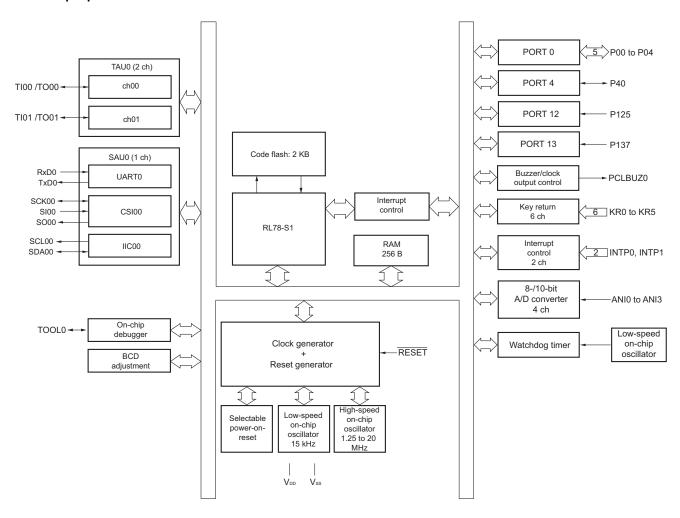
IVREF0 : Comparator Reference Input

RESET : Reset

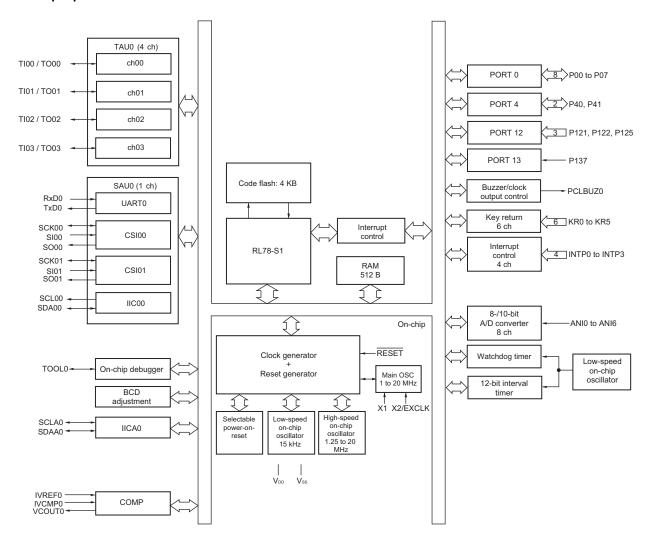
RxD0 : Receive Data

SCK00, SCK01 : Serial Clock Input/Output
SCL00, SCLA0 : Serial Clock Output
SDA00, SDAA0 : Serial Data Input/Output
SI00, SI01 : Serial Data Input
SO00, SO01 : Serial Data Output

TI00 to TI03 : Timer Input
TO00 to TO03 : Timer Output


TOOL0 : Data Input/Output for Tool

TxD0 : Transmit Data
Vdd : Power Supply
Vss : Ground



1.5 Block Diagram

1.5.1 10-pin products

1.5.2 16-pin products

2.1 Absolute Maximum Ratings

$(T_A = 25^{\circ}C)$

Parameter	Symbols	Co	onditions	Ratings	Unit
Supply Voltage	V _{DD}			-0.5 to +6.5	V
Input Voltage	Vıı			-0.3 to V _{DD} + 0.3 ^{Note}	V
Output Voltage	V _{O1}			-0.3 to V _{DD} + 0.3	V
Output current, high	І он1	Per pin		-40	mA
		Total of all pins	P40	-40	mA
		-140 mA	P00 to P04	-100	mA
Output current, low	lo _{L1}	Per pin	·	40	mA
		Total of all pins	P40	40	mA
		140 mA	P00 to P04	100	mA
Operating ambient temperature	TA			-40 to +85	°C
Storage temperature	T _{stg}			-65 to +150	°C

Note Must be 6.5 V or lower.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remarks 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2. The reference voltage is Vss.

2.2 Oscillator Characteristics

2.2.1 On-chip oscillator characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.0 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Oscillators	Parameters	Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator oscillation clock frequency Notes 1, 2	fін		1.25		20	MHz
High-speed on-chip oscillator oscillation		Ta = -20 to +85°C	-2.0		+2.0	%
clock frequency accuracy		Ta = -40 to -20°C	-3.0		+3.0	%
Low-speed on-chip oscillator oscillation clock frequency Note 3	fıL			15		kHz
Low-speed on-chip oscillator oscillation clock frequency accuracy			-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 2 of option byte (000C2H).

- 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.
- 3. This only indicates the oscillator characteristics.

2.3 DC Characteristics

2.3.1 Pin characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.0 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Cor	nditions		MIN.	TYP.	MAX.	Unit
Output current,	Іон1	P00, P01, P02 to P04, P40	Per pin				-10.0 ^{Note 2}	mA
high ^{Note 1}		P40	Total ^{Note 3}	$4.0~V \leq V_{DD} \leq 5.5~V$			-10.0	mA
				$2.7~V \leq V_{DD} < 4.0~V$			-2.0	mA
				$2.0 \text{ V} \le V_{DD} < 2.7 \text{ V}$			-1.5	mA
		P00, P01, P02 to P04	Total ^{Note 3}	$4.0~V \leq V_{DD} \leq 5.5~V$			-50.0	mA
				$2.7~V \leq V_{DD} < 4.0~V$			-10.0	mA
				$2.0 \text{ V} \le V_{DD} < 2.7 \text{ V}$			-7.5	mA
		Total of all pins ^{Note 3}					-60.0	mA
Output current,	l _{OL1}	P00 to P04, P40	Per pin				20.0 ^{Note 2}	mA
IOW ^{Note 4}		P40	Total ^{Note 3}	$4.0~V \leq V_{DD} \leq 5.5~V$			20.0	mA
				$2.7~V \leq V_{DD} < 4.0~V$			3.0	mA
				$2.0 \text{ V} \le V_{DD} < 2.7 \text{ V}$			0.6	mA
		P00 to P04	Total ^{Note 3}	$4.0~V \leq V_{DD} \leq 5.5~V$			80.0	mA
				$2.7 \text{ V} \le V_{DD} < 4.0 \text{ V}$			12.0	mA
				2.0 V ≤ V _{DD} < 2.7 V			2.4	mA
		Total of all pins ^{Note 3}					100.0	mA
Input voltage, high	V _{IH1}				0.8 V _{DD}		V _{DD}	V
Input voltage, low	V _{IL1}				0		0.2 V _{DD}	V
Output voltage, high	V _{OH1}	$4.0~V \leq V_{DD} \leq 5.5~V$		Iон =-10 mA	V _{DD} -1.5			٧
Note 5				Iон =-3.0 mA	V _{DD} -0.7			V
		$2.7~V \leq V_{DD} \leq 5.5~V$		Iон =-2.0 mA	V _{DD} -0.6			٧
		$2.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$		Iон =-1.5 mA	V _{DD} -0.5			V
Output voltage, low	V _{OL1}	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$		loL = 20 mA			1.3	V
Note 6				lo _L = 8.5 mA			0.7	V
		$2.7~V \leq V_{DD} \leq 5.5~V$		IoL = 3.0 mA			0.6	V
				IoL = 1.5 mA			0.4	V
		$2.0~V \leq V_{DD} \leq 5.5~V$		IoL = 0.6 mA			0.4	V
Input leakage current, high	Ішн1	$V_{I} = V_{DD}$					1	μA
Input leakage current,low	ILIL1	V _I = V _{SS}					-1	μA
On-chip pull-up resistance	R∪	Vı = Vss			10	20	100	kΩ

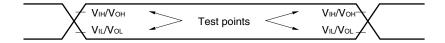
- **Notes 1.** Value of current at which the device operation is guaranteed even if the current flows from the V_{DD} pin to an output pin.
 - 2. Do not exceed the total current value.
 - 3. This is the output current value under conditions where the duty factor ≤ 70%.
 The output current value when the duty factor > 70% can be calculated with the following expression (when changing the duty factor to n%).

2.3.2 Supply current characteristics

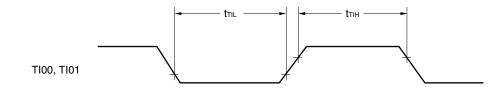
 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.0 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

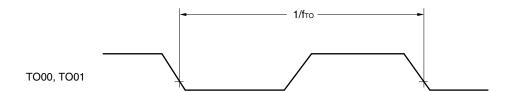
Parameter	Symbol		С	onditions		MIN.	TYP.	MAX.	Unit
Supply current Note 1	I _{DD1}	Operating mode	Basic operation	fін = 20 MHz	$V_{DD} = 3.0 \text{ V}, 5.0 \text{ V}$		0.91		mA
			Normal	fıн = 20 MHz	V _{DD} = 3.0 V, 5.0 V		1.57	2.04	
			operation	fıн = 5 MHz	V _{DD} = 3.0 V, 5.0 V		0.85	1.15	
	IDD2 Note 2	HALT mode		fн = 20 MHz	$V_{DD} = 3.0 \text{ V}, 5.0 \text{ V}$		350	820	μΑ
					V _{DD} = 3.0 V, 5.0 V		290	600	
	IDD3 ^{Note 3}	STOP mode	Э	V _{DD} = 3.0 V			0.56	2.00	μΑ
WDT supply current	lwdт	fı∟ = 15 kHz	fı∟ = 15 kHz				0.31		μΑ
ADC supply current	IADC	During conv	ersion at the	V _{DD} = 5.0 V			1.30	1.90	mA
Note 5		highest spe	ed	V _{DD} = 3.0 V			0.50		

- Notes 1. Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the watchdog timer, A/D converter, I/O port, and on-chip pull-up/pull-down resistors.
 - 2. During HALT instruction execution by flash memory.
 - 3. When the high-speed on-chip oscillator is stopped.
 - 4. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates.
 - 5. Current flowing only to the A/D converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- Remarks 1. fil: Low-speed on-chip oscillator clock frequency
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

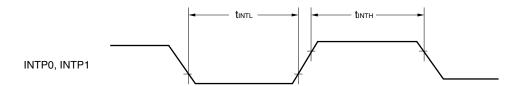

2.4 AC Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.0 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

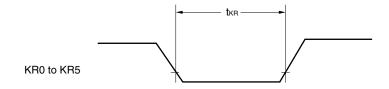

Items	Symbol	Condit	tions	MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Tcy	Main system clock	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.05		0.8	μs
instruction execution time)		(fmain) operation	$2.0~V \leq V_{DD} \leq 5.5~V$	0.2		0.8	μs
TI00, TI01 input high-level width, low-level width	tπн, tπ∟	Noise filter is not used		1/fмск + 10			ns
TO00, TO01 output frequency	fто	4.0 V ≤ V _{DD} ≤ 5.5 V				10	MHz
		$2.7~V \leq V_{DD} < 4.0~V$				5	MHz
		$2.0~V \leq V_{DD} < 2.7~V$			2.5	MHz	
PCLBUZ0 output frequency	fpcL	$4.0~V \leq V_{DD} \leq 5.5~V$				10	MHz
		2.7 V ≤ V _{DD} < 4.0 V				5	MHz
		$2.0~V \leq V_{DD} < 2.7~V$				2.5	MHz
RESET low-level width	t RSL			10			μs

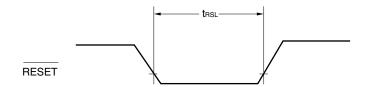

Remark fmck: Timer array unit operation clock frequency

AC Timing Test Points



TI/TO Timing

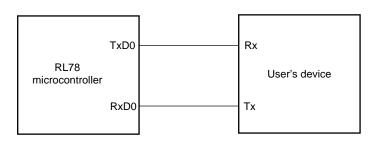



Interrupt Request Input Timing

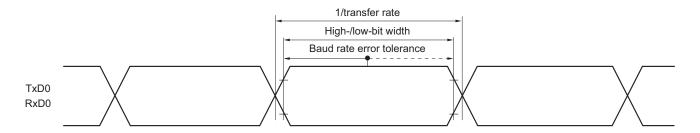
Key Interrupt Input Timing

RESET Input Timing

2.5 Serial Communication Characteristics


2.5.1 Serial array unit

(1) UART mode


$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.0 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

,						
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					fмск/6	bps
		Theoretical value of the maximum transfer rate fclk = fMCK = 20 MHz			3.3	Mbps

UART mode connection diagram

UART mode bit width (reference)

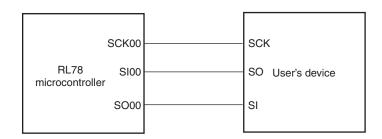
Remark fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).

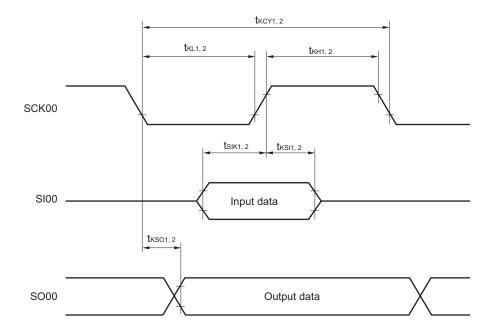
m: Unit number, n: Channel number (mn = 00))

(3) CSI mode (slave mode, SCKp... external clock input)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.0 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$


Parameter	Symbol	Condit	ions	MIN.	TYP.	MAX.	Unit
SCKp cycle time	tkcy2	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	fмск = 20 MHz	8/fмск			ns
			fмcк ≤ 10 MHz	6/ƒмск			ns
		$2.0~V \leq V_{DD} < 2.7~V$		6/ƒмск			ns
SCKp high-/low-level width	tĸн2,	$2.0~V \leq V_{DD} \leq 5.5~V$		tkcy2/2			ns
	t _{KL2}						
SIp setup time (to SCKp↑) ^{Note 1}	tsık2	$2.7~\text{V} \le \text{V}_{\text{DD}} \le 5.5~\text{V}$		1/fмcк+ 20			ns
		$2.0~\textrm{V} \leq \textrm{V}_\textrm{DD} < 2.7~\textrm{V}$		1/fмск+ 30			ns
SIp hold time (from SCKp [↑]) Note 2	tksi2	$2.0~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$		1/fмск+ 31			ns
Delay time from SCKp↓ to SOp output Note 3	tkso2	C = 30 pF Note 4	2.7 V ≤ V _{DD} ≤ 5.5 V			2/fмcк+50	ns
			$2.0 \text{ V} \le \text{V}_{DD} < 2.7$ V			2/fмcк+ 110	ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp \downarrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.


Remarks 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0)

2. fmcx: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

CSI mode connection diagram

CSI mode serial transfer timing $\label{eq:csi} \mbox{(When DAP00 = 0 and CKP00 = 0, or DAP00 = 1 and CKP00 = 1.)}$

(4) Simplified I²C mode

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.0 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCLr clock frequency	fscL	$2.0 \text{ V} \le V_{DD} \le 5.5 \text{ V},$		400 Note 1	kHz
		$C_b=100~pF,~R_b=3~k\Omega$			
Hold time when SCLr = "L"	tLow	$2.0~V \leq V_{DD} \leq 5.5~V,$	1150		ns
		$C_b=100~pF,~R_b=3~k\Omega$			
Hold time when SCLr = "H"	tніgн	$2.0~V \leq V_{DD} \leq 5.5~V,$	1150		ns
		$C_b=100~pF,~R_b=3~k\Omega$			
Data setup time (reception)	tsu: dat	$2.0~V \leq V_{DD} \leq 5.5~V,$	1/fмcк +		ns
		$C_b=100~pF,~R_b=3~k\Omega$	145 Note 2		
Data hold time (transmission)	thd: dat	$2.0~V \leq V_{DD} \leq 5.5~V,$	0	355	ns
		$C_b=100~pF,~R_b=3~k\Omega$			

Notes 1. The value must also be equal to or less than fmck/4.

2. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the N-ch open drain output (V_{DD} tolerance) mode for the SDAr pin by using the port output mode register 0 (POM0).

Remarks 1. R_b [Ω]: Communication line (SDAr) pull-up resistance, C_b [F]: Communication line (SCLr, SDAr) load capacitance

- **2.** r: IIC number (r = 00)
- 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).m: Unit number, n: Channel number (mn = 00))

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

(Target ANI pin : ANI0 to ANI3)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	V _{DD} = 5 V		±1.7	±3.1 Note 2	LSB
			V _{DD} = 3 V		±2.3	±4.5 Note 2	LSB
Conversion time	tconv	10-bit resolution	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	3.4		18.4	μs
			2.4 V ≤ V _{DD} ≤ 5.5 V	4.6		18.4	μs
Zero-scale error ^{Note 1}	Ezs	10-bit resolution	V _{DD} = 5 V			±0.19 Note 2	%FSR
			V _{DD} = 3 V			±0.39 Note 2	%FSR
Full-scale error ^{Note 1}	Ers	10-bit resolution	V _{DD} = 5 V			±0.29 Note 2	%FSR
			V _{DD} = 3 V			±0.42 Note 2	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution	V _{DD} = 5 V			±1.8 Note 2	LSB
			V _{DD} = 3 V			±1.7 Note 2	LSB
Differential linearity error ^{Note 1}	DLE	10-bit resolution	V _{DD} = 5 V			±1.4 Note 2	LSB
			V _{DD} = 3 V			±1.5 Note 2	LSB
Analog input voltage	VAIN			0		V _{DD}	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This is the characteristic evaluation value plus or minus 3. These values are not used in the shipping inspection.

2.6.2 SPOR circuit characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection supply voltage	VSPOR0	Power supply rise time	4.08	4.28	4.45	٧
		Power supply fall time	4.00	4.20	4.37	٧
	V _{SPOR1}	Power supply rise time	2.76	2.90	3.02	٧
		Power supply fall time	2.70	2.84	2.96	٧
	VSPOR2	Power supply rise time	2.44	2.57	2.68	٧
		Power supply fall time	2.40	2.52	2.62	٧
	V _{SPOR3}	Power supply rise time	2.05	2.16	2.25	٧
		Power supply fall time	2.00	2.11	2.20	٧
Minimum pulse width Note	Tspw		300			μs

Note Time required for the reset operation by the SPOR when VDD becomes under VSPDR.

2.6.3 Power supply voltage rising slope characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

2.7 Flash Memory Programming Characteristics

$(T_A = 0 \text{ to } + 40^{\circ}\text{C}, 4.5 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

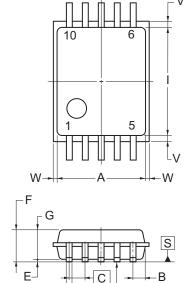
Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Code flash memory rewritable times Notes 1, 2, 3	Cerwr	Retained for 20 years.	T _A = + 85°C	1000			Times

- **Notes 1.** 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.
 - 2. When using flash memory programmer.
 - **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

2.8 Dedicated Flash Memory Programmer Communication (UART)

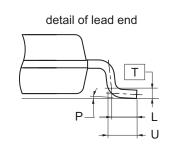
$(T_A = 0 \text{ to } + 40^{\circ}\text{C}, 4.5 \text{ V} \le V_{DD} \le 5.5\text{V}, \text{Vss} = 0 \text{ V})$

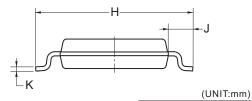
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate				115,200		bps


Remark The transfer rate during flash memory programming is fixed to 115,200 bps.

3. PACKAGE DRAWINGS

3.1 10-pin products


R5F10Y16ASP, R5F10Y14ASP


JEITA Package Code RENESAS Code		Previous Code	MASS (TYP.) [g]	
P-LSSOP10-4.4x3.6-0.65	PLSP0010JA-A	P10MA-65-CAC-2	0.05	

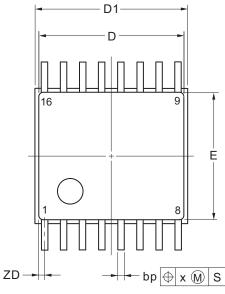
 \triangle N S

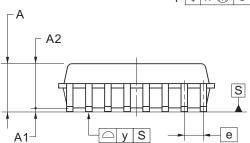
 \vdash D \oplus M M

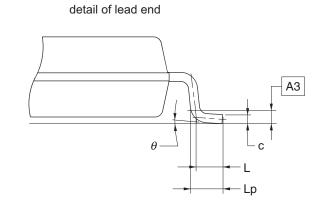
NOTE

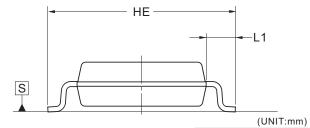
Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

	(
ITEM	DIMENSIONS
Α	3.60±0.10
В	0.50
С	0.65 (T.P.)
D	0.24 ± 0.08
E	0.10 ± 0.05
F	1.45 MAX.
G	1.20 ± 0.10
Н	6.40 ± 0.20
I	4.40 ± 0.10
J	1.00 ± 0.20
K	$0.17^{+0.08}_{-0.07}$
L	0.50
M	0.13
N	0.10
Р	3° +5°
Т	0.25 (T.P.)
U	0.60 ± 0.15
V	0.25 MAX.
W	0.15 MAX.


©2012 Renesas Electronics Corporation. All rights reserved.




3.2 16-pin products


R5F10Y47ASP, R5F10Y46ASP, R5F10Y44ASP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-SSOP16-4.4x5-0.65	PRSP0016JC-A	P16MA-65-FAA-2	0.08

ITEM	DIMENSIONS
D	5.00±0.15
D1	5.20±0.15
E	4.40±0.20
HE	6.40±0.20
Α	1.725 MAX.
A1	0.125±0.05
A2	1.50
A3	0.25
е	0.65
bp	$0.22 \pm 0.08 \\ -0.07$
С	$0.15 \pm 0.03 \\ -0.04$
L	0.50
Lp	0.60±0.10
L1	1.00±0.20
Х	0.13
У	0.10
θ	3° +5°
ZD	0.325

© 2012 Renesas Electronics Corporation. All rights reserved.

Revision History	RL78/G10 Data Sheet
------------------	---------------------

		Description		
Rev.	Date	Page	Summary	
1.00	Apr 15, 2013	-	First Edition issued	

All trademarks and registered trademarks are the property of their respective owners.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the
- 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

"High Quality": Transportation equipment (automobiles, trains, ships, etc.): traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to quard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronic

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada

Tel: +1-905-898-5441. Fax: +1-905-898-3220

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd. Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2886-9318, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Pax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd. 11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141