

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

EXF

Product Status	Obsolete
Core Processor	ARM920T
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	200MHz
Co-Processors/DSP	Math Engine; MaverickCrunch™
RAM Controllers	SDRAM
Graphics Acceleration	Yes
Display & Interface Controllers	Keypad, LCD, Touchscreen
Ethernet	1/10/100Mbps (1)
SATA	-
USB	USB 2.0 (3)
Voltage - I/O	1.8V, 3.3V
Operating Temperature	-40°C ~ 85°C (TA)
Security Features	Hardware ID
Package / Case	352-BBGA
Supplier Device Package	352-PBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/cirrus-logic/ep9315-ib

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

OVERVIEW

The EP9315 is an ARM920T-based system-on-a-chip design with a large peripheral set targeted to a variety of applications:

- Thin Client Computers for Business and Home
- Internet Radio
- Internet Access Devices
- Industrial Computers
- Specialized Terminals
- Point-of-sale Terminals
- Test and Measurement Equipment

The ARM920T microprocessor core with separate 16-kbyte, 64-way set-associative instruction and data caches is augmented by the MaverickCrunch[™] coprocessor, enabling high-speed floating point calculations.

MaverickKey[™] unique hardware programmed IDs are a solution to the growing concern over secure web content and commerce. With Internet security playing an important role in the delivery of digital media such as

books or music, traditional software methods are quickly becoming unreliable. The MaverickKey unique IDs provide OEMs with a method of utilizing specific hardware IDs such as those assigned for SDMI (Secure Digital Music Initiative) or any other authentication mechanism.

A high-performance 1/10/100-Mbps Ethernet media access controller (EMAC) is included along with external interfaces to SPI, I^2S audio, Raster/LCD, IDE storage peripherals, keypad, and touchscreen. A three-port USB 2.0 Full Speed Host (OHCI) (12 Mbits per second) and three UARTs are included as well.

The EP9315 is a high-performance, low-power, RISCbased, single-chip computer built around an ARM920T microprocessor core with a maximum operating clock rate of 200 MHz (184 MHz for industrial conditions). The ARM core operates from a 1.8 V supply, while the I/O operates at 3.3 V with power usage between 100 mW and 750 mW (dependent on speed).

Table A. Change History

Revision	Date	Changes
PP1	January 2004	Initial Release.
PP2	July 2004	Update AC data. Add ADC data.
PP3	Febuary 2005	Update electrical characteristics based upon more complete characterization data.
PP4	March 2005	Minor correction to block diagram on page 1. DD7 changed to pull down.

List of Figures

Figure 1. Timing Diagram Drawing Key	.14
Figure 2. SDRAM Load Mode Register Cycle Timing Measurement	.15
Figure 3. SDRAM Burst Read Cycle Timing Measurement	.16
Figure 4. SDRAM Burst Write Cycle Timing Measurement	. 17
Figure 5. SDRAM Auto Refresh Cycle Timing Measurement	. 18
Figure 6. Static Memory Single Word Read Cycle Timing Measurement	.19
Figure 7. Static Memory Single Word Write Cycle Timing Measurement	.20
Figure 8. Static Memory Multiple Word Read 8-bit Cycle Timing Measurement	.21
Figure 9. Static Memory Multiple Word Write 8-bit Cycle Timing Measurement	.22
Figure 10. Static Memory Multiple Word Read 16-bit Cycle Timing Measurement	.23
Figure 11. Static Memory Multiple Word Write 16-bit Cycle Timing Measurement	.24
Figure 12. Static Memory Burst Read Cycle Timing Measurement	.25
Figure 13. Static Memory Burst Write Cycle Timing Measurement	.26
Figure 14. Static Memory Single Read Wait Cycle Timing Measurement	.27
Figure 15. Static Memory Single Write Wait Cycle Timing Measurement	.28
Figure 16. Static Memory Turnaround Cycle Timing Measurement	.29
Figure 17. PCMCIA Read Cycle Timing Measurement	. 30
Figure 18. PCMCIA Write Cycle Timing Measurement	. 31
Figure 19. Register Transfer to/from Device	. 33
Figure 20. PIO Data Transfer to/from Device	. 35
Figure 21. Initiating an Ultra DMA data-in Burst	. 37
Figure 22. Sustained Ultra DMA data-in Burst	. 38
Figure 23. Host Pausing an Ultra DMA data-in Burst	. 38
Figure 24. Device Terminating an Ultra DMA data-in Burst	. 39
Figure 25. Host Terminating an Ultra DMA data-in Burst	. 40
Figure 26. Initiating an Ultra DMA data-out Burst	.41
Figure 27. Sustained Ultra DMA data-out Burst	. 42
Figure 28. Device Pausing an Ultra DMA data-out Burst	.42
Figure 29. Host Terminating an Ultra DMA data-out Burst	.43
Figure 30. Device Terminating an Ultra DMA data-out Burst	.44
Figure 31. Ethernet MAC Timing Measurement	.46
Figure 32. TI Single Transfer Timing Measurement	. 48
Figure 33. Microwire Frame Format, Single Transfer	. 48
Figure 34. SPI Format with SPH=1 Timing Measurement	.49
Figure 35. Inter-IC Sound (I2S) Timing Measurement	.50
Figure 36. AC '97 Configuration Timing Measurement	.51
Figure 37. LCD Timing Measurement	.52
Figure 38. ADC Transfer Function	.53
Figure 39. JTAG Timing Measurement	.54
Figure 40. 352 Pin PBGA Pin Diagram	.55
Figure 40. 352 PIN BGA PINOUT	.57

List of Tables

Table A. Change History	2
Table B. General Purpose Memory Interface Pin Assignments	6
Table C. IDE Interface Pin Assignments	7
Table D. Ethernet Media Access Controller Pin Assignments	7
Table E. Audio Interfaces Pin Assignment	7
Table F. LCD Interface Pin Assignments	. 8
Table G. Touch Screen Interface with 12-bit Analog-to-Digital Converter Pin Assignments	. 8
Table H. 64-Key Keypad Interface Pin Assignments	. 8
Table I. Universal Asynchronous Receiver/Transmitters Pin Assignments	. 9
Table J. Triple Port USB Host Pin Assignments	. 9
Table K. Two-Wire Port with EEPROM Support Pin Assignments	. 9
Table L. Real-Time Clock with Pin Assignments	10
Table M.PLL and Clocking Pin Assignments	10
Table N. External Interrupt Pin Assignment	10
Table O. Dual LED Pin Assignments	10
Table P. General Purpose Input/Output Pin Assignment	11
Table Q. Reset and Power Management Pin Assignments	11
Table R. Hardware Debug Interface	11
Table S. PCMCIA Interface	11
Table R. 352 Pin Diagram Dimensions	56
Table S. Pin Descriptions	60
Table T. Pin Multiplex Usage Information	62

Processor Core - ARM920T

The ARM920T is a Harvard architecture processor with separate 16-kbyte instruction and data caches with an 8word line length but a unified memory. The processor utilizes a five-stage pipeline consisting of fetch, decode, execute, memory, and write stages. Key features include:

- ARM (32-bit) and Thumb (16-bit compressed) Instruction Sets
- 32-bit Advanced Micro-Controller Bus Architecture (AMBA)
- 16-kbyte Instruction Cache with Lockdown
- 16-kbyte Data Cache (programmable write-through or write-back) with Lockdown
- MMU for Linux[®], Microsoft[®] Windows[®] CE and Other Operating Systems
- Translation Look Aside Buffers with 64 Data and 64
 Instruction Entries
- Programmable Page Sizes of 1 Mbyte, 64 kbyte, 4 kbyte, and 1 kbyte
- Independent Lockdown of TLB Entries

MaverickCrunch[™] Math Engine

MaverickCrunch Engine is a mixed-mode The coprocessor designed primarily to accelerate the math processing required to rapidly encode digital audio formats. It accelerates single and double precision integer and floating point operations plus an integer multiply-accumulate (MAC) instruction that is considerably faster than the ARM920T's native MAC instruction. The ARM920T coprocessor interface is utilized thereby sharing its memory interface and instruction stream. Hardware forwarding and interlock allows the ARM to handle looping and addressing while MaverickCrunch handles computation. Features include:

- IEEE-754 single and double precision floating point
- 32 / 64-bit integer
- Add / multiply / compare
- Integer MAC 32-bit input with 72-bit accumulate
- Integer Shifts
- Floating point to/from integer conversion
- Sixteen 64-bit register files
- Four 72-bit accumulators

MaverickKey[™] Unique ID

MaverickKey unique hardware programmed IDs are a solution to the growing concern over secure web content and commerce. With Internet security playing an important role in the delivery of digital media such as books or music, traditional software methods are quickly becoming unreliable. The MaverickKey unique IDs provide OEMs with a method of utilizing specific hardware IDs such as those assigned for SDMI (Secure Digital Music Initiative) or any other authentication mechanism.

Both a specific 32-bit ID as well as a 128-bit random ID is programmed into the EP9315 through the use of laser probing technology. These IDs can then be used to match secure copyrighted content with the ID of the target device the EP9315 is powering, and then deliver the copyrighted information over a secure connection. In addition, secure transactions can benefit by also matching device IDs to server IDs. MaverickKey IDs provide a level of hardware security required for today's Internet appliances.

General Purpose Memory Interface (SDRAM, SRAM, ROM, FLASH)

The EP9315 features a unified memory address model where all memory devices are accessed over a common address/data bus. A separate internal port is dedicated to the read-only Raster/LCD refresh engine, while the rest of the memory accesses are performed via the Processor bus. The SRAM memory controller supports 8, 16 and 32-bit devices and accommodates an internal boot ROM concurrently with 32-bit SDRAM memory.

- 1-4 banks of 32-bit 66 or 100 MHz SDRAM
- One internal port dedicated to the Raster/LCD Refresh Engine (Read Only)
- Address and data bus shared between SDRAM, SRAM, ROM, and FLASH memory
- NOR FLASH memory supported

Table B. General Purpose Memory Interface Pin Assignments

Pin Mnemonic	Pin Description
SDCLK	SDRAM Clock
SDCLKEN	SDRAM Clock Enable
SDCSn[3:0]	SDRAM Chip Selects 3-0
RASn	SDRAM RAS
CASn	SDRAM CAS
SDWEn	SDRAM Write Enable
CSn[7:6] and CSn[3:0]	Chip Selects 7, 6, 3, 2, 1, 0
AD[25:0]	Address Bus 25-0
DA[31:0]	Data Bus 31-0
DQMn[3:0]	SDRAM Output Enables / Data Masks
WRn	SRAM Write Strobe
RDn	SRAM Read / OE Strobe
WAITn	SRAM Wait Input

Universal Asynchronous Receiver/Transmitters (UARTs)

Three 16550-compatible UARTs are supplied. Two provide asynchronous HDLC (High-level Data Link Control) protocol support for full-duplex transmit and receive. The HDLC receiver handles framing, address matching, CRC checking, control-octet transparency, and optionally passes the CRC to the host at the end of the packet. The HDLC transmitter handles framing, CRC generation, and control-octet transparency. The host must assemble the frame in memory before transmission. The HDLC receiver and transmitter use the UART FIFOs to buffer the data streams. A third IrDA[®]-compatible UART is also supplied.

- UART1 supports modem bit rates up to 115.2 Kbps, supports HDLC and includes a 16-byte FIFO for receive and a 16-byte FIFO for transmit. Interrupts are generated on Rx, Tx, and modem status change.
- UART2 contains an IrDA encoder operating at either the slow (up to 115 Kbps), medium (0.576 or 1.152 Mbps), or fast (4 Mbps) IR data rates. It also has a 16byte FIFO for receive and a 16-byte FIFO for transmit.
- UART3 supports HDLC and includes a 16-byte FIFO for receive and a 16-byte FIFO for transmit. Interrupts are generated on Rx and Tx.

Table I. Universal Asynchronous Receiver/Transmitters Pin Assignments

Pin Mnemonic	Pin Name - Description
TXD0	UART1 Transmit
RXD0	UART1 Receive
CTSn	UART1 Clear To Send / Transmit Enable
DSRn / DCDn	UART1 Data Set Ready / Data Carrier Detect
DTRn	UART1 Data Terminal Ready
RTSn	UART1 Ready To Send
EGPIO[0] / RI	UART1 Ring Indicator
TXD1 / SIROUT	UART2 Transmit / IrDA Output
RXD1 / SIRIN	UART2 Receive / IrDA Input
TXD2	UART3 Transmit
RXD2	UART3 Receive
EGPIO[3] / TENn	HDLC3 Transmit Enable

Triple Port USB Host

The USB Open Host Controller Interface (Open HCI) provides full speed serial communications ports at a baud rate of 12 Mbits/sec. Up to 127 USB devices (printer, mouse, camera, keyboard, etc.) and USB hubs can be connected to the USB host in the USB "tiered-start" topology.

This includes the following features:

- Compliance with the USB 2.0 specification
- Compliance with the Open HCI Rev 1.0 specification
- Supports both low speed (1.5 Mbps) and full speed (12 Mbps) USB device connections
- Root HUB integrated with 3 downstream USB ports
- Transceiver buffers integrated, over-current protection
 on ports
- Supports power management
- Operates as a master on the bus

The Open HCI host controller initializes the master DMA transfer with the AHB bus:

- Fetches endpoint descriptors and transfer descriptors
- Accesses endpoint data from system memory
- Accesses the HC communication area
- Writes status and retire transfer descriptor

Table J. Triple Port USB Host Pin Assignments

Pin Mnemonic	Pin Name - Description
USBp[2:0]	USB Positive signals
USBm[2:0]	USB Negative Signals

Two-wire Interface

The two-wire interface provides communication and control for synchronous-serial-driven devices.

Table K. Two-Wire Port with EEPROM Support Pin Assignments

Pin Mnemonic	Pin Name - Description	Alternative Usage
EECLK	Two-Wire Interface Clock	General Purpose I/O
EEDATA	Two-Wire Interface Data	General Purpose I/O

Real-Time Clock with Software Trim

The software trim feature on the real time clock (RTC) provides software controlled digital compensation of the 32.768 kHz input clock. This compensation is accurate to \pm 1.24 sec/month.

Note: A real time clock <u>must</u> be connected to RTCXTALI or the EP9315 device will not boot.

Table L. Real-Time Clock with Pin Assignments

Pin Mnemonic	Pin Name - Description
RTCXTALI	Real-Time Clock Oscillator Input
RTCXTALO	Real-Time Clock Oscillator Output

PLL and Clocking

The processor and the peripheral clocks operate from a single 14.7456 MHz crystal.

The real time clock operates from a 32.768 kHz external oscillator.

Table M. PLL and Clocking Pin Assignments

Pin Mnemonic	Pin Name - Description
XTALI	Main Oscillator Input
XTALO	Main Oscillator Output
VDD_PLL	Main Oscillator Power
GND_PLL	Main Oscillator Ground

Timers

The Watchdog Timer insures proper operation by requiring periodic attention to prevent a reset-on-time-out.

Two 16-bit timers operate as free running down-counters or as periodic timers for fixed interval interrupts and have a range of 0.03 ms to 4.27 seconds.

One 32-bit timer, plus a 6-bit prescale counter, has a range of 0.03 μs to 73.3 hours.

One 40-bit debug timer, plus 6-bit prescale counter, has a range of 1.0 μs to 12.7 days.

Interrupt Controller

The interrupt controller allows up to 64 interrupts to generate an Interrupt Request (IRQ) or Fast Interrupt Request (FIQ) signal to the processor core. Thirty-two hardware priority assignments are provided for assisting IRQ vectoring, and two levels are provided for FIQ vectoring. This allows time critical interrupts to be processed in the shortest time possible. Internal interrupts may be programmed as active-high or active-

low, level-sensitive inputs. GPIO may be programmed as active-high level-sensitive, active-low level-sensitive, rising-edge-triggered, falling-edge-triggered, or combined rising/falling-edge-triggered.

- Supports 64 interrupts from a variety of sources (such as UARTs, GPIO, and key matrix)
- Routes interrupt sources to either the ARM920T's IRQ or FIQ (Fast IRQ) inputs
- Four dedicated off-chip interrupt lines INT[3:0] operate as active-high, level-sensitive interrupts
- Any of the 16 GPIO lines maybe configured to generate interrupts
- Software supported priority mask for all FIQs and IRQs

Pin Mnemonic	Pin Name - Description
INT[3:0]	External Interrupt 3-0

Dual LED Drivers

Two pins are assigned specifically to drive external LEDs.

Pin Mnemonic	Pin Name - Description	Alternative Usage
GRLED	Green LED	General Purpose I/O
REDLED	Red LED	General Purpose I/O

General Purpose Input/Output (GPIO)

The 16 EGPIO pins may each be configured individually as an output, an input, or an interrupt input. Port F may be configured as GPIO. Each Port F pin may be configured individually as an output, input or an interrupt input.

There are 23 pins that may be used as alternate inputs or outputs, but do not support interrupts. These pins are:

- Key Matrix ROW[7:0], COL[7:0]
- Ethernet MDIO
- Both LED Outputs
- Two-wire Clock and Data
- SLA [1:0]

6 pins may alternatively be used as inputs only:

- CTSn, DSRn / DCDn
- 4 Interrupt Lines

2 pins may alternatively be used as outputs only:

- RTSn
- ARSTn

Static Memory 32-bit Read on 8-bit External Bus

Parameter	Symbol	Min	Тур	Max	Unit
AD setup to CSn assert time	t _{ADs}	t _{HCLK}	-	-	ns
CSn assert to Address transition time	t _{AD1}	-	t _{HCLK} × (WST1 + 1)	-	ns
Address assert time	t _{AD2}	-	t _{HCLK} × (WST1 + 1)	-	ns
AD transition to CSn deassert time	t _{AD3}	-	t _{HCLK} × (WST1 + 2)	-	ns
AD hold from CSn deassert time	t _{ADh}	t _{HCLK}	-	-	ns
RDn assert time	t _{RDpwL}	-	$t_{HCLK} \times (4 \times WST1 + 5)$	-	ns
CSn to RDn delay time	t _{RDd}	-	-	3	ns
CSn assert to DQMn assert delay time	t _{DQMd}	-	-	1	ns
DA setup to AD transition time	t _{DAs1}	15	-	-	ns
DA setup to RDn deassert time	t _{DAs2}	t _{HCLK} + 12	-	-	ns
DA hold from AD transition time	t _{DAh1}	0	-	-	ns
DA hold from RDn deassert time	t _{DAh2}	0	-	-	ns

Figure 8. Static Memory Multiple Word Read 8-bit Cycle Timing Measurement

Static Memory 32-bit Read on 16-bit External Bus

Parameter	Symbol	Min	Тур	Мах	Unit
AD setup to CSn assert time	t _{ADs}	t _{HCLK}	-	-	ns
CSn assert to AD transition time	t _{ADd1}	-	t _{HCLK} ×(WST1 + 1)	-	ns
AD transition to CSn deassert time	t _{ADd2}	-	t _{HCLK} ×(WST1 + 2)	-	ns
AD hold from CSn deassert time	t _{ADh}	t _{HCLK}	-	-	ns
RDn assert time	t _{RDpwL}	-	$t_{HCLK} \times ((2 \times WST1) + 3)$	-	ns
CSn to RDn delay time	t _{RDd}	-	-	3	ns
CSn assert to DQMn assert delay time	t _{DQMd}	-	-	1	ns
DA setup to AD transition time	t _{DAs1}	15	-	-	ns
DA to RDn deassert time	t _{DAs2}	t _{HCLK} + 12	-	-	ns
DA hold from AD transition time	t _{DAh1}	0	-	-	ns
DA hold from RDn deassert time	t _{DAh2}	0	-	-	ns

Figure 10. Static Memory Multiple Word Read 16-bit Cycle Timing Measurement

Static Memory Single Write Wait Cycle

Parameter	Symbol	Min	Тур	Мах	Unit
WAIT to WRn deassert delay time	t _{WRd}	$t_{HCLK} imes 2$	-	$t_{HCLK} \times 4$	ns
CSn assert to WAIT time	t _{WAITd}	-	-	$t_{HCLK} \times (WST1-2)$	ns
WAIT assert time	t _{WAITpw}	$t_{HCLK} imes 2$	-	$t_{HCLK} imes 510$	ns
WAIT to CSn deassert delay time	t _{CSnd}	$t_{HCLK} imes 3$	-	$t_{HCLK} \times 5$	ns

Figure 15. Static Memory Single Write Wait Cycle Timing Measurement

Static Memory Turnaround Cycle

Parameter	Symbol	Min	Тур	Мах	Unit
CSnX deassert to CSnY assert time	t _{BTcyc}	-	t _{HCLK} ×(IDCY+1)	-	ns

Notes: 1. X and Y represent any two chip select numbers.

2. IDCY occurs on read-to-write and write-to-read.

3. IDCY is honored when going from a asynchronous device (CSx) to a synchronous device (/SDCSy).

Figure 16. Static Memory Turnaround Cycle Timing Measurement

PCMCIA Write Cycle

Parameter	Symbol	Min	Тур	Max	Unit
AD setup to signal transition time	t _{ADs}	0	-	-	ns
Attribute access time	t _A	[(AA + 1) × t _{HCLK}] - 14	$(AA + 1) \times t_{HCLK}$	-	ns
Attribute hold time	t _H	[(HA + 1) × t _{HCLK}] - 3	$(HA + 1) \times t_{HCLK}$	-	ns
Attribute space pre-charge delay time	t _p	$(PA + 1) \times t_{HCLK}$	$(PA + 1) \times t_{HCLK}$	-	ns
Common access time	t _A	[(AC + 1) × t _{HCLK}] - 14	$(AC + 1) \times t_{HCLK}$	-	ns
Common hold time	t _H	[(HC + 1) × t _{HCLK}] - 3	$(HC + 1) \times t_{HCLK}$	-	ns
Common space pre-charge delay time	t _p	$(PC + 1) \times t_{HCLK}$	$(PC + 1) \times t_{HCLK}$	-	ns
I/O access time	t _A	[(AI + 1) × t _{HCLK}] - 14	$(AI + 1) \times t_{HCLK}$	-	ns
I/O hold time	t _H	[(HI + 1) × t _{HCLK}] - 3	$(HI + 1) \times t_{HCLK}$	-	ns
I/O space pre-charge delay time	tp	$(PI + 1) \times t_{HCLK}$	$(PI + 1) \times t_{HCLK}$	-	ns
MCDIR hold time	t _{MCDh}	0	-	-	ns
DATA invalid delay time	t _{DAfo}	0	-	-	ns

Figure 18. PCMCIA Write Cycle Timing Measurement

Note: 1 - MCWAITn asserted will extend the MCWR / IOWR strobe time.

Note: 1. Device address consists of signals IDECS0n, IDECS1n and IDEDA (2:0)

2. Data consists of DD (7:0)

- 3. The negation of IORDY by the device is used to extend the register transfer cycle. The determination of whether the cycle is to be extended is made by the host after t_A from the assertion of DIORn or DIOWn. The assertion and negation or IORDY are described in the following three cases:
 - 3-1 Device never negates IORDY, devices keeps IORDY released: no wait is generated.
 - 3-2 Device negates IORDY before t_A , but causes IORDY to be asserted before t_A . IORDY is released prior to negation and may be asserted for no more than t_C before release: no wait generated.
 - 3-3 Device negates IORDY before t_A. IORDY is released prior to negation and may be asserted for no more than t_C before release: wait generated. The cycle completes after IORDY is reasserted. For cycles where a wait is generated and DIORn is asserted, the device shall place read data on DD (7:0) for t_{RD} before asserting IORDY.

Figure 19. Register Transfer to/from Device

Note: 1. Device address consists of signals IDECS0n, IDECS1n and IDEDA (2:0)

2. Data consists of DD (15:0)

- 3. The negation of IORDY by the device is used to extend the register transfer cycle. The determination of whether the cycle is to be extended is made by the host after t_A from the assertion of DIORn or DIOWn. The assertion and negation or IORDY are described in the following three cases:
 - 3-1 Device never negates IORDY, devices keeps IORDY released: no wait is generated.
 - 3-2 Device negates IORDY before t_A , but causes IORDY to be asserted before t_A . IORDY is released prior to negation and may be asserted for no more than t_C before release: no wait generated.
 - 3-3 Device negates IORDY before t_A. IORDY is released prior to negation and may be asserted for no more than t_C before release: wait generated. The cycle completes after IORDY is reasserted. For cycles where a wait is generated and DIORn is asserted, the device shall place read data on DD (15:0) for t_{RD} before asserting IORDY.

Figure 20. PIO Data Transfer to/from Device

Note: DD (15:0) and DSTROBE signals are shown at both the host and the device to emphasize that cable settling time as well as cable propagation delay shall not allow the data signals to be considered stable at the host until some time after they are driven by the device.

Figure 23. Host Pausing an Ultra DMA data-in Burst

Note: The definitions for the DIOWn:STOP, IORDY:DDMARDYn:DSTROBE and DIORn:HDMARDYn:HSTROBE signal lines are no longer in effect after DMARQ and DMACKn are negated.

Figure 29. Host Terminating an Ultra DMA data-out Burst

Motorola SPI

Figure 34. SPI Format with SPH=1 Timing Measurement

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
Y	HSYNC	DD[1]	DD[12]	P[2]	AD[15]	DA[6]	DA[4]	AD[10]	DA[1]	AD[8]	IDEDA[0]	DTRN	TDO	BOOT[0]	EEDAT	ASDO	SFRM1	RDLED	USBP[1]	ABITCLK	Y
w	P[12]	P[9]	DD[0]	P[5]	P[3]	DA[7]	DA[5]	AD[11]	AD[9]	IDECS1 N	IDEDA[1]	тск	TMS	EECLK	SCLK1	GRLED	INT[3]	SLA[1]	SLA[0]	RXD[2]	w
v	P[16]	P[11]	P[8]	DD[15]	DD[13]	P[1]	AD[1 4]	AD[12]	DA[2]	IDECS0 N	IDEDA[2]	TDI	GND	ASYNC	SSPTX1	INT[2]	RTSN	USBP[0]	CTSN	TXD[0]	v
υ	AD[0]	P[15]	P[10]	P[7]	P[6]	P[4]	P[0]	AD[13]	DA[3]	DA[0]	DSRN	BOOT[1]	NC	SSPRX1	INT[1]	PWMO UT	USBM[0]	RXD[1]	TXD[1]	ROW[1]	υ
т	DA[8]	BLANK	P[13]	SPCLK	V_CSY NC	DD[1 4]	GND	CVD D	RVDD	GND	GND	RVDD	CVDD	GND	INT[0]	USBM[1]	RXD[0]	TXD[2]	ROW[2]	ROW[4]	т
R	AD[2]	AD[1]	P[17]	P[14]	RVDD	RVD D	GND	CVD D					CVDD	GND	RVDD	RVDD	ROW[0]	ROW[3]	PLL_GN D	ROW[5]	R
Р	AD[4]	DA[10]	DA[9]	BRIGHT	RVDD	RVD D									RVDD	RVDD	XTALI	PLL_VD D	ROW[6]	ROW[7]	Ρ
N	DA[13]	DA[12]	DA[11]	AD[3]	CVDD	CVD D		GND	GND	GND	GND	GND	GND		GND	GND	XTALO	COL[0]	COL[1]	COL[2]	Ν
м	AD[7]	DA[14]	AD[6]	AD[5]	CVDD			GND	GND	GND	GND	GND	GND			GND	COL[4]	COL[3]	COL[6]	CSN[0]	м
L	DA[18]	DA[17]	DA[16]	DA[15]	GND			GND	GND	GND	GND	GND	GND			CVDD	COL[5]	COL[7]	RSTON	PRSTN	L
к	AD[22]	DA[20]	AD[21]	DA[19]	RVDD			GND	GND	GND	GND	GND	GND			CVDD	SYM	SYP	SXM	SXP	κ
J	DA[21]	DQMN[0]	DQMN[1]	DQMN[2]	GND			GND	GND	GND	GND	GND	GND			CVDD	RTCXTA LI	XM	ΥP	YM	J
н	DQMN[3]	CASN	RASN	SDCSN[2]	CVDD			GND	GND	GND	GND	GND	GND			RVDD	RTCXTA LO	ADC_V DD	ADC_G ND	ХР	н
G	SDCSN[0]	SDCSN[1]	SDWE N	SDCLK	RVDD	RVD D									RVDD	RVDD	EGPIO[7]	EGPIO[9]	EGPIO[1 0]	EGPIO[11]	G
F	SDCSN[3]	DA[22]	DA[24]	AD[25]	RVDD	GND	CVD D							CVDD	GND	GND	EGPIO[2]	EGPIO[4]	EGPIO[6]	EGPIO[8]	F
Е	AD[23]	DA[23]	DA[26]	CSN[6]	GND	GND	CVD D	CVD D	RVDD	GND	GND	RVDD	CVDD	CVDD	GND	ASDI	DIOWN	EGPIO[0]	EGPIO[3]	EGPIO[5]	Е
D	AD[24]	DA[25]	DD[11]	SDCLK EN	AD[19]	DD[9]	DD[5]	AD[16]	MIIRXD[2]	MIITXD[3]	TXEN	MCWAI TN	MCDAE NN	MCADE NN	EGPIO[14]	WP	USBM[2]	ARSTN	DIORN	EGPIO[1]	D
с	CSN[1]	CSN[3]	AD[20]	DA[29]	DD[10]	DD[6]	DD[2]	MDC	MIIRXD[3]	TXCLK	MIITXD[0]	READY	MCD2	MCDIR	MCELN	IORDN	MCWRN	USBP[2]	IORDY	DMACKN	с
в	CSN[2]	DA[31]	DA[30]	DA[27]	DD[7]	DD[3]	WRN	MDIO	MIIRXD[1]	RXERR	MIITXD[1]	CRS	VS1	MCD1	MCBVD 2	MCEHN	EGPIO[1 3]	MCRDN	WAITN	TRSTN	в
A	CSN[7]	DA[28]	AD[18]	DD[8]	DD[4]	AD[1 7]	RDN	RXCL K	MIIRXD[0]	RXDVA L	MIITXD[2]	TXERR	CLD	VS2	MCBVD 1	MCREG N	EGPIO[1 2]	EGPIO[15]	IOWRN	MCRESE TN	A
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	

©Copyright 2005 Cirrus Logic (All Rights Reserved)

DS638PP4

57

Ball	Signal	Ball	Signal	Ball	Signal	Ball	Signal
C3	AD[20]	H5	CVDD	N15	GND	V15	SSPTX1
C4	DA[29]	H8	GND	N16	GND	V16	INT[2]
C5	DD[10]	H9	GND	N17	XTALO	V17	RTSN
C6	DD[6]	H10	GND	N18	COL[0]	V18	USBP[0]
C7	DD[2]	H11	GND	N19	COL[1]	V19	CTSN
C8	MDC	H12	GND	N20	COL[2]	V20	TXD[0]
C9	MIIRXD[3]	H13	GND	P1	AD[4]	W1	P[12]
C10	TXCLK	H16	RVDD	P2	DA[10]	W2	P[9]
C11	MIITXD[0]	H17	RTCXTALO	P3	DA[9]	W3	DD[0]
C12	READY	H18	ADC_VDD	P4	BRIGHT	W4	P[5]
C13	MCD2	H19	ADC_GND	P5	RVDD	W5	P[3]
C14	MCDIR	H20	XP	P6	RVDD	W6	DA[7]
C15	MCELN	J1	DA[21]	P15	RVDD	W7	DA[5]
C16	IORDN	J2	DQMN[0]	P16	RVDD	W8	AD[11]
C17	MCWRN	J3	DQMN[1]	P17	XTALI	W9	AD[9]
C18	USBP[2]	J4	DQMN[2]	P18	PLL_VDD	W10	IDECS1N
C19	IORDY	J5	GND	P19	ROW[6]	W11	IDEDA[1]
C20	DMACKN	J8	GND	P20	ROW[7]	W12	ТСК
D1	AD[24]	J9	GND	R1	AD[2]	W13	TMS
D2	DA[25]	J10	GND	R2	AD[1]	W14	EECLK
D3	DD[11]	J11	GND	R3	P[17]	W15	SCLK1
D4	SDCLKEN	J12	GND	R4	P[14]	W16	GRLED
D5	AD[19]	J13	GND	R5	RVDD	W17	INT[3]
D6	DD[9]	J16	CVDD	R6	RVDD	W18	SLA[1]
D7	DD[5]	J17	RTCXTALI	R7	GND	W19	SLA[0]
D8	AD[16]	J18	XM	R8	CVDD	W20	RXD[2]
D9	MIIRXD[2]	J19	YP	R13	CVDD	Y1	HSYNC
D10	MIITXD[3]	J20	YM	R14	GND	Y2	DD[1]
D11	TXEN	K1	AD[22]	R15	RVDD	Y3	DD[12]
D12	MCWAITN	K2	DA[20]	R16	RVDD	Y4	P[2]
D13	MCDAENN	K3	AD[21]	R17	ROW[0]	Y5	AD[15]
D14	MCADENN	K4	DA[19]	R18	ROW[3]	Y6	DA[6]
D15	EGPIO[14]	K5	RVDD	R19	PLL_GND	Y7	DA[4]
D16	WP	K8	GND	R20	ROW[5]	Y8	AD[10]
D17	USBM[2]	K9	GND	T1	DA[8]	Y9	DA[1]
D18	ARSTN	K10	GND	T2	BLANK	Y10	AD[8]
D19	DIORN	K11	GND	Т3	P[13]	Y11	IDEDA[0]
D20	EGPIO[1]	K12	GND	T4	SPCLK	Y12	DTRN
E1	AD[23]	K13	GND	T5	V_CSYNC	Y13	TDO
E2	DA[23]	K16	CVDD	T6	DD[14]	Y14	BOOT[0]
E3	DA[26]	K17	SYM	T7	GND	Y15	EEDAT
E4	CSN[6]	K18	SYP	T8	CVDD	Y16	ASDO
E5	GND	K19	SXM	T9	RVDD	Y17	SFRM1
E6	GND	K20	SXP	T10	GND	Y18	RDLED
E7	CVDD	L1	DA[18]	T11	GND	Y19	USBP[1]
E8	CVDD	L2	DA[17]	T12	RVDD	Y20	ABITCLK

Acronyms and Abbreviations

The following tables list abbreviations and acronyms used in this data sheet.

Term	Definition
ADC	Analog-to-Digital Converter
ALT	Alternative
AMBA	Advanced Micro-controller Bus Architecture
ATAPI	ATA Packet Interface
CODEC	COder / DECoder
CRC	Cyclic Redundancy Check
DAC	Digital-to-Analog Converter
DMA	Direct-Memory Access
EBUS	External Memory Bus
EEPROM	Electronically Erasable Programmable Read Only Memory
EMAC	Ethernet Media Access Controller
FIFO	First In / First Out
FIQ	Fast Interrupt Request
FLASH	Flash memory
GPIO	General Purpose I/O
HDLC	High-level Data Link Control
l/F	Interface
l ² S	Inter-IC Sound
IC	Integrated Circuit
ICE	In-Circuit Emulator
IDE	Integrated Drive Electronics
IEEE	Institute of Electronics and Electrical Engineers
IrDA	Infrared Data Association
IRQ	Standard Interrupt Request
ISO	International Standards Organization
JTAG	Joint Test Action Group
LFSR	Linear Feedback Shift Register
MII	Media Independent Interface
MMU	Memory Management Unit

Term	Definition
OHCI	Open Host Controller Interface
PHY	Ethernet PHYsical layer interface
PIO	Programmed I/O
RISC	Reduced Instruction Set Computer
SDMI	Secure Digital Music Initiative
SDRAM	Synchronous Dynamic RAM
SPI	Serial Peripheral Interface
SRAM	Static Random Access Memory
STA	Station - Any device that contains an IEEE 802.11 conforming Medium Access Control (MAC) and physical layer (PHY) interface to the wireless medium
TFT	Thin Film Transistor
TLB	Translation Lookaside Buffer
USB	Universal Serial Bus

Units of Measurement

Symbol	Unit of Measure
°c	degree Celsius
Hz	Hertz = cycle per second
Kbps	Kilobits per second
kbyte	Kilobyte
kHz	KiloHertz = 1000 Hz
Mbps	Megabits per second
MHz	MegaHertz = 1,000 kHz
μΑ	microAmpere = 10 ⁻⁶ Ampere
μs	microsecond = 1,000 nanoseconds = 10 ⁻⁶ seconds
mA	milliAmpere = 10 ⁻³ Ampere
ms	millisecond = 1,000 microseconds = 10 ⁻³ seconds
mW	milliWatt = 10 ⁻³ Watts
ns	nanosecond = 10 ⁻⁹ seconds
pF	picoFarad = 10 ⁻¹² Farads
V	Volt
W	Watt