

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ST7
Core Size	8-Bit
Speed	8MHz
Connectivity	I ² C, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	64
Program Memory Size	60KB (60K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3.8V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/st72f321m9t6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

5

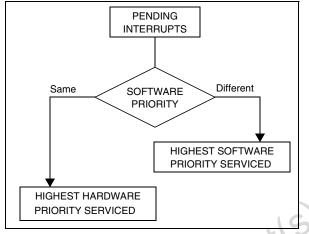
	9.6.4	Functional Description	. 97
	9.6.5	Low Power Modes	
	9.6.6	Interrupts	
07	9.6.7	Register Description SinterFace (I2C)	
9.7	9.7.1		
	9.7.1	Main Features	
	9.7.3	General Description	
	9.7.4	Functional Description	
	9.7.5	Low Power Modes	117
	9.7.6	Interrupts	
	9.7.7	Register Description	
9.8		A/D CONVERTER (ADC)	
	9.8.1 9.8.2	Introduction	
	9.0.2 9.8.3	Functional Description	
	9.8.4	Low Power Modes	125
	9.8.5	Interrupts	125
	9.8.6	Register Description	126
		ON SET	128
10.1			
		Inherent	
		Immediate	
	10.1.3	Indexed (No Offset Short Long)	129
	10.1.4	Indexed (No Offset, Short, Long) Indirect (Short, Long)	129
	10.1.6	Indirect Indexed (Short, Long)	130
	10.1.7	Relative mode (Direct, Indirect)	130
		JCTION GROUPS	
		AL CHARACTERISTICS	
11.1		METER CONDITIONS	
		Minimum and Maximum values	
		Typical values	
		Typical curves	
		Pin input voltage	
11.2		UTE MAXIMUM RATINGS	
		Voltage Characteristics	
		Current Characteristics	
		Thermal Characteristics	
11.3	OPERA	ATING CONDITIONS	136
		General Operating Conditions	
		Operating Conditions with Low Voltage Detector (LVD)	
		Auxiliary Voltage Detector (AVD) ThresholdsExternal Voltage Detector (EVD) Thresholds	
11 4		Y CURRENT CHARACTERISTICS	
		CURRENT CONSUMPTION	

Table 3. Hardware Register Map

Address	Block	Register Label	Register Name	Reset Status	Remarks
0000h	Port A ²⁾	PADR	Port A Data Register	00h ¹⁾	R/W
0001h		PADDR	Port A Data Direction Register	00h	R/W
0002h		PAOR	Port A Option Register	00h	R/W
0003h	Port B ²⁾	PBDR	Port B Data Register	00h ¹⁾	R/W
0004h		PBDDR	Port B Data Direction Register	00h	R/W
0005h		PBOR	Port B Option Register	00h	R/W
0006h	Port C	PCDR	Port C Data Register	00h ¹⁾	R/W
0007h		PCDDR	Port C Data Direction Register	00h	R/W
0008h		PCOR	Port C Option Register	00h	R/W
0009h	Port D ²⁾	PDDR	Port D Data Register	00h ¹⁾	R/W
000Ah		PDDDR	Port D Data Direction Register	00h	R/W
000Bh		PDOR	Port D Option Register	00h	R/W
000Ch	Port E ²⁾	PEDR	Port E Data Register	00h ¹⁾	R/W
000Dh		PEDDR	Port E Data Direction Register	00h	R/W ²⁾
000Eh		PEOR	Port E Option Register	00h	R/W ²⁾
000Fh	Port F ²⁾	PFDR	Port F Data Register	00h ¹⁾	R/W
0010h		PFDDR	Port F Data Direction Register	00h	R/W
0011h		PFOR	Port F Option Register	00h	R/W
0012h	Port G ²⁾	PGDR	Port G Data Register	00h ¹⁾	R/W
0013h		PGDDR	Port G Data Direction Register	00h	R/W
0014h		PGOR	Port G Option Register	00h	R/W
0015h	Port H ²⁾	PHDR	Port H Data Register	00h ¹⁾	R/W
0016h		PHDDR	Port H Data Direction Register	00h	R/W
0017h		PHOR	Port H Option Register	00h	R/W
0018h	SO ¹² C	I2CCR	I ² C Control Register	00h	R/W
0019h		I2CSR1	I ² C Status Register 1	00h	Read Only
001Ah		I2CSR2	I ² C Status Register 2	00h	Read Only
001Bh		I2CCCR	I ² C Clock Control Register	00h	R/W
001Ch		I2COAR1	I ² C Own Address Register 1	00h	R/W
001Dh		I2COAR2	I ² C Own Address Register2	00h	R/W
001Eh		I2CDR	I ² C Data Register	00h	R/W
001Fh 0020h			Reserved Area (2 Bytes)		
0021h	SPI	SPIDR	SPI Data I/O Register	xxh	R/W
0022h		SPICR	SPI Control Register	0xh	R/W
0023h		SPICSR	SPI Control/Status Register	00h	R/W

Address	Block	Register Label	Register Name	Reset Status	Remarks
0024h		ISPR0	Interrupt Software Priority Register 0	FFh	R/W
0025h		ISPR1	Interrupt Software Priority Register 1	FFh	R/W
0026h	ITC	ISPR2	Interrupt Software Priority Register 2	FFh	R/W
0027h	nc	ISPR3	Interrupt Software Priority Register 3	FFh	R/W
0028h		EICR	External Interrupt Control Register	00h	R/W
0029h	Flash	FCSR	Flash Control/Status Register	00h	R/W
002Ah	WATCHDOG	WDGCR	Watchdog Control Register	7Fh	R/W
002Bh		SICSR	System Integrity Control/Status Register	000x 000x b	R/W
002Ch		MCCSR	Main Clock Control / Status Register	00h_	R/W
002011 002Dh	MCC	MCCBCR	Main Clock Controller: Beep Control Register	00h	R/W
002011		MCCDCH	Main Clock Controller. Deep Control negister	UUII	11/ VV
002Eh				X	
to			Reserved Area (3 Bytes)		
0030h				,	
0031h		TACR2	Timer A Control Register 2	00h	R/W
0032h		TACR1	Timer A Control Register 1	00h	R/W
0033h		TACSR	Timer A Control/Status Register	xxxx x0xx b	R/W
0034h		TAIC1HR	Timer A Input Capture 1 High Register	xxh	Read Only
0035h		TAIC1LR	Timer A Input Capture 1 Low Register	xxh	Read Only
0036h		TAOC1HR	Timer A Output Compare 1 High Register	80h	R/W
0037h		TAOC1LR	Timer A Output Compare 1 Low Register	00h	R/W
0038h	TIMER A	TACHR	Timer A Counter High Register	FFh	Read Only
0039h		TACLR	Timer A Counter Low Register	FCh	Read Only
003Ah		TAACHR	Timer A Alternate Counter High Register	FFh	Read Only
003Bh		TAACLR	Timer A Alternate Counter Low Register	FCh	Read Only
003Ch		TAIC2HR	Timer A Input Capture 2 High Register	xxh	Read Only
003Dh		TAIC2LR	Timer A Input Capture 2 Low Register	xxh	Read Only
003Eh	× ?;	TAOC2HR	Timer A Output Compare 2 High Register	80h	R/W
003Fh	0	TAOC2LR	Timer A Output Compare 2 Low Register	00h	R/W
0040h	c0 ¹⁰		Reserved Area (1 Byte)		
	3				
0041h		TBCR2	Timer B Control Register 2	00h	R/W
0042h		TBCR1	Timer B Control Register 1	00h	R/W
0043h		TBCSR	Timer B Control/Status Register	xxxx x0xx b	R/W
0044h		TBIC1HR	Timer B Input Capture 1 High Register	xxh	Read Only
0045h		TBIC1LR	Timer B Input Capture 1 Low Register	xxh	Read Only
0046h		TBOC1HR	Timer B Output Compare 1 High Register	80h	R/W
0047h		TBOC1LR	Timer B Output Compare 1 Low Register	00h	R/W
0048h	TIMER B	TBCHR	Timer B Counter High Register	FFh	Read Only
0049h		TBCLR	Timer B Counter Low Register	FCh	Read Only
004Ah		TBACHR	Timer B Alternate Counter High Register	FFh	Read Only
004Bh		TBACLR	Timer B Alternate Counter Low Register	FCh	Read Only
004Ch		TBIC2HR	Timer B Input Capture 2 High Register	xxh	Read Only
004Dh		TBIC2LR	Timer B Input Capture 2 Low Register	xxh	Read Only
00156		TBOC2HR	Timer B Output Compare 2 High Register	80h	R/W
004Eh			Timer B Output Compare 2 Low Register		

INTERRUPTS (Cont'd)


Servicing Pending Interrupts

As several interrupts can be pending at the same time, the interrupt to be taken into account is determined by the following two-step process:

- the highest software priority interrupt is serviced,
- if several interrupts have the same software priority then the interrupt with the highest hardware priority is serviced first.

Figure 18 describes this decision process.

Figure 18. Priority Decision Process

When an interrupt request is not serviced immediately, it is latched and then processed when its software priority combined with the hardware priority becomes the highest one.

Note 1: The hardware priority is exclusive while the software one is not. This allows the previous process to succeed with only one interrupt.

Note 2: TLI, RESET and TRAP can be considered as having the highest software priority in the decision process.

Different Interrupt Vector Sources

Two interrupt source types are managed by the ST7 interrupt controller: the non-maskable type (RESET, TRAP) and the maskable type (external or from internal peripherals).

Non-Maskable Sources

These sources are processed regardless of the state of the 11 and 10 bits of the CC register (see Figure 17). After stacking the PC, X, A and CC registers (except for RESET), the corresponding vector is loaded in the PC register and the 11 and 10 bits of the CC are set to disable interrupts (level 3). These sources allow the processor to exit HALT mode.

TRAP (Non Maskable Software Interrupt)

This software interrupt is serviced when the TRAP instruction is executed. It will be serviced according to the flowchart in Figure 17.

Caution: TRAP can be interrupted by a TLI.

RESET

The RESET source has the highest priority in the ST7. This means that the first current routine has the highest software priority (level 3) and the highest hardware priority.

See the RESET chapter for more details.

Maskable Sources

Maskable interrupt vector sources can be serviced if the corresponding interrupt is enabled and if its own interrupt software priority (in ISPRx registers) is higher than the one currently being serviced (I1 and I0 in CC register). If any of these two conditions is false, the interrupt is latched and thus remains pending.

TLI (Top Level Hardware Interrupt)

This hardware interrupt occurs when a specific edge is detected on the dedicated TLI pin. It will be serviced according to the flowchart in Figure 17 as a trap.

Caution: A TRAP instruction must not be used in a TLI service routine.

External Interrupts

External interrupts allow the processor to exit from HALT low power mode. External interrupt sensitivity is software selectable through the External Interrupt Control register (EICR).

External interrupt triggered on edge will be latched and the interrupt request automatically cleared upon entering the interrupt service routine.

If several input pins of a group connected to the same interrupt line are selected simultaneously, these will be logically ORed.

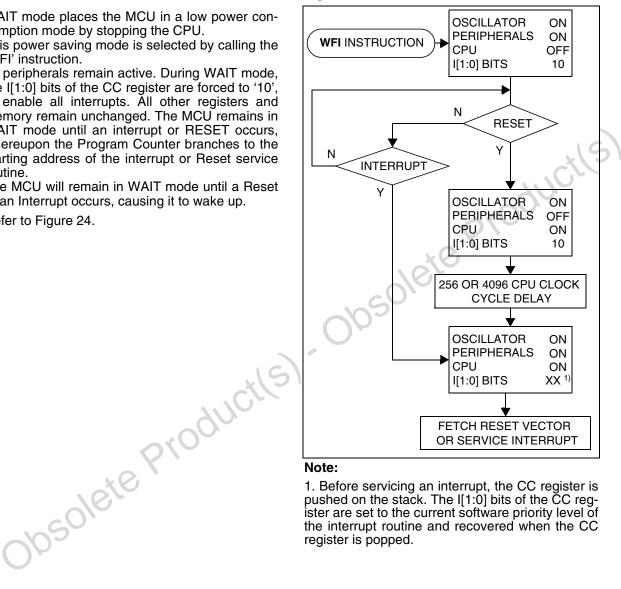
Peripheral Interrupts

Usually the peripheral interrupts cause the MCU to exit from HALT mode except those mentioned in the "Interrupt Mapping" table. A peripheral interrupt occurs when a specific flag is set in the peripheral status registers and if the corresponding enable bit is set in the peripheral control register. The general sequence for clearing an interrupt is based on an access to the status register followed by a read or write to an associated register.

Note: The clearing sequence resets the internal latch. A pending interrupt (i.e. waiting for being serviced) will therefore be lost if the clear sequence is executed.

POWER SAVING MODES (Cont'd)

8.3 WAIT MODE


WAIT mode places the MCU in a low power consumption mode by stopping the CPU.

This power saving mode is selected by calling the 'WFI' instruction.

All peripherals remain active. During WAIT mode, the I[1:0] bits of the CC register are forced to '10', to enable all interrupts. All other registers and memory remain unchanged. The MCU remains in WAIT mode until an interrupt or RESET occurs, whereupon the Program Counter branches to the starting address of the interrupt or Reset service routine.

The MCU will remain in WAIT mode until a Reset or an Interrupt occurs, causing it to wake up.

Refer to Figure 24.

Note:

1. Before servicing an interrupt, the CC register is pushed on the stack. The I[1:0] bits of the CC register are set to the current software priority level of the interrupt routine and recovered when the CC register is popped.

MAIN CLOCK CONTROLLER WITH REAL-TIME CLOCK (Cont'd)

Bit 0 = **OIF** Oscillator interrupt flag

This bit is set by hardware and cleared by software reading the MCCSR register. It indicates when set that the main oscillator has reached the selected elapsed time (TB1:0).

0: Timeout not reached

1: Timeout reached

CAUTION: The BRES and BSET instructions must not be used on the MCCSR register to avoid unintentionally clearing the OIF bit.

MCC BEEP CONTROL REGISTER (MCCBCR)

Read/Write

Reset Value: 0000 0000 (00h)

7							0
0	0	0	0	0	0	BC1	BC0

Bit 7:2 = Reserved, must be kept cleared.

Bit 1:0 = **BC[1:0]** Beep control

These 2 bits select the PF1 pin beep capability.

BC1	BC0	Beep mode with f _{OSC2} =8 MHz						
0	0	Off						
0	1	~2 kHz	Output					
1	0	~1 kHz	Beep signal					
1	1	~500 Hz	~50% duty cycle					

The beep output signal is available in Active-halt mode but has to be disabled to reduce the consumption.

Table 13. Main Clock Controller Register Map and Reset Values

Address (Hex.)	Register Label	7	6	5	4	3	2	1	0
002Bh	SICSR	AVDS	AVDIE	AVDF	LVDRF				WDGRF
002011	Reset Value	0	0	0	х	0	0	0	х
002Ch	MCCSR	MCO	CP1	CP0	SMS	TB1	TB0	OIE	OIF
002011	Reset Value	0	0	0	0	0	0	0	0
002Dh	MCCBCR							BC1	BC0
002011	Reset Value	0	0	0	0	0	0	0	0
0,0	5010								

ON-CHIP PERIPHERALS (Cont'd)

9.3.2 Functional Description

Counter

The free running 8-bit counter is fed by the output of the prescaler, and is incremented on every rising edge of the clock signal.

It is possible to read or write the contents of the counter on the fly by reading or writing the Counter Access register (ARTCAR).

When a counter overflow occurs, the counter is automatically reloaded with the contents of the ARTARR register (the prescaler is not affected).

Counter clock and prescaler

The counter clock frequency is given by:

$$f_{COUNTEB} = f_{INPUT} / 2^{CC[2:0]}$$

The timer counter's input clock (f_{INPUT}) feeds the 7-bit programmable prescaler, which selects one of the 8 available taps of the prescaler, as defined by CC[2:0] bits in the Control/Status Register (ARTCSR). Thus the division factor of the prescaler can be set to 2^n (where n = 0, 1,...7).

This f_{INPUT} frequency source is selected through the EXCL bit of the ARTCSR register and can be either the f_{CPU} or an external input frequency f_{FXT} .

The clock input to the counter is enabled by the TCE (Timer Counter Enable) bit in the ARTCSR register. When TCE is reset, the counter is stopped and the prescaler and counter contents are frozen. When TCE is set, the counter runs at the rate of the selected clock source.

Counter and Prescaler Initialization

After RESET, the counter and the prescaler are cleared and $f_{INPUT} = f_{CPU}$.

The counter can be initialized by:

- Writing to the ARTARR register and then setting the FCRL (Force Counter Re-Load) and the TCE (Timer Counter Enable) bits in the ARTCSR register.
- Writing to the ARTCAR counter access register,

In both cases the 7-bit prescaler is also cleared, whereupon counting will start from a known value.

Direct access to the prescaler is not possible.

Output compare control

The timer compare function is based on four different comparisons with the counter (one for each PWMx output). Each comparison is made between the counter value and an output compare register (OCRx) value. This OCRx register can not be accessed directly, it is loaded from the duty cycle register (PWMDCRx) at each overflow of the counter.

This double buffering method avoids glitch generation when changing the duty cycle on the fly.

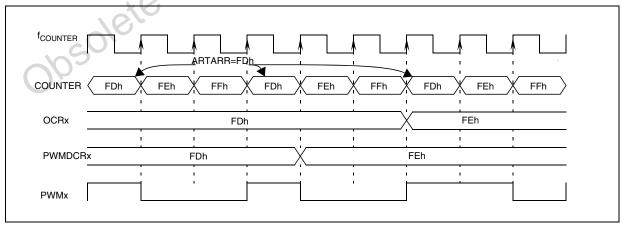


Figure 34. Output compare control

ON-CHIP PERIPHERALS (Cont'd)

Independent PWM signal generation

This mode allows up to four Pulse Width Modulated signals to be generated on the PWMx output pins with minimum core processing overhead. This function is stopped during HALT mode.

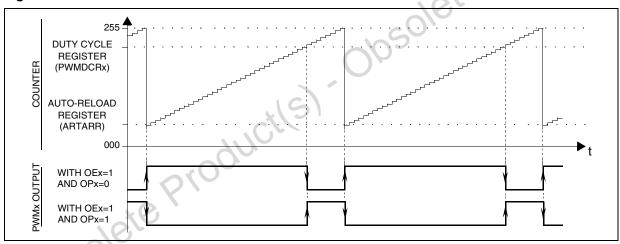
Each PWMx output signal can be selected independently using the corresponding OEx bit in the PWM Control register (PWMCR). When this bit is set, the corresponding I/O pin is configured as output push-pull alternate function.

The PWM signals all have the same frequency which is controlled by the counter period and the ARTARR register value.

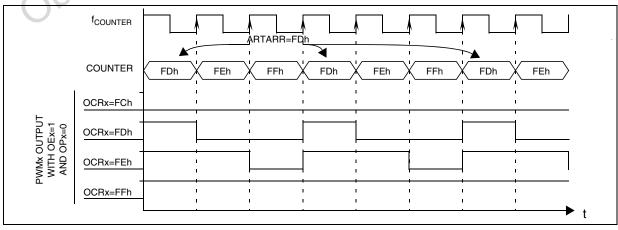
 $f_{PWM} = f_{COUNTER} / (256 - ARTARR)$

When a counter overflow occurs, the PWMx pin level is changed depending on the corresponding OPx (output polarity) bit in the PWMCR register.

Figure 35. PWM Auto-reload Timer Function


When the counter reaches the value contained in one of the output compare register (OCRx) the corresponding PWMx pin level is restored.

It should be noted that the reload values will also affect the value and the resolution of the duty cycle of the PWM output signal. To obtain a signal on a PWMx pin, the contents of the OCRx register must be greater than the contents of the ARTARR register.


The maximum available resolution for the PWMx duty cycle is:

Resolution = 1 / (256 - ARTARR)

Note: To get the maximum resolution (1/256), the ARTARR register must be 0. With this maximum resolution, 0% and 100% can be obtained by changing the polarity.

16-BIT TIMER (Cont'd)

9.4.4 Low Power Modes

Mode	Description
WAIT	No effect on 16-bit Timer. Timer interrupts cause the device to exit from WAIT mode.
	16-bit Timer registers are frozen.
HALT	In HALT mode, the counter stops counting until Halt mode is exited. Counting resumes from the previous count when the MCU is woken up by an interrupt with "exit from HALT mode" capability or from the counter reset value when the MCU is woken up by a RESET.
	If an input capture event occurs on the ICAP <i>i</i> pin, the input capture detection circuitry is armed. Consequently, when the MCU is woken up by an interrupt with "exit from HALT mode" capability, the ICF <i>i</i> bit is set, and the counter value present when exiting from HALT mode is captured into the IC <i>i</i> R register.

9.4.5 Interrupts

Interrupt Event	Event Flag	Enable Control Bit	Exit from Wait	Exit from Halt
Input Capture 1 event/Counter reset in PWM mode	ICF1	ICIE		
Input Capture 2 event	ICF2			
Output Compare 1 event (not available in PWM mode)	OCF1	OCIE	Yes	No
Output Compare 2 event (not available in PWM mode)	OCF2			
Timer Overflow event	TOF	TOIE		

Note: The 16-bit Timer interrupt events are connected to the same interrupt vector (see Interrupts chapter). These events generate an interrupt if the corresponding Enable Control Bit is set and the interrupt mask in the CC register is reset (RIM instruction).

9.4.6 Summary of Timer Modes

MODES	TIMER RESOURCES						
MODES	Input Capture 1	Input Capture 2	Output Compare 1	Output Compare 2			
Input Capture (1 and/or 2)	Yes	Yes	Yes	Yes			
Output Compare (1 and/or 2)	165	165	165	165			
One Pulse Mode	No	Not Recommended ¹⁾	No	Partially ²⁾			
PWM Mode	INO	Not Recommended ³⁾	NO	No			

1) See note 4 in Section 9.4.3.5 One Pulse Mode

2) See note 5 in Section 9.4.3.5 One Pulse Mode

3) See note 4 in Section 9.4.3.6 Pulse Width Modulation Mode

SERIAL PERIPHERAL INTERFACE (Cont'd)

Table 18. SPI Register Map and Reset Values

Address (Hex.)	Register Label	7	6	5	4	3	2	1	0	
0021h	SPIDR	MSB							LSB	
	Reset Value	x SPIE	x SPE	x SPR2	x MSTR	X CPOL	X CPHA	x SPR1	x SPR0	
0022h										
0023h	SPICSR Boost Value	SPIF	WCOL	OR	MODF	0	SOD	SSM	SSI	
0,0	Reset Value SPICSR Reset Value	Pre	Joing	1(5)	00	SOLE	ste P	,001	JCILS	

SERIAL COMMUNICATIONS INTERFACE (Cont'd)

9.6.7 Register Description STATUS REGISTER (SCISR)

Read Only

Reset Value: 1100 0000 (C0h)

7							0
TDRE	тс	RDRF	IDLE	OR	NF	FE	PE

Bit 7 = **TDRE** *Transmit data register empty.*

This bit is set by hardware when the content of the TDR register has been transferred into the shift register. An interrupt is generated if the TIE bit = 1 in the SCICR2 register. It is cleared by a software sequence (an access to the SCISR register followed by a write to the SCIDR register).

0: Data is not transferred to the shift register

1: Data is transferred to the shift register

Note: Data is not transferred to the shift register unless the TDRE bit is cleared.

Bit 6 = **TC** *Transmission complete.*

This bit is set by hardware when transmission of a frame containing Data is complete. An interrupt is generated if TCIE = 1 in the SCICR2 register. It is cleared by a software sequence (an access to the SCISR register followed by a write to the SCIDR register).

0: Transmission is not complete

1: Transmission is complete

Note: TC is not set after the transmission of a Preamble or a Break.

Bit 5 = RDRF Received data ready flag.

This bit is set by hardware when the content of the RDR register has been transferred to the SCIDR register. An interrupt is generated if RIE = 1 in the SCICR2 register. It is cleared by a software sequence (an access to the SCISR register followed by a read to the SCIDR register).

0: Data is not received

1: Received data is ready to be read

Bit 4 = **IDLE** *Idle line detect.*

This bit is set by hardware when a Idle Line is detected. An interrupt is generated if the ILIE = 1 in the SCICR2 register. It is cleared by a software sequence (an access to the SCISR register followed by a read to the SCIDR register).

0: No Idle Line is detected

1: Idle Line is detected

Note: The IDLE bit is not set again until the RDRF bit has been set itself (that is, a new idle line occurs).

Bit 3 = **OR** Overrun error.

This bit is set by hardware when the word currently being received in the shift register is ready to be transferred into the RDR register while RDRF = 1. An interrupt is generated if RIE = 1 in the SCICR2 register. It is cleared by a software sequence (an access to the SCISR register followed by a read to the SCIDR register).

0: No Overrun error

1: Overrun error is detected

Note: When this bit is set RDR register content is not lost but the shift register is overwritten.

Bit 2 = NF Noise flag.

This bit is set by hardware when noise is detected on a received frame. It is cleared by a software sequence (an access to the SCISR register followed by a read to the SCIDR register).

0: No noise is detected

1: Noise is detected

Note: This bit does not generate interrupt as it appears at the same time as the RDRF bit which itself generates an interrupt.

Bit 1 = FE Framing error.

This bit is set by hardware when a de-synchronization, excessive noise or a break character is detected. It is cleared by a software sequence (an access to the SCISR register followed by a read to the SCIDR register).

0: No Framing error is detected

1: Framing error or break character is detected

Note: This bit does not generate interrupt as it appears at the same time as the RDRF bit which itself generates an interrupt. If the word currently being transferred causes both frame error and overrun error, it will be transferred and only the OR bit will be set.

Bit 0 = **PE** Parity error.

This bit is set by hardware when a parity error occurs in receiver mode. It is cleared by a software sequence (a read to the status register followed by an access to the SCIDR data register). An interrupt is generated if PIE = 1 in the SCICR1 register. 0: No parity error

1: Parity error

SERIAL COMMUNICATIONS INTERFACE (Cont'd) CONTROL REGISTER 2 (SCICR2)

Read/Write

Reset Value: 0000 0000 (00h)

7							0
TIE	TCIE	RIE	ILIE	TE	RE	RWU	SBK

Bit 7 = **TIE** *Transmitter interrupt enable.* This bit is set and cleared by software. 0: Interrupt is inhibited

1: An SCI interrupt is generated whenever

TDRE=1 in the SCISR register

Bit 6 = TCIE *Transmission complete interrupt enable*

This bit is set and cleared by software.

0: Interrupt is inhibited

1: An SCI interrupt is generated whenever TC=1 in the SCISR register

Bit 5 = **RIE** Receiver interrupt enable.

This bit is set and cleared by software.

- 0: Interrupt is inhibited
- 1: An SCI interrupt is generated whenever OR=1 or RDRF=1 in the SCISR register

Bit 4 = ILIE Idle line interrupt enable.

This bit is set and cleared by software.

0: Interrupt is inhibited

1: An SCI interrupt is generated whenever IDLE=1 in the SCISR register.

Bit 3 = **TE** Transmitter enable.

This bit enables the transmitter. It is set and cleared by software. 0: Transmitter is disabled

1: Transmitter is enabled

Notes:

- During transmission, a "0" pulse on the TE bit ("0" followed by "1") sends a preamble (idle line) after the current word.
- When TE is set there is a 1 bit-time delay before the transmission starts.

CAUTION: The TDO pin is free for general purpose I/O only when the TE and RE bits are both cleared (or if TE is never set).

Bit 2 = **RE** Receiver enable.

This bit enables the receiver. It is set and cleared by software.

- 0: Receiver is disabled
- 1: Receiver is enabled and begins searching for a start bit

Bit 1 = **RWU** Receiver wake-up.

This bit determines if the SCI is in mute mode or not. It is set and cleared by software and can be cleared by hardware when a wake-up sequence is recognized.

0: Receiver in Active mode

1: Receiver in Mute mode

Note: Before selecting Mute mode (setting the RWU bit), the SCI must receive some data first, otherwise it cannot function in Mute mode with wake-up by idle line detection.

Bit 0 = **SBK** Send break.

This bit set is used to send break characters. It is set and cleared by software.

0: No break character is transmitted

1: Break characters are transmitted

Note: If the SBK bit is set to "1" and then to "0", the transmitter sends a BREAK word at the end of the current word.

SERIAL COMMUNICATIONS INTERFACE (Cont'd) DATA REGISTER (SCIDR)

Read/Write

Reset Value: Undefined

Contains the Received or Transmitted data character, depending on whether it is read from or written to.

7							0
DR7	DR6	DR5	DR4	DR3	DR2	DR1	DR0

The Data register performs a double function (read and write) since it is composed of two registers, one for transmission (TDR) and one for reception (RDR).

The TDR register provides the parallel interface between the internal bus and the output shift register (see Figure 57).

The RDR register provides the parallel interface between the input shift register and the internal bus (see Figure 57).

BAUD RATE REGISTER (SCIBRR)

Read/Write

Reset Value: 0000 0000 (00h)

SCP1 SCP0 SCT2 SCT1 SCT0 SCR2 SCR1 SCR0								
	SCP1	SCP0	SCT2	SCT1	SCT0	SCR2	SCR1	SCR0

Bits 7:6 = SCP[1:0] First SCI Prescaler

These 2 prescaling bits allow several standard clock division ranges:

PR Prescaling factor	SCP1	SCP0
cD'	0	0
3	0	1
4	1	0
13	1	1

Bits 5:3 = **SCT[2:0]** *SCI Transmitter rate divisor* These 3 bits, in conjunction with the SCP1 & SCP0 bits define the total division applied to the bus clock to yield the transmit rate clock in conventional Baud Rate Generator mode.

TR dividing factor	SCT2	SCT1	SCT0	
1	0	0	0	
2	0	0	1	
4	0	1	0	
8	0	1	1	
16	1	0	0	5
32	1	0		
64	1	1	0	
128	1	5	1	

Bits 2:0 = **SCR[2:0]** *SCI Receiver rate divisor.* These 3 bits, in conjunction with the SCP[1:0] bits define the total division applied to the bus clock to yield the receive rate clock in conventional Baud Rate Generator mode.

RR Dividing factor	SCR2	SCR1	SCR0
	0	0	0
2	0	0	1
4	0	1	0
8	0	1	1
16	1	0	0
32	1	0	1
64	1	1	0
128	1	1	1

SERIAL COMMUNICATIONS INTERFACE (Cont'd) EXTENDED RECEIVE PRESCALER DIVISION REGISTER (SCIERPR)

Read/Write

Reset Value: 0000 0000 (00h)

Allows setting of the Extended Prescaler rate division factor for the receive circuit.

7							0
ERPR							
7	6	5	4	3	2	1	0

Bits 7:0 = **ERPR[7:0]** 8-bit Extended Receive Prescaler Register.

The extended Baud Rate Generator is activated when a value different from 00h is stored in this register. Therefore the clock frequency issued from the 16 divider (see Figure 59) is divided by the binary factor set in the SCIERPR register (in the range 1 to 255).

The extended baud rate generator is not used after a reset.

Table 20. Baudrate Selection

EXTENDED TRANSMIT PRESCALER DIVISION REGISTER (SCIETPR)

Read/Write

Reset Value:0000 0000 (00h)

Allows setting of the External Prescaler rate division factor for the transmit circuit.

7							0	
ETPR								
7	6	5	4	3	2	1	0	

Bits 7:0 = **ETPR[7:0]** 8-bit Extended Transmit Prescaler Register.

The extended Baud Rate Generator is activated when a value different from 00h is stored in this register. Therefore the clock frequency issued from the 16 divider (see Figure 59) is divided by the binary factor set in the SCIETPR register (in the range 1 to 255).

The extended baud rate generator is not used after a reset.

			Cor		Baud		
Symbol	Parameter	f _{CPU}	Accuracy vs Standard	Prescaler	Standard	Rate	Unit
f _{Tx} f _{Rx}	Communication frequency	8 MHz	~0.16%	Conventional Mode TR (or RR)=128, PR=13 TR (or RR)= 32, PR=13 TR (or RR)= 16, PR=13 TR (or RR)= 8, PR=13 TR (or RR)= 4, PR=13 TR (or RR)= 16, PR= 3 TR (or RR)= 2, PR=13 TR (or RR)= 1, PR=13	19200	~4807.69	Hz
O	02-		~0.79%	Extended Mode ETPR (or ERPR) = 35, TR (or RR)= 1, PR=1	14400	~14285.71	

I²C INTERFACE (Cont'd)

How to release the SDA / SCL lines

Set and subsequently clear the STOP bit while BTF is set. The SDA/SCL lines are released after the transfer of the current byte.

SMBus Compatibility

ST7 I²C is compatible with SMBus V1.1 protocol. It supports all SMBus adressing modes, SMBus bus protocols and CRC-8 packet error checking. Refer to AN1713: SMBus Slave Driver For ST7 I²C Peripheral.

9.7.4.2 Master Mode

To switch from default Slave mode to Master mode a Start condition generation is needed.

Start condition

Setting the START bit while the BUSY bit is cleared causes the interface to switch to Master mode (M/SL bit set) and generates a Start condition.

Once the Start condition is sent:

 The EVF and SB bits are set by hardware with an interrupt if the ITE bit is set.

Then the master waits for a read of the SR1 register followed by a write in the DR register with the Slave address, **holding the SCL line low** (see Figure 63 Transfer sequencing EV5).

Slave address transmission

Then the slave address is sent to the SDA line via the internal shift register.

In 7-bit addressing mode, one address byte is sent.

In 10-bit addressing mode, sending the first byte including the header sequence causes the following event:

 The EVF bit is set by hardware with interrupt generation if the ITE bit is set.

Then the master waits for a read of the SR1 register followed by a write in the DR register, **holding the SCL line low** (see Figure 63 Transfer sequencing EV9). Then the second address byte is sent by the interface.

After completion of this transfer (and acknowledge from the slave if the ACK bit is set):

 The EVF bit is set by hardware with interrupt generation if the ITE bit is set.

Then the master waits for a read of the SR1 register followed by a write in the CR register (for example set PE bit), **holding the SCL line low** (see Figure 63 Transfer sequencing EV6).

Next the master must enter Receiver or Transmitter mode.

Note: In 10-bit addressing mode, to switch the master to Receiver mode, software must generate a repeated Start condition and resend the header sequence with the least significant bit set (11110xx1).

Master Receiver

Following the address transmission and after SR1 and CR registers have been accessed, the master receives bytes from the SDA line into the DR register via the internal shift register. After each byte the interface generates in sequence:

- Acknowledge pulse if the ACK bit is set
- EVF and BTF bits are set by hardware with an interrupt if the ITE bit is set.

Then the interface waits for a read of the SR1 register followed by a read of the DR register, **holding the SCL line low** (see Figure 63 Transfer sequencing EV7).

To close the communication: before reading the last byte from the DR register, set the STOP bit to generate the Stop condition. The interface goes automatically back to slave mode (M/SL bit cleared).

Note: In order to generate the non-acknowledge pulse after the last received data byte, the ACK bit must be cleared just before reading the second last data byte.

OPERATING CONDITIONS (Cont'd)

11.3.2 Operating Conditions with Low Voltage Detector (LVD)

Subject to general operating conditions for V_{DD} , f_{CPU} , and T_A .

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	Reset release threshold	VD level = High in option byte	4.0 ¹⁾	4.2	4.5	
V _{IT+(LVD)}	(V _{DD} rise)	VD level = Med. in option byte ²⁾	3.55 ¹⁾	3.75	4.0 ¹⁾	
· · · ·		VD level = Low in option byte ²⁾	2.95 ¹⁾	3.15	3.35 ¹⁾	v
V _{IT-(LVD)}	Pasat gaparation thrashold	VD level = High in option byte	3.8	4.0	4.25 ¹⁾	v
	Reset generation threshold (V _{DD} fall)	VD level = Med. in option byte ²⁾	3.35 ¹⁾	3.55	3.75 ¹⁾⁾	
		VD level = Low in option byte ²⁾	2.8 ¹⁾	3.0	3.15 ¹⁾	
V _{hys(LVD)}	LVD voltage threshold hysteresis	V _{IT+(LVD)} -V _{IT-(LVD)}		200		mV
Vt _{POR}	V _{DD} rise time ³⁾²⁾	LVD enabled	6 μs/V		100 ms/V	×
t _{g(VDD)}	V_{DD} glitches filtered (not detected) by LVD $^{\rm 3)}$				40	ns

Notes:

1. Data based on characterization results, not tested in production.

2. If the medium or low thresholds are selected, the detection may occur outside the specified operating voltage range. Below 3.8 V, device operation is not guaranteed.

3. Data based on characterization results, not tested in production.

3. When Vt_{POR} is faster than 100 μ s/V, the Reset signal is released after a delay of max. 42 μ s after V_{DD} crosses the V_{IT+(LVD)} threshold.

11.3.3 Auxiliary Voltage Detector (AVD) Thresholds

Subject to general operating conditions for V_{DD} , f_{CPU} , and T_{A} .

Symbol	Parameter	C Conditions	Min	Тур	Max	Unit
	1 \Rightarrow 0 AVDF flag toggle threshold	VD level = High in option byte	4.4 ¹⁾	4.6	4.9 ¹⁾	
V _{IT+(AVD)}	(V _{DD} rise)	VD level = Med. in option byte	3.95 ¹⁾	4.15	4.4 ¹⁾	
(VD level = Low in option byte	3.4 ¹⁾	3.6	3.8 ¹⁾	V
	$0 \Rightarrow 1 \text{ AVDF}$ flag toggle threshold	VD level = High in option byte	4.2 ¹⁾	4.4	4.65 ¹⁾	v
V _{IT-(AVD)}	$(V_{DD} fall)$	VD level = Med. in option byte	3.75 ¹⁾	4.0	4.2 ¹⁾	
VIT-(AVD)		VD level = Low in option byte	3.2 ¹⁾	3.4	3.6 ¹⁾	
V _{hys(AVD)}	AVD voltage threshold hysteresis	V _{IT+(AVD)} -V _{IT-(AVD)}		200		mV
ΔV_{IT-}	Voltage drop between AVD flag set and LVD reset activated	V _{IT-(AVD)} -V _{IT-(LVD)}		450		mV

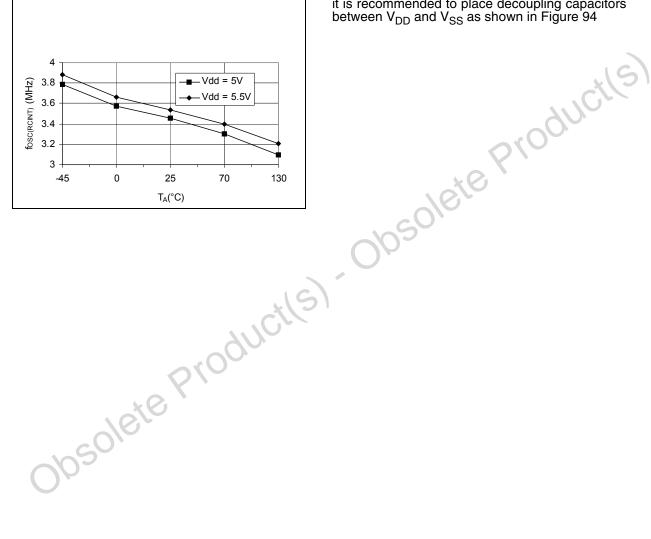
1. Data based on characterization results, not tested in production.

11.3.4 External Voltage Detector (EVD) Thresholds

Subject to general operating conditions for V_{DD} , f_{CPU} , and T_A .

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IT+(EVD)}	1⇒0 AVDF flag toggle threshold $(V_{DD} rise)^{1)}$		1.15	1.26	1.35	V
V _{IT-(EVD)}	$0 \Rightarrow 1 \text{ AVDF flag toggle threshold} (V_{DD} \text{ fall})^{1)}$		1.1	1.2	1.3	v
V _{hys(EVD)}	EVD voltage threshold hysteresis	V _{IT+(EVD)} -V _{IT-(EVD)}		200		mV

1. Data based on characterization results, not tested in production.



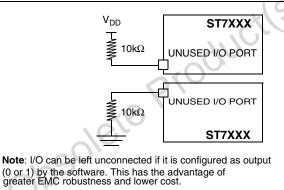
CLOCK CHARACTERISTICS (Cont'd)

11.5.4 RC Oscillators

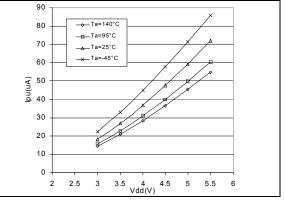
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
fosc (RCINT)	Internal RC oscillator frequency See Figure 74	T _A =25 °C, V _{DD} =5 V	2	3.5	5.6	MHz

Figure 74. Typical f_{OSC(RCINT)} vs T_A

Note: To reduce disturbance to the RC oscillator, it is recommended to place decoupling capacitors between V_{DD} and V_{SS} as shown in Figure 94


11.8 I/O PORT PIN CHARACTERISTICS

11.8.1 General Characteristics


Subject to general operating conditions for V_{DD} , f_{OSC} , and T_A unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL}	Input low level voltage 1)				$0.3 x V_{DD}$	
V _{IH}	Input high level voltage 1)	CMOS ports	$0.7 \mathrm{xV}_{\mathrm{DD}}$			
V _{hys}	Schmitt trigger voltage hysteresis 2)			0.7		v
V _{IL}	Input low level voltage ¹⁾				0.8	v
V _{IH}	Input high level voltage ¹⁾	TTL ports	2			
V _{hys}	Schmitt trigger voltage hysteresis 2)			1		
ı 3)	Injected Current on PC6		0		+4	19
$\left _{\rm INJ(PIN)}^{3}\right $	Injected Current on an I/O pin	V _{DD} =5 V			± 4	mA
$\Sigma I_{\text{INJ}(\text{PIN})}^{3)}$	Total injected current (sum of all I/O and control pins)	•DD-2 •			± 25	
١L	Input leakage current	V _{SS} ≤V _{IN} ≤V _{DD}		S S	±1	
I _S	Static current consumption	Floating input mode ⁴⁾		400		μA
R _{PU}	Weak pull-up equivalent resistor 5)	V _{IN} =V _{SS} V _{DD} =5 V	50	120	250	kΩ
C _{IO}	I/O pin capacitance		26	5		pF
t _{f(IO)out}	Output high to low level fall time 1)	C _L =50 pF	0,	25		200
t _{r(IO)out}	Output low to high level rise time ¹⁾	Between 10% and 90%	7	25		ns
t _{w(IT)in}	External interrupt pulse time 6)	U.	1			t _{CPU}

Figure 76. Unused I/O Pins configured as input

Figure 77. Typical I_{PU} vs. V_{DD} with V_{IN}=V_{SS}

47/

Notes:

1. Data based on characterization results, not tested in production.

2. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested.

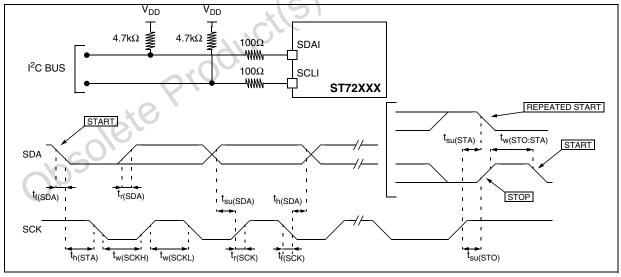
3. When the current limitation is not possible, the V_{IN} maximum must be respected, otherwise refer to $I_{INJ(PIN)}$ specification. A positive injection is induced by V_{IN} >V_{DD} while a negative injection is induced by V_{IN} <V_{SS}. Refer to section 11.2.2 on page 135 for more details.

4. Configuration not recommended, all unused pins must be kept at a fixed voltage: using the output mode of the I/O for example and leaving the I/O unconnected on the board or an external pull-up or pull-down resistor (see Figure 76). Data based on design simulation and/or technology characteristics, not tested in production.

5. The R_{PU} pull-up equivalent resistor is based on a resistive transistor (corresponding I_{PU} current characteristics described in Figure 77).

6. To generate an external interrupt, a minimum pulse width has to be applied on an I/O port pin configured as an external interrupt source.

COMMUNICATION INTERFACE CHARACTERISTICS (Cont'd)


11.11.2 I²C - Inter IC Control Interface

Subject to general operating conditions for $V_{DD},\,f_{CPU},$ and T_A unless otherwise specified.

Refer to I/O port characteristics for more details on the input/output alternate function characteristics (SDAI and SCLI). The ST7 I^2C interface meets the requirements of the Standard I^2C communication protocol described in the following table.

Symbol	Parameter	Standard	mode I ² C	Fast mo	ode I ² C ⁵⁾	11
	Parameter	Min ¹⁾	Max ¹⁾	Min ¹⁾	Max ¹⁾	Unit
t _{w(SCLL)}	SCL clock low time	4.7		1.3		
t _{w(SCLH)}	SCL clock high time	4.0		0.6		μs
t _{su(SDA)}	SDA setup time	250		100		10
t _{h(SDA)}	SDA data hold time	0 ³⁾		0 ²⁾	900 ³⁾	\sim
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time		1000	20+0.1C _b	300	ns
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time		300	20+0.1C _b	300	
t _{h(STA)}	START condition hold time	4.0	x	0.6		
t _{su(STA)}	Repeated START condition setup time	4.7	101	0.6		μs
t _{su(STO)}	STOP condition setup time	4.0	0,	0.6		μs
t _{w(STO:STA)}	STOP to START condition time (bus free)	4.7	2	1.3		μs
Cb	Capacitive load for each bus line		400		400	pF

Figure 90. Typical Application with I²C Bus and Timing Diagram⁴⁾

Notes:

1. Data based on standard I²C protocol requirement, not tested in production.

2. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL.

3. The maximum hold time of the START condition has only to be met if the interface does not stretch the low period of SCL signal.

4. Measurement points are done at CMOS levels: $0.3xV_{DD}$ and $0.7xV_{DD}$.

5. At 4 MHz f_{CPU}, max.I²C speed (400 kHz) is not achievable. In this case, max. I²C speed will be approximately 260 kHz.

13 ST72321Mx DEVICE CONFIGURATION AND ORDERING INFORMATION

Each device is available for production in user programmable versions (Flash). Flash devices are shipped to customers with a default content. This implies that Flash devices have to be configured by the customer using the Option Bytes.

13.1 FLASH OPTION BYTES

	STATIC OPTION BYTE 0								STATIC OPTION BYTE 1							
	7							0	7							0
	W	DG	s.	RG0 DA				2	OSC.	TYPE	05	SCRAN	GE	OFF		
	HALT	SW	Res	1	0	Resei	ΡK	FMF	PKG	RS.	1	0	2	1	0	BLLO
Default	1	1	1	0	0	1	1	1	1	1	1	0	1	1	1	1

The option bytes allow the hardware configuration of the microcontroller to be selected. They have no address in the memory map and can be accessed only in programming mode (for example using a standard ST7 programming tool). The default content of the Flash is fixed to FFh. To program the Flash devices directly using ICP, Flash devices are shipped to customers with the internal RC clock source.

OPTION BYTE 0

OPT7= **WDG HALT** *Watchdog and Halt mode* This option bit determines if a RESET is generated when entering Halt mode while the Watchdog is active.

0: No Reset generation when entering Halt mode 1: Reset generation when entering Halt mode

OPT6= **WDG SW** *Hardware or software watchdog* This option bit selects the watchdog type. 0: Hardware (watchdog always enabled)

1: Software (watchdog to be enabled by software)

OPT5 = Reserved, must be kept at default value.

OPT4:3= VD[1:0] Voltage detection

These option bits enable the voltage detection block (LVD, and AVD) with a selected threshold for the LVD and AVD (EVD+AVD).

Selected Low Voltage Detector	VD1	VD0
LVD and AVD Off	1	1
Lowest Threshold: (V _{DD} ~3 V)	1	0
Med. Threshold (V _{DD} ~3.5 V)	0	1
Highest Threshold (V _{DD} ~4 V)	0	0

Caution: If the medium or low thresholds are selected, the detection may occur outside the specified operating voltage range. Below 3.8V, device operation is not guaranteed.

