

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	20
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	25-UFBGA, WLCSP
Supplier Device Package	25-WLCSP (2.1x2.49)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l031e6y6dtr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		6.3.16	Temperature sensor characteristics	87
		6.3.17	Comparators	88
		6.3.18	Timer characteristics	89
		6.3.19	Communications interfaces	90
7	Pack	kage info	ormation	96
	7.1	LQFP4	8 package information	
	7.2	LQFP3	2 package information	
	7.3	UFQFF	PN32 package information	102
	7.4	UFQFF	PN28 package information	104
	7.5	WLCSF	P25 package information	106
	7.6	TSSOF	20 package information	109
	7.7	Therma	al characteristics	
		7.7.1	Reference document	113
8	Part	number	ing	114
9	Revi	sion his	tory	115

The Cortex-M0+ processor closely integrates a configurable Nested Vectored Interrupt Controller (NVIC), to deliver industry-leading interrupt performance. The NVIC:

- includes a Non-Maskable Interrupt (NMI)
- provides zero jitter interrupt option
- provides four interrupt priority levels

The tight integration of the processor core and NVIC provides fast execution of Interrupt Service Routines (ISRs), dramatically reducing the interrupt latency. This is achieved through the hardware stacking of registers, and the ability to abandon and restart load-multiple and store-multiple operations. Interrupt handlers do not require any assembler wrapper code, removing any code overhead from the ISRs. Tail-chaining optimization also significantly reduces the overhead when switching from one ISR to another.

To optimize low-power designs, the NVIC integrates with the sleep modes, that include a deep sleep function that enables the entire device to enter rapidly stop or standby mode.

This hardware block provides flexible interrupt management features with minimal interrupt latency.

3.4 Reset and supply management

3.4.1 Power supply schemes

- V_{DD} = 1.65 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through V_{DD} pins.
- V_{SSA}, V_{DDA} = 1.65 to 3.6 V: external analog power supplies for ADC, reset blocks, RCs and PLL. V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS}, respectively.

3.4.2 Power supply supervisor

The devices feature an integrated ZEROPOWER power-on reset (POR)/power-down reset (PDR) that can be coupled with a brownout reset (BOR) circuitry.

Two versions are available:

- The version with BOR activated at power-on operates between 1.8 V and 3.6 V.
- The other version without BOR operates between 1.65 V and 3.6 V.

After the V_{DD} threshold is reached (1.65 V or 1.8 V depending on the BOR which is active or not at power-on), the option byte loading process starts, either to confirm or modify default thresholds, or to disable the BOR permanently: in this case, the VDD min value becomes 1.65 V (whatever the version, BOR active or not, at power-on).

When BOR is active at power-on, it ensures proper operation starting from 1.8 V whatever the power ramp-up phase before it reaches 1.8 V. When BOR is not active at power-up, the power ramp-up should guarantee that 1.65 V is reached on V_{DD} at least 1 ms after it exits the POR area.

Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To reduce the power consumption in Stop mode, it is possible to automatically switch off the internal reference voltage (V_{REFINT}) in Stop mode. The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$ or V_{BOR} , without the need for any external reset circuit.

3.6 Low-power real-time clock and backup registers

The real time clock (RTC) and the 5 backup registers are supplied in all modes including standby mode. The backup registers are five 32-bit registers used to store 20 bytes of user application data. They are not reset by a system reset, or when the device wakes up from Standby mode.

The RTC is an independent BCD timer/counter. Its main features are the following:

- Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format
- Automatically correction for 28, 29 (leap year), 30, and 31 day of the month
- Two programmable alarms with wake up from Stop and Standby mode capability
- Periodic wakeup from Stop and Standby with programmable resolution and period
- On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock.
- Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision.
- Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy
- 2 anti-tamper detection pins with programmable filter. The MCU can be woken up from Stop and Standby modes on tamper event detection.
- Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be woken up from Stop and Standby modes on timestamp event detection.

The RTC clock sources can be:

- A 32.768 kHz external crystal
- A resonator or oscillator
- The internal low-power RC oscillator (typical frequency of 37 kHz)
- The high-speed external clock

3.7 General-purpose inputs/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions, and can be individually remapped using dedicated alternate function registers. All GPIOs are high current capable. Each GPIO output, speed can be slowed (40 MHz, 10 MHz, 2 MHz, 400 kHz). The alternate function configuration of I/Os can be locked if needed following a specific sequence in order to avoid spurious writing to the I/O registers. The I/O controller is connected to a dedicated IO bus with a toggling speed of up to 32 MHz.

Extended interrupt/event controller (EXTI)

The extended interrupt/event controller consists of 26 edge detector lines used to generate interrupt/event requests. Each line can be individually configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 38 GPIOs can be connected to the 16 configurable interrupt/event lines. The 10 other lines are connected to PVD, RTC, USART, I2C, LPUART, LPTIMER or comparator events.

3.12 Ultra-low-power comparators and reference voltage

The STM32L031x4/6 embed two comparators sharing the same current bias and reference voltage. The reference voltage can be internal or external (coming from an I/O).

- One comparator with ultra low consumption
- One comparator with rail-to-rail inputs, fast or slow mode.
- The threshold can be one of the following:
 - External I/O pins
 - Internal reference voltage (V_{REFINT})
 - submultiple of Internal reference voltage(1/4, 1/2, 3/4) for the rail to rail comparator.

Both comparators can wake up the devices from Stop mode, and be combined into a window comparator.

The internal reference voltage is available externally via a low-power / low-current output buffer (driving current capability of 1 μ A typical).

3.13 System configuration controller

The system configuration controller provides the capability to remap some alternate functions on different I/O ports.

The highly flexible routing interface allows the application firmware to control the routing of different I/Os to the TIM2, TIM21, TIM22 and LPTIM timer input captures. It also controls the routing of internal analog signals to the ADC, COMP1 and COMP2 and the internal reference voltage V_{REFINT} .

3.14 Timers and watchdogs

The ultra-low-power STM32L031x4/6 devices include three general-purpose timers, one low- power timer (LPTM), two watchdog timers and the SysTick timer.

Table 9 compares the features of the general-purpose and basic timers.

Timer	Counter resolution	Counter type	Prescaler factor	escaler factor DMA request generation Capture/compare channels		Complementary outputs
TIM2	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No
TIM21, TIM22	16-bit	Up, down, up/down	Any integer between 1 and 65536	No	2	No

 Table 9. Timer feature comparison

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

6.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_Amax$ (given by the selected temperature range).

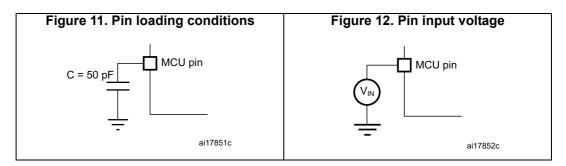
Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

6.1.2 Typical values

Unless otherwise specified, typical data are based on T_A = 25 °C, V_{DD} = 3.6 V (for the 1.65 V $\leq V_{DD} \leq$ 3.6 V voltage range). They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$).

6.1.3 Typical curves


Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 11*.

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 12*.

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 17: Voltage characteristics*, *Table 18: Current characteristics*, and *Table 19: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Мах	Unit
V _{DD} -V _{SS}	External main supply voltage (including V_{DDA} , V_{DD}) ⁽¹⁾	-0.3	4.0	
Input voltage on FT and FTf pins		$V_{SS} - 0.3$	V _{DD} +4.0	
V _{IN} ⁽²⁾	Input voltage on TC pins	$V_{SS} - 0.3$	4.0	V
VIN' /	Input voltage on BOOT0	V _{SS}	$V_{DD} + 4.0$	
	Input voltage on any other pin	$V_{SS} - 0.3$	4.0	
$ \Delta V_{DD} $	Variations between different V _{DDx} power pins	-	50	
V _{DDA} -V _{DDx}	$ V_{DDA}-V_{DDX} $ Variations between any V_{DDX} and V_{DDA} power pins ⁽³⁾		300	mV
$ \Delta V_{SS} $ Variations between all different ground pins		-	50	
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Section 6.3.11		

Table 17	. Voltage	characteristics
----------	-----------	-----------------

1. All main power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. V_{IN} maximum must always be respected. Refer to *Table 18* for maximum allowed injected current values.

3. It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up and device operation.

6.3.3 Embedded internal reference voltage

The parameters given in *Table 23* are based on characterization results, unless otherwise specified.

Table 22. Embedded internal reference voltage calib	ration values
---	---------------

Calibration value name	Description	Memory address
VREFINT_CAL	Raw data acquired at temperature of 25 °C, V_{DDA} = 3 V	0x1FF8 0078 - 0x1FF8 0079

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
V _{REFINT out} ⁽²⁾	Internal reference voltage	– 40 °C < T _J < +125 °C	1.202	1.224	1.242	V		
T _{VREFINT}	Internal reference startup time	-	-	2	3	ms		
V _{VREF_MEAS}	V _{DDA} voltage during V _{REFINT} factory measure	-	2.99	3	3.01	V		
Avref_meas	Accuracy of factory-measured V _{REFINT} value ⁽³⁾	Including uncertainties due to ADC and V_{DDA} values	-	-	±5	mV		
T _{Coeff} ⁽⁴⁾	Temperature coefficient	–40 °C < T _J < +125 °C	-	25	100	ppm/°C		
A _{Coeff} ⁽⁴⁾	Long-term stability	1000 hours, T= 25 °C	-	-	1000	ppm		
V _{DDCoeff} ⁽⁴⁾	Voltage coefficient	3.0 V < V _{DDA} < 3.6 V	-	-	2000	ppm/V		
T _{S_vrefint} ⁽⁴⁾⁽⁵⁾	ADC sampling time when reading the internal reference voltage	-	5	10	-	μs		
T _{ADC_BUF} ⁽⁴⁾	Startup time of reference voltage buffer for ADC	-	-	-	10	μs		
I _{BUF_ADC} ⁽⁴⁾	Consumption of reference voltage buffer for ADC	-	-	13.5	25	μA		
I _{VREF_OUT} ⁽⁴⁾	VREF_OUT output current ⁽⁶⁾	-	-	-	1	μA		
C _{VREF_OUT} ⁽⁴⁾	VREF_OUT output load	-	-	-	50	pF		
I _{LPBUF} ⁽⁴⁾	Consumption of reference voltage buffer for VREF_OUT and COMP	-	-	730	1200	nA		
V _{REFINT_DIV1} ⁽⁴⁾	1/4 reference voltage	-	24	25	26			
V _{REFINT_DIV2} ⁽⁴⁾	1/2 reference voltage	-	49	50	51	% V _{REFINT}		
V _{REFINT_DIV3} ⁽⁴⁾	3/4 reference voltage	-	74	75	76	KEFINI		

Table 23. Embedded internal reference voltage⁽¹⁾

1. Refer to *Table 35: Peripheral current consumption in Stop and Standby mode* for the value of the internal reference current consumption (I_{REFINT}).

2. Guaranteed by test in production.

3. The internal V_{REF} value is individually measured in production and stored in dedicated EEPROM bytes.

4. Guaranteed by design.

5. Shortest sampling time can be determined in the application by multiple iterations.

6. To guarantee less than 1% VREF_OUT deviation.

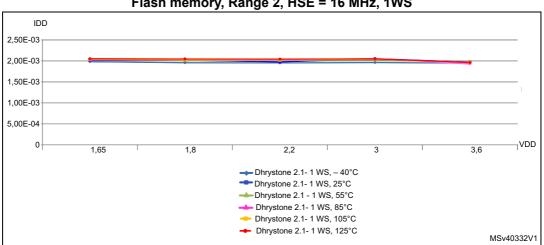
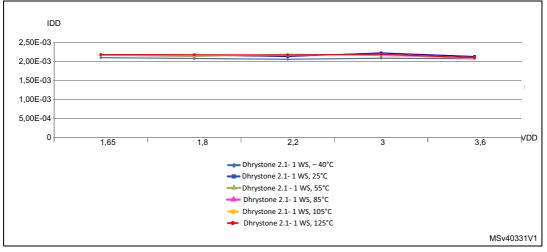



Figure 15. I_{DD} vs V_{DD} , at T_A = 25/55/85/105 °C, Run mode, code running from Flash memory, Range 2, HSE = 16 MHz, 1WS

Figure 16. I_{DD} vs V_{DD}, at T_A= 25/55/85/105 °C, Run mode, code running from Flash memory, Range 2, HSI16, 1WS

Symbol	Parameter	Conc	litions	f _{HCLK}	Тур	Max ⁽¹⁾	Unit
			Range 3,	1 MHz	115	170	
		V _{CORE} =1.2 V,	2 MHz	210	250	μA	
		VOS[1:0]=11	4 MHz	385	420		
		f _{HSE} = f _{HCLK} up to 16 MHz. included	Range 2,	4 MHz	0.48	0.6	
		$f_{HSE} = f_{HCLK}/2$ above	V _{CORE} =1.5 ,V,	8 MHz	0.935	1.1	
Supply current in I _{DD} (Run Run mode, code	16 MHz (PLL ON) ⁽²⁾	VOS[1:0]=10	16 MHz	1.8	2	mA	
		Range 1, V _{CORE} =1.8 V,	8 MHz	1.1	1.3		
			16 MHz	2.1	2.3		
from RAM)	rom executed from		VOS[1:0]=01	32 MHz	4.5	4.7	
	switched OFF	MSI clock	Range 3, V _{CORE} =1.2 V,	65 kHz	22	52	
				524 kHz	70.5	91	μA
			VOS[1:0]=11	4.2 MHz	420	450	
	HSI16 clock source	Range 2, V _{CORE} =1.5 V, VOS[1:0]=10	16 MHz	1.95	2.2		
		(16 MHz)	Range 1, V _{CORE} =1.8 V, VOS[1:0]=01	32 MHz	4.7	5.1	mA

1. Guaranteed by characterization results at 125 $^\circ\text{C},$ unless otherwise specified.

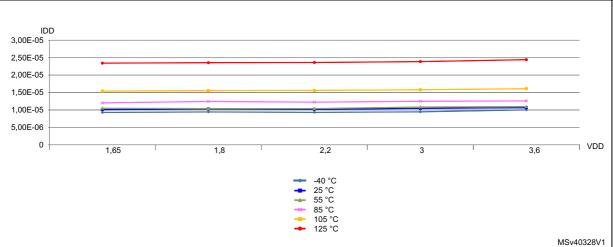
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

Table 27. Current consumption in Run mode vs code type,code with data processing running from RAM⁽¹⁾

Symbol	Parameter		Conditions		f _{HCLK}	Тур	Unit
				Dhrystone		385	
			Range 3,	CoreMark		395	
	Supply current in	f _ f	V _{CORE} =1.2 V, VOS[1:0]=11	Fibonacci	4 MHz	360	μA
I _{DD} (Run	$\begin{array}{c c} & \text{Run mode, code} \\ \text{om} & \text{Run mode, code} \\ \text{executed from} \\ \text{executed from} \\ \end{array} \begin{array}{c} \text{T}_{\text{HSE}} = \text{T}_{\text{HCLK}} \text{ up to To} \\ \text{MHz, included,} \\ function of the secure o$	MHz included		while(1)		265	
RAM)		f _{HSE} = f _{HCLK} /2 above	$f_{HSE} = f_{HCLK}/2$ above	Dhrystone		4.5	
		Range 1, V _{CORE} =1.8 V,	CoreMark	32 MHz	4.65	mA	
		V _{CORE} -1.8 v, VOS[1:0]=01	Fibonacci		4.2	ШA	
				while(1)		3.05	

1. Guaranteed by characterization results, unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).


Symbol	Parameter	Conc	litions	f _{HCLK}	Тур	Max ⁽¹⁾	Unit
			Range 3,	1 MHz	36.5	87	
			V _{CORE} =1.2 V,	2 MHz	58	100	
			VOS[1:0]=11	4 MHz	100	170	
		f _{HSE} = f _{HCLK} up to 16 MHz included,	Range 2,	4 MHz	125	190	-
		$f_{HSE} = f_{HCLK}/2$	V _{CORE} =1.5 V,	8 MHz	230	310	
		above 16 MHz (PLL ON) ⁽²⁾	VOS[1:0]=10	16 MHz	450	540	-
			Range 1,	8 MHz	275	360	-
	Supply current		V _{CORE} =1.8 V,	16 MHz	555	650	
	in Sleep mode, Flash		VOS[1:0]=01	32 MHz	1350	1600	-
	memory OFF	HSI16 clock source	Range 2, V _{CORE} =1.5 V, VOS[1:0]=10	16 MHz	585	690	-
		(16 MHz)	Range 1, V _{CORE} =1.8 V, VOS[1:0]=01	32 MHz	1500	1700	
		MSI clock	Range 3, V _{CORE} =1.2 V, VOS[1:0]=11	65 kHz	17	43	-
				524 kHz	28	55	- μA -
(0)				4.2 MHz	115	190	
I _{DD} (Sleep)		$f_{HSE} = f_{HCLK}$ up to 16 MHz included, $f_{HSE} = f_{HCLK}/2$ above 16 MHz (PLL ON) ⁽²⁾	Range 3, V _{CORE} =1.2 V, VOS[1:0]=11	1 MHz	49	160	
				2 MHz	69	190	
				4 MHz	115	230	
			Range 2, _{CORE} =1.5 V, VOS[1:0]=10	4 MHz	135	200	
				8 MHz	240	320	
				16 MHz	460	550	
			Range 1, V _{CORE} =1.8 V,	8 MHz	290	370	-
	Supply current			16 MHz	565	670	-
	in Sleep mode, Flash		VOS[1:0]=01	32 MHz	1350	1600	
	memory ON	HSI16 clock source	Range 2, V _{CORE} =1.5 V, VOS[1:0]=10	16 MHz	600	700	-
		(16 MHz)	Range 1, V _{CORE} =1.8 V, VOS[1:0]=01	32 MHz	1500	1700	
			Range 3,	65 kHz	28	55	1
		MSI clock	V _{CORE} =1.2 V,	524 kHz	39.5	67	1
			VOS[1:0]=11	4.2 MHz	125	200	1

1. Guaranteed by characterization results at 125 °C, unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

Symbol	Parameter		Conditions		Тур	Max ⁽¹⁾	Unit
			MSI clock, 65 kHz f _{HCLK} = 32 kHz Flash memory OFF	$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	3.2 ⁽²⁾	-	
				T_A = -40 °C to 25 °C	13	19	
			MSI clock, 65 kHz	T _A = 85 °C	16	21	
			f _{HCLK} = 32 kHz Flash memory ON	T _A = 105 °C	18.5	24	
	Supply All perig	т	T _A = 125 °C	23.5	32		
		ent in -power 1 65 V to 3 6 V	MSI clock, 65 kHz f _{HCLK} = 65 kHz, Flash memory ON	T_A = -40 °C to 25 °C	13.5	19	
I _{DD} (LP Sleep)	current in Low-power			T _A = 85 °C	16.5	21	μA
	sleep mode			T _A = 105 °C	18.5	24	
				T _A = 125 °C	24	33	
				T_A = -40 °C to 25 °C	15.5	21	
			MSI clock, 131 kHz	T _A = 55 °C	17.5	22	
			f _{HCLK} = 131 kHz,	T _A = 85 °C	18.5	23	
			Flash memory ON	T _A = 105 °C	21	26	
				T _A = 125 °C	26	35	

Table 30. Current consumption in Low-power Sleep mode

1. Guaranteed by characterization results at 125 °C, unless otherwise specified.

 As the CPU is in Sleep mode, the difference between the current consumption with Flash memory ON and OFF (nearly 12 μA) is the same whatever the clock frequency.

Low-speed external user clock generated from an external source

The characteristics given in the following table result from tests performed using a lowspeed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 20*.

r						
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSE_ext}	User external clock source frequency		1	32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage		0.7V _{DD}	-	V _{DD}	v
V _{LSEL}	OSC32_IN input pin low level voltage			-	0.3V _{DD}	v
t _{w(LSE)} t _{w(LSE)}	OSC32_IN high or low time		465	-	-	ns
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time		-	-	10	115
C _{IN(LSE)}	OSC32_IN input capacitance	-	-	0.6	-	pF
DuCy _(LSE)	Duty cycle	-	45	-	55	%
١L	OSC32_IN Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μA

Table 38. Low-speed external user clock characteristics⁽¹⁾

1. Guaranteed by design.

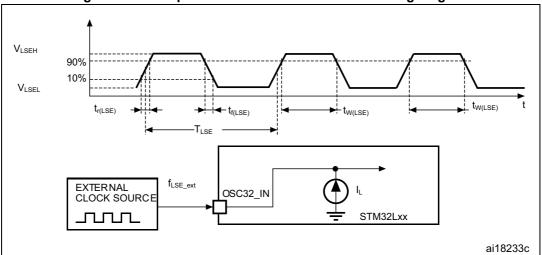


Figure 21. Low-speed external clock source AC timing diagram

Symbol	Parameter	Condition	Тур	Мах	Unit
		MSI range 0	30	-	
		MSI range 1	20	-	
		MSI range 2	15	-	
		MSI range 3	10	-	
touron	MSI oscillator startup time	MSI range 4	6	-	
t _{SU(MSI)}		MSI range 5	5	-	μs
		MSI range 6, Voltage range 1 and 2	3.5	-	
		MSI range 6, Voltage range 3	5	-	
		MSI range 0	-	40	
		MSI range 1	-	20	μs
	MSI oscillator stabilization time	MSI range 2	-	10	
		MSI range 3	-	4	
t _{STAB(MSI)} ⁽²⁾		MSI range 4	-	2.5	
STAB(MSI)		MSI range 5	-	2	μυ
		MSI range 6, Voltage range 1 and 2	-	2	
		MSI range 3, Voltage range 3	-	3	
f	MSI oscillator frequency overshoot	Any range to range 5	-	4	MHz
f _{OVER(MSI)}		Any range to range 6	-	6	

1. This is a deviation for an individual part, once the initial frequency has been measured.

2. Guaranteed by characterization results.

6.3.8 PLL characteristics

The parameters given in *Table 44* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 20*.

Symbol Parameter			Unit		
Symbol	Falanetei	Min	Тур	Max ⁽¹⁾	Unit
f	PLL input clock ⁽²⁾	2	-	24	MHz
^T PLL_IN	PLL input clock duty cycle	45	-	55	%

	Durante				
Symbol	Parameter	Min	Тур	Max ⁽¹⁾	Unit
f _{PLL_OUT}	PLL output clock	2	-	32	MHz
t _{LOCK}	PLL input = 16 MHz PLL VCO = 96 MHz	-	115	160	μs
Jitter	Cycle-to-cycle jitter	-		± 600	ps
I _{DDA} (PLL)	Current consumption on V _{DDA}	-	220	450	
I _{DD} (PLL)	Current consumption on V _{DD}	-	120	150	μA

Table 44. PLL characteristics (continued)

1. Guaranteed by characterization results.

2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by f_{PLL_OUT} .

6.3.9 Memory characteristics

RAM memory

Table 45. RAM and hardware registers

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VRM	Data retention mode ⁽¹⁾	STOP mode (or RESET)	1.65	-	-	V

1. Minimum supply voltage without losing data stored in RAM (in Stop mode or under Reset) or in hardware registers (only in Stop mode).

Flash memory and data EEPROM

Table 46. Flash memory and data EEPROM characteristics

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit
V _{DD}	Operating voltage Read / Write / Erase	-	1.65	-	3.6	V
+	Programming time for	Erasing	-	3.28	3.94	ms
t _{prog}	word or half-page	Programming	-	3.28	3.94	1115
	Average current during the whole programming / erase operation		-	500	700	μA
I _{DD}	Maximum current (peak) during the whole programming / erase operation	T _A = 25 °C, V _{DD} = 3.6 V	-	1.5	2.5	mA

1. Guaranteed by design.

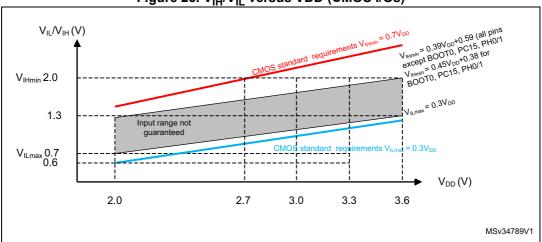
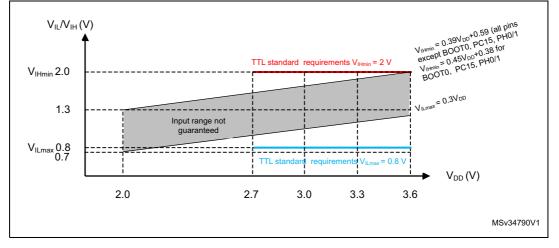
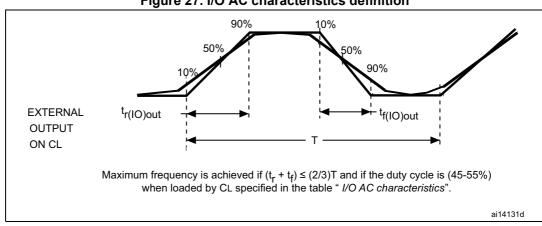



Figure 25. V_{IH}/V_{IL} versus VDD (CMOS I/Os)


Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to ± 8 mA, and sink or source up to ± 15 mA with the non-standard V_{OL}/V_{OH} specifications given in *Table 54*.

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 6.2:

- The sum of the currents sourced by all the I/Os on V_{DD}, plus the maximum Run consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating I_{VDD(Σ)} (see *Table 18*).
- The sum of the currents sunk by all the I/Os on V_{SS} plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating I_{VSS(Σ)} (see *Table 18*).

6.3.14 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} , except when it is internally driven low (see *Table 56*).

Unless otherwise specified, the parameters given in *Table 56* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 20*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)} ⁽¹⁾	NRST input low level voltage	-	V_{SS}	-	0.8	
V _{IH(NRST)} ⁽¹⁾	NRST input high level voltage	-	1.4	-	V_{DD}	
V _{OL(NRST)} ⁽¹⁾	NRST output low level	I _{OL} = 2 mA 2.7 V < V _{DD} < 3.6 V	-	-	0.4	V
VOL(NRST)`´	voltage	I _{OL} = 1.5 mA 1.65 V < V _{DD} < 2.7 V	-			
V _{hys(NRST)} ⁽¹⁾	NRST Schmitt trigger voltage hysteresis	-	-	10%V _{DD} ⁽²⁾	-	mV
R _{PU}	Weak pull-up equivalent resistor ⁽³⁾	$V_{IN} = V_{SS}$	30	45	60	kΩ
V _{F(NRST)} ⁽¹⁾	NRST input filtered pulse	-	-	-	50	ns
V _{NF(NRST)} ⁽¹⁾	NRST input not filtered pulse	-	350	_	-	ns

Table	56.	NRST	nin	characteristics
Table	UU .		PIII	Characteristics

1. Guaranteed by design.

2. 200 mV minimum value

3. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is around 10%.

SPI characteristics

Unless otherwise specified, the parameters given in the following tables are derived from tests performed under ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 20*.

Refer to Section 6.3.12: I/O current injection characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

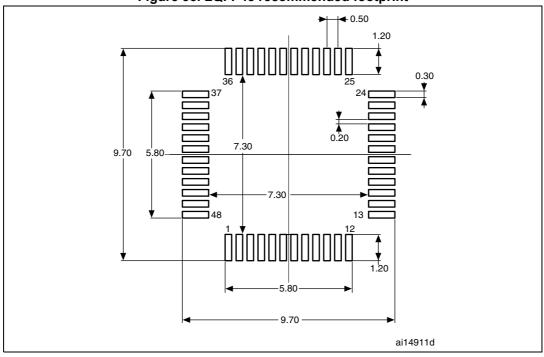

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
f _{SCK} 1/t _{c(SCK)}	SPI clock frequency	Master mode		-	16		
		Slave mode receiver	-		16		
		Slave mode Transmitter 1.71 <v<sub>DD<3.6V</v<sub>			12 ⁽²⁾	MHz	
		Slave mode Transmitter 2.7 <v<sub>DD<3.6V</v<sub>	-	-	16 ⁽²⁾		
Duty _(SCK)	Duty cycle of SPI clock frequency	Slave mode	30	50	70	%	
t _{su(NSS)}	NSS setup time	Slave mode, SPI presc = 2	4*Tpclk	-	-		
t _{h(NSS)}	NSS hold time	Slave mode, SPI presc = 2	2*Tpclk	-	-		
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode	Tpclk-2	Tpclk	Tpclk+2		
t _{su(MI)}	Data input setup time	Master mode	8.5	-	-		
t _{su(SI)}	Data input setup time	Slave mode	8.5	-	-		
t _{h(MI)}	Data input hold time	Master mode	6	-	-		
t _{h(SI)}		Slave mode	1			ns	
t _{a(SO}	Data output access time	Slave mode	15	-	36		
t _{dis(SO)}	Data output disable time	Slave mode	10	-	30		
+	Data output valid time	Slave mode 1.71 <v<sub>DD<3.6V</v<sub>	-	29	41		
t _{v(SO)}		Slave mode 2.7 <v<sub>DD<3.6V</v<sub>	-	22	28		
t _{v(MO)}		Master mode	-	10	17		
t _{h(SO)}	Data output hold time	Slave mode	9	-	-		
t _{h(MO)}		Master mode	3	-	-		

Table 67. SPI characteristics	cs in voltage Range 1 ⁽¹⁾
-------------------------------	--------------------------------------

1. Guaranteed by characterization results.

2. The maximum SPI clock frequency in slave transmitter mode is determined by the sum of $t_{y(SO)}$ and $t_{su(MI)}$ which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having $t_{su(MI)} = 0$ while Duty_(SCK) = 50%.

Figure 35. LQFP48 recommended footprint

1. Dimensions are expressed in millimeters.

LQFP48 device marking

The following figure gives an example of topside marking versus pin 1 position identifier location.

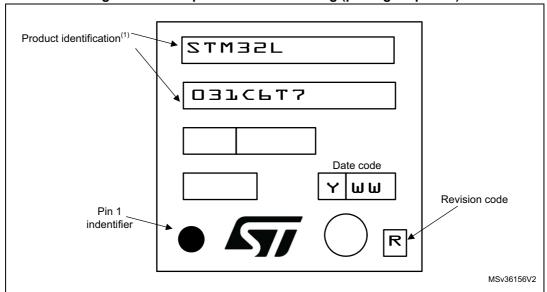
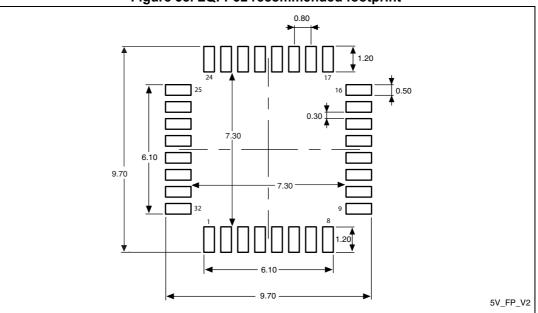


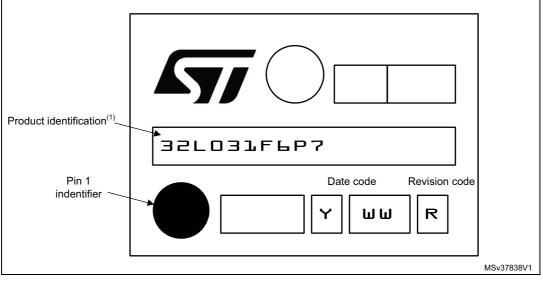
Figure 36. Example of LQFP48 marking (package top view)


 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Symbol	millimeters		inches ⁽¹⁾			
Symbol	Min	Тур	Max	Min	Тур	Мах
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.300	0.370	0.450	0.0118	0.0146	0.0177
С	0.090	-	0.200	0.0035	-	0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3	-	5.600	-	-	0.2205	-
E	8.800	9.000	9.200	0.3465	0.3543	0.3622
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3	-	5.600	-	-	0.2205	-
е	-	0.800	-	-	0.0315	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
CCC	-	-	0.100	-	-	0.0039
А	-	-	1.600	-	-	0.0630

Table 71. LQFP32, 7 x 7 mm, 32-pin low-profile quad flat package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.


Figure 38. LQFP32 recommended footprint

1. Dimensions are expressed in millimeters.

TSSOP20 device marking

The following figure gives an example of topside marking versus pin 1 position identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

